Volume I: a Brief Review of Some Mathematical Preliminaries

Total Page:16

File Type:pdf, Size:1020Kb

Volume I: a Brief Review of Some Mathematical Preliminaries Lecture Notes on The Mechanics of Elastic Solids Volume I: A Brief Review of Some Mathematical Preliminaries Version 1.1 Rohan Abeyaratne Quentin Berg Professor of Mechanics Department of Mechanical Engineering MIT Copyright c Rohan Abeyaratne, 1987 All rights reserved. http://web.mit.edu/abeyaratne/lecture notes.html December 2, 2006 2 3 Electronic Publication Rohan Abeyaratne Quentin Berg Professor of Mechanics Department of Mechanical Engineering 77 Massachusetts Institute of Technology Cambridge, MA 02139-4307, USA Copyright c by Rohan Abeyaratne, 1987 All rights reserved Abeyaratne, Rohan, 1952- Lecture Notes on The Mechanics of Elastic Solids. Volume I: A Brief Review of Some Math- ematical Preliminaries / Rohan Abeyaratne { 1st Edition { Cambridge, MA: ISBN-13: 978-0-9791865-0-9 ISBN-10: 0-9791865-0-1 QC Please send corrections, suggestions and comments to [email protected] Updated 17 April 2014 4 i Dedicated with admiration and affection to Matt Murphy and the miracle of science, for the gift of renaissance. iii PREFACE The Department of Mechanical Engineering at MIT offers a series of graduate level sub- jects on the Mechanics of Solids and Structures which include: 2.071: Mechanics of Solid Materials, 2.072: Mechanics of Continuous Media, 2.074: Solid Mechanics: Elasticity, 2.073: Solid Mechanics: Plasticity and Inelastic Deformation, 2.075: Advanced Mechanical Behavior of Materials, 2.080: Structural Mechanics, 2.094: Finite Element Analysis of Solids and Fluids, 2.095: Molecular Modeling and Simulation for Mechanics, and 2.099: Computational Mechanics of Materials. Over the years, I have had the opportunity to regularly teach the second and third of these subjects, 2.072 and 2.074 (formerly known as 2.083), and the current three volumes are comprised of the lecture notes I developed for them. The first draft of these notes was produced in 1987 and they have been corrected, refined and expanded on every following occasion that I taught these classes. The material in the current presentation is still meant to be a set of lecture notes, not a text book. It has been organized as follows: Volume I: A Brief Review of Some Mathematical Preliminaries Volume II: Continuum Mechanics Volume III: Elasticity My appreciation for mechanics was nucleated by Professors Douglas Amarasekara and Munidasa Ranaweera of the (then) University of Ceylon, and was subsequently shaped and grew substantially under the influence of Professors James K. Knowles and Eli Sternberg of the California Institute of Technology. I have been most fortunate to have had the opportunity to apprentice under these inspiring and distinctive scholars. I would especially like to acknowledge a great many illuminating and stimulating interactions with my mentor, colleague and friend Jim Knowles, whose influence on me cannot be overstated. I am also indebted to the many MIT students who have given me enormous fulfillment and joy to be part of their education. My understanding of elasticity as well as these notes have also benefitted greatly from many useful conversations with Kaushik Bhattacharya, Janet Blume, Eliot Fried, Morton E. iv Gurtin, Richard D. James, Stelios Kyriakides, David M. Parks, Phoebus Rosakis, Stewart Silling and Nicolas Triantafyllidis, which I gratefully acknowledge. Volume I of these notes provides a collection of essential definitions, results, and illus- trative examples, designed to review those aspects of mathematics that will be encountered in the subsequent volumes. It is most certainly not meant to be a source for learning these topics for the first time. The treatment is concise, selective and limited in scope. For exam- ple, Linear Algebra is a far richer subject than the treatment here, which is limited to real 3-dimensional Euclidean vector spaces. The topics covered in Volumes II and III are largely those one would expect to see covered in such a set of lecture notes. Personal taste has led me to include a few special (but still well-known) topics. Examples of this include sections on the statistical mechanical theory of polymer chains and the lattice theory of crystalline solids in the discussion of constitutive theory in Volume II; and sections on the so-called Eshelby problem and the effective behavior of two-phase materials in Volume III. There are a number of Worked Examples at the end of each chapter which are an essential part of the notes. Many of these examples either provide, more details, or a proof, of a result that had been quoted previously in the text; or it illustrates a general concept; or it establishes a result that will be used subsequently (possibly in a later volume). The content of these notes are entirely classical, in the best sense of the word, and none of the material here is original. I have drawn on a number of sources over the years as I prepared my lectures. I cannot recall every source I have used but certainly they include those listed at the end of each chapter. In a more general sense the broad approach and philosophy taken has been influenced by: Volume I: A Brief Review of Some Mathematical Preliminaries I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, 1963. J.K. Knowles, Linear Vector Spaces and Cartesian Tensors, Oxford University Press, New York, 1997. Volume II: Continuum Mechanics P. Chadwick, Continuum Mechanics: Concise Theory and Problems, Dover,1999. J.L. Ericksen, Introduction to the Thermodynamics of Solids, Chapman and Hall, 1991. M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, 1981. J. K. Knowles and E. Sternberg, (Unpublished) Lecture Notes for AM136: Finite Elas- ticity, California Institute of Technology, Pasadena, CA 1978. v C. Truesdell and W. Noll, The nonlinear field theories of mechanics, in Handb¨uchder Physik, Edited by S. Fl¨ugge, Volume III/3, Springer, 1965. Volume IIII: Elasticity M.E. Gurtin, The linear theory of elasticity, in Mechanics of Solids - Volume II, edited by C. Truesdell, Springer-Verlag, 1984. J. K. Knowles, (Unpublished) Lecture Notes for AM135: Elasticity, California Institute of Technology, Pasadena, CA, 1976. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, 1944. S. P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 1987. The following notation will be used consistently in Volume I: Greek letters will denote real numbers; lowercase boldface Latin letters will denote vectors; and uppercase boldface Latin letters will denote linear transformations. Thus, for example, α; β; γ::: will denote scalars (real numbers); a; b; c; ::: will denote vectors; and A; B; C; ::: will denote linear transforma- tions. In particular, \o" will denote the null vector while \0" will denote the null linear transformation. As much as possible this notation will also be used in Volumes II and III though there will be some lapses (for reasons of tradition). vi Contents 1 Matrix Algebra and Indicial Notation 1 1.1 Matrix algebra . .1 1.2 Indicial notation . .5 1.3 Summation convention . .7 1.4 Kronecker delta . .9 1.5 The alternator or permutation symbol . 10 1.6 Worked Examples and Exercises. 11 2 Vectors and Linear Transformations 19 2.1 Vectors . 20 2.1.1 Euclidean point space . 22 2.2 Linear Transformations. 22 2.3 Worked Examples and Exercises. 28 3 Components of Tensors. Cartesian Tensors 45 3.1 Components of a vector in a basis. 45 3.2 Components of a linear transformation in a basis. 47 3.3 Components in two bases. 49 vii viii CONTENTS 3.4 Scalar-valued functions of linear transformations. Determinant, trace, scalar- product and norm. 51 3.5 Cartesian Tensors . 54 3.6 Worked Examples and Exercises. 56 4 Symmetry: Groups of Linear Transformations 73 4.1 Symmetry Transformations: an example in two-dimensions. 74 4.2 Symmetry Transformations: an example in three-dimensions. 75 4.3 Symmetry Transformations: lattices. 78 4.4 Groups of Linear Transformations. 79 4.5 Worked Examples and Exercises. 80 4.6 Invariance. Representation Theorems. 83 4.6.1 Symmetry group of a function. 84 4.6.2 Isotropic scalar-valued functions. Invariants. 86 4.6.3 Isotropic tensor-valued functions. 89 4.6.4 Anisotropic invariance. 91 4.7 Worked Examples and Exercises. 93 5 Calculus of Vector and Tensor Fields 107 5.1 Notation and definitions. 107 5.2 Integral theorems . 109 5.3 Localization . 110 5.4 Worked Examples and Exercises. 111 6 Orthogonal Curvilinear Coordinates 121 6.1 Introductory Remarks . 121 6.2 General Orthogonal Curvilinear Coordinates . 124 CONTENTS ix 6.2.1 Coordinate transformation. Inverse transformation. 124 6.2.2 Metric coefficients, scale moduli. 126 6.2.3 Inverse partial derivatives . 128 6.2.4 Components of @e^i=@x^j in the local basis (e^1; e^2; e^3).......... 129 6.3 Transformation of Basic Tensor Relations . 130 6.3.1 Gradient of a scalar field . 130 6.3.2 Gradient of a vector field . 131 6.3.3 Divergence of a vector field . 132 6.3.4 Laplacian of a scalar field . 132 6.3.5 Curl of a vector field . 132 6.3.6 Divergence of a symmetric 2-tensor field . 133 6.3.7 Differential elements of volume . 134 6.3.8 Differential elements of area . 134 6.4 Some Examples of Orthogonal Curvilinear Coordinate Systems . 135 6.5 Worked Examples and Exercises. 135 7 Calculus of Variations 145 7.1 Introduction. 145 7.2 Brief review of calculus. 148 7.3 The basic idea: necessary conditions for a minimum: δF = 0; δ2F 0. 150 ≥ 7.4 Application of the necessary condition δF = 0 to the basic problem. Euler equation. 152 7.4.1 The basic problem. Euler equation. 152 7.4.2 An example. The Brachistochrone Problem. 154 7.4.3 A Formalism for Deriving the Euler Equation .
Recommended publications
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Arxiv:2012.13347V1 [Physics.Class-Ph] 15 Dec 2020
    KPOP E-2020-04 Bra-Ket Representation of the Inertia Tensor U-Rae Kim, Dohyun Kim, and Jungil Lee∗ KPOPE Collaboration, Department of Physics, Korea University, Seoul 02841, Korea (Dated: June 18, 2021) Abstract We employ Dirac's bra-ket notation to define the inertia tensor operator that is independent of the choice of bases or coordinate system. The principal axes and the corresponding principal values for the elliptic plate are determined only based on the geometry. By making use of a general symmetric tensor operator, we develop a method of diagonalization that is convenient and intuitive in determining the eigenvector. We demonstrate that the bra-ket approach greatly simplifies the computation of the inertia tensor with an example of an N-dimensional ellipsoid. The exploitation of the bra-ket notation to compute the inertia tensor in classical mechanics should provide undergraduate students with a strong background necessary to deal with abstract quantum mechanical problems. PACS numbers: 01.40.Fk, 01.55.+b, 45.20.dc, 45.40.Bb Keywords: Classical mechanics, Inertia tensor, Bra-ket notation, Diagonalization, Hyperellipsoid arXiv:2012.13347v1 [physics.class-ph] 15 Dec 2020 ∗Electronic address: [email protected]; Director of the Korea Pragmatist Organization for Physics Educa- tion (KPOP E) 1 I. INTRODUCTION The inertia tensor is one of the essential ingredients in classical mechanics with which one can investigate the rotational properties of rigid-body motion [1]. The symmetric nature of the rank-2 Cartesian tensor guarantees that it is described by three fundamental parameters called the principal moments of inertia Ii, each of which is the moment of inertia along a principal axis.
    [Show full text]
  • Abstract Tensor Systems and Diagrammatic Representations
    Abstract tensor systems and diagrammatic representations J¯anisLazovskis September 28, 2012 Abstract The diagrammatic tensor calculus used by Roger Penrose (most notably in [7]) is introduced without a solid mathematical grounding. We will attempt to derive the tools of such a system, but in a broader setting. We show that Penrose's work comes from the diagrammisation of the symmetric algebra. Lie algebra representations and their extensions to knot theory are also discussed. Contents 1 Abstract tensors and derived structures 2 1.1 Abstract tensor notation . 2 1.2 Some basic operations . 3 1.3 Tensor diagrams . 3 2 A diagrammised abstract tensor system 6 2.1 Generation . 6 2.2 Tensor concepts . 9 3 Representations of algebras 11 3.1 The symmetric algebra . 12 3.2 Lie algebras . 13 3.3 The tensor algebra T(g)....................................... 16 3.4 The symmetric Lie algebra S(g)................................... 17 3.5 The universal enveloping algebra U(g) ............................... 18 3.6 The metrized Lie algebra . 20 3.6.1 Diagrammisation with a bilinear form . 20 3.6.2 Diagrammisation with a symmetric bilinear form . 24 3.6.3 Diagrammisation with a symmetric bilinear form and an orthonormal basis . 24 3.6.4 Diagrammisation under ad-invariance . 29 3.7 The universal enveloping algebra U(g) for a metrized Lie algebra g . 30 4 Ensuing connections 32 A Appendix 35 Note: This work relies heavily upon the text of Chapter 12 of a draft of \An Introduction to Quantum and Vassiliev Invariants of Knots," by David M.R. Jackson and Iain Moffatt, a yet-unpublished book at the time of writing.
    [Show full text]
  • Multilinear Algebra and Applications July 15, 2014
    Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3.
    [Show full text]
  • Geometric-Algebra Adaptive Filters Wilder B
    1 Geometric-Algebra Adaptive Filters Wilder B. Lopes∗, Member, IEEE, Cassio G. Lopesy, Senior Member, IEEE Abstract—This paper presents a new class of adaptive filters, namely Geometric-Algebra Adaptive Filters (GAAFs). They are Faces generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well- Edges suited for the description of geometric transformations. Also, (directed lines) differently from standard adaptive-filtering theory, Geometric Calculus (the extension of GA to differential calculus) allows Fig. 1. A polyhedron (3-dimensional polytope) can be completely described for applying the same derivation techniques regardless of the by the geometric multiplication of its edges (oriented lines, vectors), which type (subalgebra) of the data, i.e., real, complex numbers, generate the faces and hypersurfaces (in the case of a general n-dimensional quaternions, etc. Relying on those characteristics (among others), polytope). a deterministic quadratic cost function is posed, from which the GAAFs are devised, providing a generalization of regular adaptive filters to subalgebras of GA. From the obtained update rule, it is shown how to recover the following least-mean squares perform calculus with hypercomplex quantities, i.e., elements (LMS) adaptive filter variants: real-entries LMS, complex LMS, that generalize complex numbers for higher dimensions [2]– and quaternions LMS. Mean-square analysis and simulations in [10]. a system identification scenario are provided, showing very good agreement for different levels of measurement noise. GA-based AFs were first introduced in [11], [12], where they were successfully employed to estimate the geometric Index Terms—Adaptive filtering, geometric algebra, quater- transformation (rotation and translation) that aligns a pair of nions.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • Generalized Kronecker and Permanent Deltas, Their Spinor and Tensor Equivalents — Reference Formulae
    Generalized Kronecker and permanent deltas, their spinor and tensor equivalents — Reference Formulae R L Agacy1 L42 Brighton Street, Gulliver, Townsville, QLD 4812, AUSTRALIA Abstract The work is essentially divided into two parts. The purpose of the first part, applicable to n-dimensional space, is to (i) introduce a generalized permanent delta (gpd), a symmetrizer, on an equal footing with the generalized Kronecker delta (gKd), (ii) derive combinatorial formulae for each separately, and then in combination, which then leads us to (iii) provide a comprehensive listing of these formulae. For the second part, applicable to spinors in the mathematical language of General Relativity, the purpose is to (i) provide formulae for combined gKd/gpd spinors, (ii) obtain and tabulate spinor equivalents of gKd and gpd tensors and (iii) derive and exhibit tensor equivalents of gKd and gpd spinors. 1 Introduction The generalized Kronecker delta (gKd) is well known as an alternating function or antisymmetrizer, eg S^Xabc = d\X[def\. In contrast, although symmetric tensors are seen constantly, there does not appear to be employment of any symmetrizer, for eg X(abc), in analogy with the antisymmetrizer. However, it is exactly the combination of both types of symmetrizers, treated equally, that give us the flexibility to describe any type of tensor symmetry. We define such a 'permanent' symmetrizer as a generalized permanent delta (gpd) below. Our purpose is to restore an imbalance between the gKd and gpd and provide a consolidated reference of combinatorial formulae for them, most of which is not in the literature. The work divides into two Parts: the first applicable to tensors in n-dimensions, the second applicable to 2-component spinors used in the mathematical language of General Relativity.
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]
  • 1.3 Cartesian Tensors a Second-Order Cartesian Tensor Is Defined As A
    1.3 Cartesian tensors A second-order Cartesian tensor is defined as a linear combination of dyadic products as, T Tijee i j . (1.3.1) The coefficients Tij are the components of T . A tensor exists independent of any coordinate system. The tensor will have different components in different coordinate systems. The tensor T has components Tij with respect to basis {ei} and components Tij with respect to basis {e i}, i.e., T T e e T e e . (1.3.2) pq p q ij i j From (1.3.2) and (1.2.4.6), Tpq ep eq TpqQipQjqei e j Tij e i e j . (1.3.3) Tij QipQjqTpq . (1.3.4) Similarly from (1.3.2) and (1.2.4.6) Tij e i e j Tij QipQjqep eq Tpqe p eq , (1.3.5) Tpq QipQjqTij . (1.3.6) Equations (1.3.4) and (1.3.6) are the transformation rules for changing second order tensor components under change of basis. In general Cartesian tensors of higher order can be expressed as T T e e ... e , (1.3.7) ij ...n i j n and the components transform according to Tijk ... QipQjqQkr ...Tpqr... , Tpqr ... QipQjqQkr ...Tijk ... (1.3.8) The tensor product S T of a CT(m) S and a CT(n) T is a CT(m+n) such that S T S T e e e e e e . i1i2 im j1j 2 jn i1 i2 im j1 j2 j n 1.3.1 Contraction T Consider the components i1i2 ip iq in of a CT(n).
    [Show full text]
  • On Certain Identities Involving Basic Spinors and Curvature Spinors
    ON CERTAIN IDENTITIES INVOLVING BASIC SPINORS AND CURVATURE SPINORS H. A. BUCHDAHL (received 22 May 1961) 1. Introduction The spinor analysis of Infeld and van der Waerden [1] is particularly well suited to the transcription of given flat space wave equations into forms which'constitute possible generalizations appropriate to Riemann spaces [2]. The basic elements of this calculus are (i) the skew-symmetric spinor y^, (ii) the hermitian tensor-spinor a*** (generalized Pauli matrices), and (iii) M the curvature spinor P ykl. When one deals with wave equations in Riemann spaces F4 one is apt to be confronted with expressions of somewhat be- wildering appearance in so far as they may involve products of a large number of <r-symbols many of the indices of which may be paired in all sorts of ways either with each other or with the indices of the components of the curvature spinors. Such expressions are generally capable of great simplifi- cation, but how the latter may be achieved is often far from obvious. It is the purpose of this paper to present a number of useful relations between basic tensors and spinors, commonly known relations being taken for gran- ted [3], [4], [5]. That some of these new relations appear as more or less trivial consequences of elementary identities is largely the result of a diligent search for their simplest derivation, once they had been obtained in more roundabout ways. Certain relations take a particularly simple form when the Vt is an Einstein space, and some necessary and sufficient conditions relating to Ein- stein spaces and to spaces of constant Riemannian curvature are considered in the last section.
    [Show full text]
  • Tensor Algebra
    TENSOR ALGEBRA Continuum Mechanics Course (MMC) - ETSECCPB - UPC Introduction to Tensors Tensor Algebra 2 Introduction SCALAR , , ... v VECTOR vf, , ... MATRIX σε,,... ? C,... 3 Concept of Tensor A TENSOR is an algebraic entity with various components which generalizes the concepts of scalar, vector and matrix. Many physical quantities are mathematically represented as tensors. Tensors are independent of any reference system but, by need, are commonly represented in one by means of their “component matrices”. The components of a tensor will depend on the reference system chosen and will vary with it. 4 Order of a Tensor The order of a tensor is given by the number of indexes needed to specify without ambiguity a component of a tensor. a Scalar: zero dimension 3.14 1.2 v 0.3 a , a Vector: 1 dimension i 0.8 0.1 0 1.3 2nd order: 2 dimensions A, A E 02.40.5 ij rd A , A 3 order: 3 dimensions 1.3 0.5 5.8 A , A 4th order … 5 Cartesian Coordinate System Given an orthonormal basis formed by three mutually perpendicular unit vectors: eeˆˆ12,, ee ˆˆ 23 ee ˆˆ 31 Where: eeeˆˆˆ1231, 1, 1 Note that 1 if ij eeˆˆi j ij 0 if ij 6 Cylindrical Coordinate System x3 xr1 cos x(,rz , ) xr2 sin xz3 eeeˆˆˆr cosθθ 12 sin eeeˆˆˆsinθθ cos x2 12 eeˆˆz 3 x1 7 Spherical Coordinate System x3 xr1 sin cos xrxr, , 2 sin sin xr3 cos ˆˆˆˆ x2 eeeer sinθφ sin 123sin θ cos φ cos θ eeeˆˆˆ cosφφ 12sin x1 eeeeˆˆˆˆφ cosθφ sin 123cos θ cos φ sin θ 8 Indicial or (Index) Notation Tensor Algebra 9 Tensor Bases – VECTOR A vector v can be written as a unique linear combination of the three vector basis eˆ for i 1, 2, 3 .
    [Show full text]
  • Tensors (Draft Copy)
    TENSORS (DRAFT COPY) LARRY SUSANKA Abstract. The purpose of this note is to define tensors with respect to a fixed finite dimensional real vector space and indicate what is being done when one performs common operations on tensors, such as contraction and raising or lowering indices. We include discussion of relative tensors, inner products, symplectic forms, interior products, Hodge duality and the Hodge star operator and the Grassmann algebra. All of these concepts and constructions are extensions of ideas from linear algebra including certain facts about determinants and matrices, which we use freely. None of them requires additional structure, such as that provided by a differentiable manifold. Sections 2 through 11 provide an introduction to tensors. In sections 12 through 25 we show how to perform routine operations involving tensors. In sections 26 through 28 we explore additional structures related to spaces of alternating tensors. Our aim is modest. We attempt only to create a very structured develop- ment of tensor methods and vocabulary to help bridge the gap between linear algebra and its (relatively) benign notation and the vast world of tensor ap- plications. We (attempt to) define everything carefully and consistently, and this is a concise repository of proofs which otherwise may be spread out over a book (or merely referenced) in the study of an application area. Many of these applications occur in contexts such as solid-state physics or electrodynamics or relativity theory. Each subject area comes equipped with its own challenges: subject-specific vocabulary, traditional notation and other conventions. These often conflict with each other and with modern mathematical practice, and these conflicts are a source of much confusion.
    [Show full text]