Appendix: Fields of Vectors and Tensors

Total Page:16

File Type:pdf, Size:1020Kb

Appendix: Fields of Vectors and Tensors Appendix: Fields of Vectors and Tensors A.1 Vectors and Tensors A spatial description of the flow field is nothing but a geometrical description, of which the essence is to ensure that relevant physical quantities are invariant under artificially introduced coordinate systems. This is realized by tensor analysis (cf. Aris 1962). Here we introduce the concept of tensors in an informal way, through some important examples in fluid mechanics. A.1.1 Scalars and Vectors Scalars and vectors are geometric entities independent of the choice of coordinate systems. This independence is a necessary condition for an entity to represent some physical quantity. A scalar, say the fluid pressure p or density ρ, obviously has such independence. For a vector, say the fluid velocity u, although its three components (u1, u2, u3) depend on the chosen coordinates, say Cartesian coordinates with unit basis vectors (e1, e2, e3), as a single geometric entity the one-form of ei , u = u1e1 + u2e2 + u3e3 = ui ei , (A.1.1) has to be independent of the basis vectors. Note that Einstein’s convention has been used in the last expression of (A.1.1): unless stated otherwise, a repeated index always implies summation over the dimension of the space. The inner (scalar) and cross (vector) products of two vectors are familiar. If θ is the angle between a and b, the inner product generates a scalar a · b =|a||b| cos θ, (A.1.2) © Springer-Verlag Berlin Heidelberg 2015 J.-Z. Wu et al., Vortical Flows, DOI 10.1007/978-3-662-47061-9 405 406 Appendix: Fields of Vectors and Tensors which is a projection operation and changing θ to −θ does not alter the result. In contrast, the cross product of a and b generates a vector a × b = n(|a||b| sin θ), (A.1.3) where n is a unit vector perpendicular to both a and b, and |a||b| sin θ is the area of the parallelogram spanned by a and b. Thus a × b determines a vectorial area.The positive direction of n follows the right-hand rule from a to b. Since changing θ to −θ alters the sign of the result, we have a × b =−b × a. In particular, the inner and cross products of Cartesian basis vectors satisfy ei · e j = δij, (A.1.4a) ei × e j = ek, i, j, k = 1, 2, 3 and cycles, (A.1.4b) where 1ifi = j, δ = (A.1.5) ij 0if i = j is the Kroneker symbol. The gradient operator ∂ ∇=ei (A.1.6) ∂xi is also a vector, which as a single entity is invariant under any coordinate trans- formations. Thus, the pressure gradient ∇ p is a vector; the divergence and curl of velocity, ∇·u = ϑ, ∇×u = ω, (A.1.7) are the scalar dilatation and vector vorticity, respectively. If we shift to another coordinates system, the components of u must vary according to certain rule during the coordinate transformation to ensure the invariance of vector ( ) ( ) u. For example, consider two sets of Cartesian coordinates: S ei and S ei .Let · = . ei e j cij Then the basis vectors of S can be expressed in terms of those of S and vise versa: = , e j cijei (A.1.8a) = . ei cije j (A.1.8b) Since · = δ = · = δ , e j ek jk cijclkei el cijclk il Appendix: Fields of Vectors and Tensors 407 we have cljclk = δ jk, (A.1.9) i.e., the matrices C and C T are orthogonal: C T C = I . Then, we can expend any vector u in S and S. Because u is independent of coordinates, there must be = = = . u ei ui e j u j cije j ui Therefore, using (A.1.8b) we find = . u j cijui (A.1.10) { } { } { } Comparing (A.1.8a) and (A.1.10) indicates that as ei are transformed to ei , ui { } are transformed to ui by the same transformation rule as that of the basis vectors. Note that coordinate transformations can be either continuous or discrete. In the former cij vary continuously as a set of parameters, say the rotation angles of the basis vectors; while in the latter the direction of one of the basis vectors is reversed or one changes from right-handed to left-handed coordinate systems, like viewing the vectors through a mirror, and cij vary discretely. A true vector (or polar vector) is invariant under both continuous and discrete transformations, for example position vector x, velocity u, force F, and electric field E, etc. The force includes pressure force −∇ p, so the vector operator ∇ is also a true vector. On the other hand, a pseudo vector (or axial vector) is invariant only under con- tinuous transformation but changes sign under discrete transformation. This happens once a cross product is involved. For example, in (A.1.4b) the unit vector n of the area, perpendicular to both a and b, is an axial vector. The reason is that the positive direction of n has no objective definition but is just chosen by convention: if we turn a into b through the angle θ<180◦, then we require (a, b, n) form a right-hand triad. The direction of n will be reversed if we change the convention to the left-hand one, since b×a =−a×b. In other words, an axial vector is associated with a rotation, like the axis in which a screw with a right-hand thread will advance. Examples include angular velocity , torque x × F, and magnetic field B; after all the vorticity field ω =∇×u that concerns us most in this book. Note however the curl of a pseudo vector is a true vector. Moreover, the inner product of a true vector and a pseudo vector, say c · (a × b),mustbeapseudo scalar that changes sign as we change from right-handed to left-handed coordinate systems. A.1.2 Tensors A physical field often involves geometric entities more complicated than vectors. For example, let the fluid velocity at a spatial point x be u, and consider the velocity change at any neighboring point x + dx. To the first order of dx, there is 408 Appendix: Fields of Vectors and Tensors du = (dx ·∇)u = dxj u, j , where dxj ( j = 1, 2, 3) are Cartesian coefficients of dx.Herewehaveusedasimple notation (·), j to indicate the derivative with respect to x j .Sou has three directional derivatives ∂u u, j ≡ , j = 1, 2, 3, ∂x j each being a vector. Thus we may further expand them as u, j = ekuk, j , j = 1, 2, 3. Now, just as p, j is the jth component of pressure gradient vector ∇ p, the vector u, j can also be viewed as the jth component of a geometric entity called deformation tensor, which is defined as the operator ∇ directly acting to u and equals the sum of each e j times u, j . Consequently, we obtain ∇u = e j u, j = e j ekuk, j , (A.1.11) which can also be directly obtained from (A.1.1) and (A.1.6). In this geometric entity the basis vectors appear twice, and hence the summation is to be taken twice, once for j and once for k; so we call this entity a second-rank tensor. Note that in (A.1.11) the index j implies the components of ∇ and goes first, while the index k implies the components of u and goes after j. The order inverse in uk, j is only apparent, 1 because this component of ∇u is merely an abbreviation of ∂uk/∂x j . Since ∇u is independent of the magnitude and direction of dx, in comparison with (1.1.3)itisa more general description of the velocity variation at the neighborhood of a point and will appear in many later analyses. As another example of tensor of second rank, assume on an arbitrary surface element dS = ndS there is a pressure p > 0, where n is the unit normal vector of the surface. Then by definition p must act as a normal pressing force on the element, i.e., a surface stress t p =−np or {tpi }=−{ni p} per unit area. But if on dS there is a viscous force tv, it is generically not along n but pointing to another direction, yet still depending linearly on the orientation of n. Thus, in general we may write 2 {tvi }={n j Vji} with {Vji} being the 3 coefficients. Since tv and n are both geometric entities independent of the choice of coordinates, so must be V = e j ei Vji; it is called a tensor of second rank. Later we will see that the relation {tvi }={n j Vji} has a vector form tv = n · V as the “contraction” or inner product of n and V. Scalars and vectors can be considered as special tensors of rank (or order) zero and one respectively. In general, as the immediate extension of vectors, a tensor T of rank n is a geometric entity independent of the choice of a class of coordinate systems, and has 3n components with respect to a given coordinate in three-dimensional space. 1 The order of j, k is a matter of convention. A single convention has to be followed throughout the whole analysis. Appendix: Fields of Vectors and Tensors 409 n Like the one-form (A.1.1) for a vector, these 3 components Tij...k constitute the coefficients of an n-form of the given base vectors, i.e., T = Tij...kei e j ...ek. The transformation rule of vector components can be extended to higher-rank tensor.
Recommended publications
  • Arxiv:2012.13347V1 [Physics.Class-Ph] 15 Dec 2020
    KPOP E-2020-04 Bra-Ket Representation of the Inertia Tensor U-Rae Kim, Dohyun Kim, and Jungil Lee∗ KPOPE Collaboration, Department of Physics, Korea University, Seoul 02841, Korea (Dated: June 18, 2021) Abstract We employ Dirac's bra-ket notation to define the inertia tensor operator that is independent of the choice of bases or coordinate system. The principal axes and the corresponding principal values for the elliptic plate are determined only based on the geometry. By making use of a general symmetric tensor operator, we develop a method of diagonalization that is convenient and intuitive in determining the eigenvector. We demonstrate that the bra-ket approach greatly simplifies the computation of the inertia tensor with an example of an N-dimensional ellipsoid. The exploitation of the bra-ket notation to compute the inertia tensor in classical mechanics should provide undergraduate students with a strong background necessary to deal with abstract quantum mechanical problems. PACS numbers: 01.40.Fk, 01.55.+b, 45.20.dc, 45.40.Bb Keywords: Classical mechanics, Inertia tensor, Bra-ket notation, Diagonalization, Hyperellipsoid arXiv:2012.13347v1 [physics.class-ph] 15 Dec 2020 ∗Electronic address: [email protected]; Director of the Korea Pragmatist Organization for Physics Educa- tion (KPOP E) 1 I. INTRODUCTION The inertia tensor is one of the essential ingredients in classical mechanics with which one can investigate the rotational properties of rigid-body motion [1]. The symmetric nature of the rank-2 Cartesian tensor guarantees that it is described by three fundamental parameters called the principal moments of inertia Ii, each of which is the moment of inertia along a principal axis.
    [Show full text]
  • 1.3 Cartesian Tensors a Second-Order Cartesian Tensor Is Defined As A
    1.3 Cartesian tensors A second-order Cartesian tensor is defined as a linear combination of dyadic products as, T Tijee i j . (1.3.1) The coefficients Tij are the components of T . A tensor exists independent of any coordinate system. The tensor will have different components in different coordinate systems. The tensor T has components Tij with respect to basis {ei} and components Tij with respect to basis {e i}, i.e., T T e e T e e . (1.3.2) pq p q ij i j From (1.3.2) and (1.2.4.6), Tpq ep eq TpqQipQjqei e j Tij e i e j . (1.3.3) Tij QipQjqTpq . (1.3.4) Similarly from (1.3.2) and (1.2.4.6) Tij e i e j Tij QipQjqep eq Tpqe p eq , (1.3.5) Tpq QipQjqTij . (1.3.6) Equations (1.3.4) and (1.3.6) are the transformation rules for changing second order tensor components under change of basis. In general Cartesian tensors of higher order can be expressed as T T e e ... e , (1.3.7) ij ...n i j n and the components transform according to Tijk ... QipQjqQkr ...Tpqr... , Tpqr ... QipQjqQkr ...Tijk ... (1.3.8) The tensor product S T of a CT(m) S and a CT(n) T is a CT(m+n) such that S T S T e e e e e e . i1i2 im j1j 2 jn i1 i2 im j1 j2 j n 1.3.1 Contraction T Consider the components i1i2 ip iq in of a CT(n).
    [Show full text]
  • Tensors (Draft Copy)
    TENSORS (DRAFT COPY) LARRY SUSANKA Abstract. The purpose of this note is to define tensors with respect to a fixed finite dimensional real vector space and indicate what is being done when one performs common operations on tensors, such as contraction and raising or lowering indices. We include discussion of relative tensors, inner products, symplectic forms, interior products, Hodge duality and the Hodge star operator and the Grassmann algebra. All of these concepts and constructions are extensions of ideas from linear algebra including certain facts about determinants and matrices, which we use freely. None of them requires additional structure, such as that provided by a differentiable manifold. Sections 2 through 11 provide an introduction to tensors. In sections 12 through 25 we show how to perform routine operations involving tensors. In sections 26 through 28 we explore additional structures related to spaces of alternating tensors. Our aim is modest. We attempt only to create a very structured develop- ment of tensor methods and vocabulary to help bridge the gap between linear algebra and its (relatively) benign notation and the vast world of tensor ap- plications. We (attempt to) define everything carefully and consistently, and this is a concise repository of proofs which otherwise may be spread out over a book (or merely referenced) in the study of an application area. Many of these applications occur in contexts such as solid-state physics or electrodynamics or relativity theory. Each subject area comes equipped with its own challenges: subject-specific vocabulary, traditional notation and other conventions. These often conflict with each other and with modern mathematical practice, and these conflicts are a source of much confusion.
    [Show full text]
  • 1 Vectors & Tensors
    1 Vectors & Tensors The mathematical modeling of the physical world requires knowledge of quite a few different mathematics subjects, such as Calculus, Differential Equations and Linear Algebra. These topics are usually encountered in fundamental mathematics courses. However, in a more thorough and in-depth treatment of mechanics, it is essential to describe the physical world using the concept of the tensor, and so we begin this book with a comprehensive chapter on the tensor. The chapter is divided into three parts. The first part covers vectors (§1.1-1.7). The second part is concerned with second, and higher-order, tensors (§1.8-1.15). The second part covers much of the same ground as done in the first part, mainly generalizing the vector concepts and expressions to tensors. The final part (§1.16-1.19) (not required in the vast majority of applications) is concerned with generalizing the earlier work to curvilinear coordinate systems. The first part comprises basic vector algebra, such as the dot product and the cross product; the mathematics of how the components of a vector transform between different coordinate systems; the symbolic, index and matrix notations for vectors; the differentiation of vectors, including the gradient, the divergence and the curl; the integration of vectors, including line, double, surface and volume integrals, and the integral theorems. The second part comprises the definition of the tensor (and a re-definition of the vector); dyads and dyadics; the manipulation of tensors; properties of tensors, such as the trace, transpose, norm, determinant and principal values; special tensors, such as the spherical, identity and orthogonal tensors; the transformation of tensor components between different coordinate systems; the calculus of tensors, including the gradient of vectors and higher order tensors and the divergence of higher order tensors and special fourth order tensors.
    [Show full text]
  • PHYSICS 116A Homework 9 Solutions 1. Boas, Problem 3.12–4
    PHYSICS 116A Homework 9 Solutions 1. Boas, problem 3.12–4. Find the equations of the following conic, 2 2 3x + 8xy 3y = 8 , (1) − relative to the principal axes. In matrix form, Eq. (1) can be written as: 3 4 x (x y) = 8 . 4 3 y − I could work out the eigenvalues by solving the characteristic equation. But, in this case I can work them out by inspection by noting that for the matrix 3 4 M = , 4 3 − we have λ1 + λ2 = Tr M = 0 , λ1λ2 = det M = 25 . − It immediately follows that the two eigenvalues are λ1 = 5 and λ2 = 5. Next, we compute the − eigenvectors. 3 4 x x = 5 4 3 y y − yields one independent relation, x = 2y. Thus, the normalized eigenvector is x 1 2 = . y √5 1 λ=5 Since M is a real symmetric matrix, the two eigenvectors are orthogonal. It follows that the second normalized eigenvector is: x 1 1 = − . y − √5 2 λ= 5 The two eigenvectors form the columns of the diagonalizing matrix, 1 2 1 C = − . (2) √5 1 2 Since the eigenvectors making up the columns of C are real orthonormal vectors, it follows that C is a real orthogonal matrix, which satisfies C−1 = CT. As a check, we make sure that C−1MC is diagonal. −1 1 2 1 3 4 2 1 1 2 1 10 5 5 0 C MC = − = = . 5 1 2 4 3 1 2 5 1 2 5 10 0 5 − − − − − 1 Following eq. (12.3) on p.
    [Show full text]
  • Curvilinear Coordinates
    UNM SUPPLEMENTAL BOOK DRAFT June 2004 Curvilinear Analysis in a Euclidean Space Presented in a framework and notation customized for students and professionals who are already familiar with Cartesian analysis in ordinary 3D physical engineering space. Rebecca M. Brannon Written by Rebecca Moss Brannon of Albuquerque NM, USA, in connection with adjunct teaching at the University of New Mexico. This document is the intellectual property of Rebecca Brannon. Copyright is reserved. June 2004 Table of contents PREFACE ................................................................................................................. iv Introduction ............................................................................................................. 1 Vector and Tensor Notation ........................................................................................................... 5 Homogeneous coordinates ............................................................................................................. 10 Curvilinear coordinates .................................................................................................................. 10 Difference between Affine (non-metric) and Metric spaces .......................................................... 11 Dual bases for irregular bases .............................................................................. 11 Modified summation convention ................................................................................................... 15 Important notation
    [Show full text]
  • Tensor Categorical Foundations of Algebraic Geometry
    Tensor categorical foundations of algebraic geometry Martin Brandenburg { 2014 { Abstract Tannaka duality and its extensions by Lurie, Sch¨appi et al. reveal that many schemes as well as algebraic stacks may be identified with their tensor categories of quasi-coherent sheaves. In this thesis we study constructions of cocomplete tensor categories (resp. cocontinuous tensor functors) which usually correspond to constructions of schemes (resp. their morphisms) in the case of quasi-coherent sheaves. This means to globalize the usual local-global algebraic geometry. For this we first have to develop basic commutative algebra in an arbitrary cocom- plete tensor category. We then discuss tensor categorical globalizations of affine morphisms, projective morphisms, immersions, classical projective embeddings (Segre, Pl¨ucker, Veronese), blow-ups, fiber products, classifying stacks and finally tangent bundles. It turns out that the universal properties of several moduli spaces or stacks translate to the corresponding tensor categories. arXiv:1410.1716v1 [math.AG] 7 Oct 2014 This is a slightly expanded version of the author's PhD thesis. Contents 1 Introduction 1 1.1 Background . .1 1.2 Results . .3 1.3 Acknowledgements . 13 2 Preliminaries 14 2.1 Category theory . 14 2.2 Algebraic geometry . 17 2.3 Local Presentability . 21 2.4 Density and Adams stacks . 22 2.5 Extension result . 27 3 Introduction to cocomplete tensor categories 36 3.1 Definitions and examples . 36 3.2 Categorification . 43 3.3 Element notation . 46 3.4 Adjunction between stacks and cocomplete tensor categories . 49 4 Commutative algebra in a cocomplete tensor category 53 4.1 Algebras and modules . 53 4.2 Ideals and affine schemes .
    [Show full text]
  • A Multidimensional Filtering Framework with Applications to Local Structure Analysis and Image Enhancement
    Linkoping¨ Studies in Science and Technology Dissertation No. 1171 A Multidimensional Filtering Framework with Applications to Local Structure Analysis and Image Enhancement Bjorn¨ Svensson Department of Biomedical Engineering Linkopings¨ universitet SE-581 85 Linkoping,¨ Sweden http://www.imt.liu.se Linkoping,¨ April 2008 A Multidimensional Filtering Framework with Applications to Local Structure Analysis and Image Enhancement c 2008 Bjorn¨ Svensson Department of Biomedical Engineering Linkopings¨ universitet SE-581 85 Linkoping,¨ Sweden ISBN 978-91-7393-943-0 ISSN 0345-7524 Printed in Linkoping,¨ Sweden by LiU-Tryck 2008 Abstract Filtering is a fundamental operation in image science in general and in medical image science in particular. The most central applications are image enhancement, registration, segmentation and feature extraction. Even though these applications involve non-linear processing a majority of the methodologies available rely on initial estimates using linear filters. Linear filtering is a well established corner- stone of signal processing, which is reflected by the overwhelming amount of literature on finite impulse response filters and their design. Standard techniques for multidimensional filtering are computationally intense. This leads to either a long computation time or a performance loss caused by approximations made in order to increase the computational efficiency. This dis- sertation presents a framework for realization of efficient multidimensional filters. A weighted least squares design criterion ensures preservation of the performance and the two techniques called filter networks and sub-filter sequences significantly reduce the computational demand. A filter network is a realization of a set of filters, which are decomposed into a structure of sparse sub-filters each with a low number of coefficients.
    [Show full text]
  • The New Bosonic Mechanism Rostislav Taratuta
    The new bosonic mechanism Rostislav Taratuta To cite this version: Rostislav Taratuta. The new bosonic mechanism. 2016. hal-01162606v7 HAL Id: hal-01162606 https://hal.archives-ouvertes.fr/hal-01162606v7 Preprint submitted on 22 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License The new bosonic mechanism. Rostislav A. Taratuta V.Ye. Lashkaryov Institute of Semiconductor Physics, Kiev, Ukraine corresponding author, email: [email protected] ABSTRACT 1. Purpose The main purpose of this paper is to introduce the new bosonic mechanism and new treatment of dark energy. The bosonic mechanism focuses on obtaining masses by gauge bosons without assuming the existence of Higgs boson. This paper highlights the possibility for gauge boson to obtain mass not by means of interaction with Higgs boson, but by interacting with massive scalar mode of a single gravitational-dark field. The advantage of this approach over Higgs model is the manifest that the gauge boson acquires mass through interaction with combined gravitational dark field thus allowing the mechanism to account for the dark sector while Higgs model does not include dark sector.
    [Show full text]
  • M.Sc. (MATHEMATICS) MAL-633
    M.Sc. (MATHEMATICS) MECHANICS OF SOLIDS-I MAL-633 DIRECTORATE OF DISTANCE EDUCATION GURU JAMBHESHWAR UNIVERSITY OF SCIENCE & TECHNOLOGY HISAR, HARYANA-125001. MAL-633 MECHANICS OF SOLIDS-I Contents: Chapter -1 ………………………………………………………………… Page: 1-21 1.1. Introduction 01 1.1.1.1. Rank/Order of tensor 02 1.1.1.2. Characteristics of the tensors 02 1.2 Notation and Summation Convention 03 1.3 Law of Transformation 04 1.4 Some properties of tensor 11 1.5 Contraction of a Tensor 15 1.6 Quotient Law of Tensors 16 1.7 Symmetric and Skew Symmetric tensors 18 Chapter - II ……………………………………………………………… Page: 18-32 2.1 The Symbol ij 19 2.1.1. Tensor Equation 20 2.2 The Symbol ijk 24 2.3 Isotropic Tensors 26 2.4 Contravariant tensors(vectors) 29 2.5 Covariant Vectors 30 Chapter –III …………………………………………………………….. Page: 33-38 3.1 Eigen Values and Eigen Vectors 33 Chapter –IV ............................................................................................ Page: 39-65 4.1 Introduction 39 4.2 Transformation of an Elastic Body 40 4.3 Linear Transformation or Affine Transformation 42 4.4 Small/Infinitesimal Linear Deformation 44 4.5 Homogeneous Deformation 45 4.6 Pure Deformation and Components of Strain Tensor 52 4.7 Geometrical Interpretation of the Components of Strain 56 4.8 Normal and Tangential Displacement 64 Chapter –V ..……………………………………………………………… Page: 66-99 5.1 Strain Quadric of Cauchy 66 5.2 Strain Components at a point in a rotation of coordinate axes 69 5.3 Principal Strains and Invariants 71 5.4 General Infinitesimal Deformation 82 5.5 Saint-Venant’s
    [Show full text]
  • Tensor Analysis and Curvilinear Coordinates.Pdf
    Tensor Analysis and Curvilinear Coordinates Phil Lucht Rimrock Digital Technology, Salt Lake City, Utah 84103 last update: May 19, 2016 Maple code is available upon request. Comments and errata are welcome. The material in this document is copyrighted by the author. The graphics look ratty in Windows Adobe PDF viewers when not scaled up, but look just fine in this excellent freeware viewer: http://www.tracker-software.com/pdf-xchange-products-comparison-chart . The table of contents has live links. Most PDF viewers provide these links as bookmarks on the left. Overview and Summary.........................................................................................................................7 1. The Transformation F: invertibility, coordinate lines, and level surfaces..................................12 Example 1: Polar coordinates (N=2)..................................................................................................13 Example 2: Spherical coordinates (N=3)...........................................................................................14 Cartesian Space and Quasi-Cartesian Space.......................................................................................15 Pictures A,B,C and D..........................................................................................................................16 Coordinate Lines.................................................................................................................................16 Example 1: Polar coordinates, coordinate lines
    [Show full text]
  • The Navier-Stokes Equation
    Revised October 9, 2007 8:48 Copyright 2000 David A. Randall The Navier-Stokes Equation David A. Randall Department of Atmospheric Science Colorado State University, Fort Collins, Colorado 80523 25.1 Analysis of the relative motion near a point Suppose that the velocity of the fluid at position r0"x! y! z# and time t is V"x! y! z! t# , and that the simultaneous velocity at a neighboring position r0 + r is V + !V . We can write & u u u ' $ -(---- -(---- -(---- % (x (y (z & !u' $ % &x' $ v v v % $ !v% = $ -(---- -(---- -(---- % $y% . (25.1) $ % $ (x (z (z % $ % "!w# "z# $ w w w % $ -(----- -(----- -(----- % " (x (y (z # In vector form, this can be written as !V = D ) r , (25.2) where D is called the deformation tensor because it describes how the fluid element is being deformed by the non-uniform motion field. Using Cartesian tensor notation, we can alternatively express (25.1) as (vi !vi = ------xj , where i = 1! 2! 3 . (25.3) (xj We can decompose (vi (xj into two parts which are symmetric and anti- symmetric in the suffices i and j . They are 1 (v (v * = --&------i + ------j' , (25.4) ij " # 2 (xj (xi and Selected Nuggets 193 194 The Navier-Stokes Equation 1 (v (v + = --&------i – ------j' , (25.5) ij " # 2 (xj (xi respectively. The deformation D can now be expressed by D = * + , , (25.6) where we define two “parts” of D : & e e e ' & 0 + + ' $ xx xy xz % $ xy xz % * - $ e e e % , and , - $ + 0 + % . (25.7) $ yx yy yz % $ yx yz % " ezx ezy ezz # " +zx +zy 0 # We show below that * is related to the divergence, and , is related to the vorticity.
    [Show full text]