Tensor Categorical Foundations of Algebraic Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2012.13347V1 [Physics.Class-Ph] 15 Dec 2020
KPOP E-2020-04 Bra-Ket Representation of the Inertia Tensor U-Rae Kim, Dohyun Kim, and Jungil Lee∗ KPOPE Collaboration, Department of Physics, Korea University, Seoul 02841, Korea (Dated: June 18, 2021) Abstract We employ Dirac's bra-ket notation to define the inertia tensor operator that is independent of the choice of bases or coordinate system. The principal axes and the corresponding principal values for the elliptic plate are determined only based on the geometry. By making use of a general symmetric tensor operator, we develop a method of diagonalization that is convenient and intuitive in determining the eigenvector. We demonstrate that the bra-ket approach greatly simplifies the computation of the inertia tensor with an example of an N-dimensional ellipsoid. The exploitation of the bra-ket notation to compute the inertia tensor in classical mechanics should provide undergraduate students with a strong background necessary to deal with abstract quantum mechanical problems. PACS numbers: 01.40.Fk, 01.55.+b, 45.20.dc, 45.40.Bb Keywords: Classical mechanics, Inertia tensor, Bra-ket notation, Diagonalization, Hyperellipsoid arXiv:2012.13347v1 [physics.class-ph] 15 Dec 2020 ∗Electronic address: [email protected]; Director of the Korea Pragmatist Organization for Physics Educa- tion (KPOP E) 1 I. INTRODUCTION The inertia tensor is one of the essential ingredients in classical mechanics with which one can investigate the rotational properties of rigid-body motion [1]. The symmetric nature of the rank-2 Cartesian tensor guarantees that it is described by three fundamental parameters called the principal moments of inertia Ii, each of which is the moment of inertia along a principal axis. -
Arxiv:2001.09075V1 [Math.AG] 24 Jan 2020
A topos-theoretic view of difference algebra Ivan Tomašić Ivan Tomašić, School of Mathematical Sciences, Queen Mary Uni- versity of London, London, E1 4NS, United Kingdom E-mail address: [email protected] arXiv:2001.09075v1 [math.AG] 24 Jan 2020 2000 Mathematics Subject Classification. Primary . Secondary . Key words and phrases. difference algebra, topos theory, cohomology, enriched category Contents Introduction iv Part I. E GA 1 1. Category theory essentials 2 2. Topoi 7 3. Enriched category theory 13 4. Internal category theory 25 5. Algebraic structures in enriched categories and topoi 41 6. Topos cohomology 51 7. Enriched homological algebra 56 8. Algebraicgeometryoverabasetopos 64 9. Relative Galois theory 70 10. Cohomologyinrelativealgebraicgeometry 74 11. Group cohomology 76 Part II. σGA 87 12. Difference categories 88 13. The topos of difference sets 96 14. Generalised difference categories 111 15. Enriched difference presheaves 121 16. Difference algebra 126 17. Difference homological algebra 136 18. Difference algebraic geometry 142 19. Difference Galois theory 148 20. Cohomologyofdifferenceschemes 151 21. Cohomologyofdifferencealgebraicgroups 157 22. Comparison to literature 168 Bibliography 171 iii Introduction 0.1. The origins of difference algebra. Difference algebra can be traced back to considerations involving recurrence relations, recursively defined sequences, rudi- mentary dynamical systems, functional equations and the study of associated dif- ference equations. Let k be a commutative ring with identity, and let us write R = kN for the ring (k-algebra) of k-valued sequences, and let σ : R R be the shift endomorphism given by → σ(x0, x1,...) = (x1, x2,...). The first difference operator ∆ : R R is defined as → ∆= σ id, − and, for r N, the r-th difference operator ∆r : R R is the r-th compositional power/iterate∈ of ∆, i.e., → r r ∆r = (σ id)r = ( 1)r−iσi. -
Two Constructions in Monoidal Categories Equivariantly Extended Drinfel’D Centers and Partially Dualized Hopf Algebras
Two constructions in monoidal categories Equivariantly extended Drinfel'd Centers and Partially dualized Hopf Algebras Dissertation zur Erlangung des Doktorgrades an der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften Fachbereich Mathematik der Universit¨atHamburg vorgelegt von Alexander Barvels Hamburg, 2014 Tag der Disputation: 02.07.2014 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Christoph Schweigert und Prof. Dr. Sonia Natale Contents Introduction iii Topological field theories and generalizations . iii Extending braided categories . vii Algebraic structures and monoidal categories . ix Outline . .x 1. Algebra in monoidal categories 1 1.1. Conventions and notations . .1 1.2. Categories of modules . .3 1.3. Bialgebras and Hopf algebras . 12 2. Yetter-Drinfel'd modules 25 2.1. Definitions . 25 2.2. Equivalences of Yetter-Drinfel'd categories . 31 3. Graded categories and group actions 39 3.1. Graded categories and (co)graded bialgebras . 39 3.2. Weak group actions . 41 3.3. Equivariant categories and braidings . 48 4. Equivariant Drinfel'd center 51 4.1. Half-braidings . 51 4.2. The main construction . 55 4.3. The Hopf algebra case . 61 5. Partial dualization of Hopf algebras 71 5.1. Radford biproduct and projection theorem . 71 5.2. The partial dual . 73 5.3. Examples . 75 A. Category theory 89 A.1. Basic notions . 89 A.2. Adjunctions and monads . 91 i ii Contents A.3. Monoidal categories . 92 A.4. Modular categories . 97 References 99 Introduction The fruitful interplay between topology and algebra has a long tradi- tion. On one hand, invariants of topological spaces, such as the homotopy groups, homology groups, etc. -
1.3 Cartesian Tensors a Second-Order Cartesian Tensor Is Defined As A
1.3 Cartesian tensors A second-order Cartesian tensor is defined as a linear combination of dyadic products as, T Tijee i j . (1.3.1) The coefficients Tij are the components of T . A tensor exists independent of any coordinate system. The tensor will have different components in different coordinate systems. The tensor T has components Tij with respect to basis {ei} and components Tij with respect to basis {e i}, i.e., T T e e T e e . (1.3.2) pq p q ij i j From (1.3.2) and (1.2.4.6), Tpq ep eq TpqQipQjqei e j Tij e i e j . (1.3.3) Tij QipQjqTpq . (1.3.4) Similarly from (1.3.2) and (1.2.4.6) Tij e i e j Tij QipQjqep eq Tpqe p eq , (1.3.5) Tpq QipQjqTij . (1.3.6) Equations (1.3.4) and (1.3.6) are the transformation rules for changing second order tensor components under change of basis. In general Cartesian tensors of higher order can be expressed as T T e e ... e , (1.3.7) ij ...n i j n and the components transform according to Tijk ... QipQjqQkr ...Tpqr... , Tpqr ... QipQjqQkr ...Tijk ... (1.3.8) The tensor product S T of a CT(m) S and a CT(n) T is a CT(m+n) such that S T S T e e e e e e . i1i2 im j1j 2 jn i1 i2 im j1 j2 j n 1.3.1 Contraction T Consider the components i1i2 ip iq in of a CT(n). -
Categories of Modules with Differentials
JOURNAL OF ALGEBRA 185, 50]73Ž. 1996 ARTICLE NO. 0312 Categories of Modules with Differentials Paul Popescu Department of Mathematics, Uni¨ersity of Craio¨a, 13, A.I. Cuza st., Craio¨a, 1100, Romania Communicated by Walter Feit CORE Metadata, citation and similar papers at core.ac.uk Received August 1, 1994 Provided by Elsevier - Publisher Connector 1. INTRODUCTION The definitions of the module with arrow Ž.module fleche , the infinitesi- mal module, and the Lie pseudoalgebra, as used here, are considered inwx 7 . Moreover, we define the preinfinitesimal module, called inwx 1 ``un pre- espace d'Elie Cartan regulier.'' Inwx 7 the Lie functor is constructed from the category of differentiable groupoids in the category of Lie algebroids, but it is inwx 2 that the first general and abstract treatment of the algebraic properties of Lie alge- broids is made, giving a clear construction of the morphisms of Lie algebroids. We shall use it fully in this paper to define completely the categories M W A Ž.Ž.modules and arrows , P I M preinfinitesimal modules , IMŽ.Ž.infinitesimal modules , and L P A Lie pseudoalgebras ; we call these categories the categories of modules with differentials. We notice that in wx7 and wx 1 the objects of these categories and the subcategories of modules over a fixed algebra are considered. Inwx 3 the category of L P A of Lie pseudoalgebras is defined and some aspects related to the functional covariance or contravariance correspondence with categories constructed with additional structures on vector bundles are studied. In Section 2 we give a brief description of the category MA , of modules over commutative k-algebrasŽ considered also inwx 3. -
Tensors (Draft Copy)
TENSORS (DRAFT COPY) LARRY SUSANKA Abstract. The purpose of this note is to define tensors with respect to a fixed finite dimensional real vector space and indicate what is being done when one performs common operations on tensors, such as contraction and raising or lowering indices. We include discussion of relative tensors, inner products, symplectic forms, interior products, Hodge duality and the Hodge star operator and the Grassmann algebra. All of these concepts and constructions are extensions of ideas from linear algebra including certain facts about determinants and matrices, which we use freely. None of them requires additional structure, such as that provided by a differentiable manifold. Sections 2 through 11 provide an introduction to tensors. In sections 12 through 25 we show how to perform routine operations involving tensors. In sections 26 through 28 we explore additional structures related to spaces of alternating tensors. Our aim is modest. We attempt only to create a very structured develop- ment of tensor methods and vocabulary to help bridge the gap between linear algebra and its (relatively) benign notation and the vast world of tensor ap- plications. We (attempt to) define everything carefully and consistently, and this is a concise repository of proofs which otherwise may be spread out over a book (or merely referenced) in the study of an application area. Many of these applications occur in contexts such as solid-state physics or electrodynamics or relativity theory. Each subject area comes equipped with its own challenges: subject-specific vocabulary, traditional notation and other conventions. These often conflict with each other and with modern mathematical practice, and these conflicts are a source of much confusion. -
The Elliptic Drinfeld Center of a Premodular Category Arxiv
The Elliptic Drinfeld Center of a Premodular Category Ying Hong Tham Abstract Given a tensor category C, one constructs its Drinfeld center Z(C) which is a braided tensor category, having as objects pairs (X; λ), where X ∈ Obj(C) and λ is a el half-braiding. For a premodular category C, we construct a new category Z (C) which 1 2 i we call the Elliptic Drinfeld Center, which has objects (X; λ ; λ ), where the λ 's are half-braidings that satisfy some compatibility conditions. We discuss an SL2(Z)-action el on Z (C) that is related to the anomaly appearing in Reshetikhin-Turaev theory. This construction is motivated from the study of the extended Crane-Yetter TQFT, in particular the category associated to the once punctured torus. 1 Introduction and Preliminaries In [CY1993], Crane and Yetter define a 4d TQFT using a state-sum involving 15j symbols, based on a sketch by Ooguri [Oog1992]. The state-sum begins with a color- ing of the 2- and 3-simplices of a triangulation of the four manifold by integers from 0; 1; : : : ; r. These 15j symbols then arise as the evaluation of a ribbon graph living on the boundary of a 4-simplex. The labels 0; 1; : : : ; r correspond to simple objects of the Verlinde modular category, the semi-simple subquotient of the category of finite dimen- πi r 2 sional representations of the quantum group Uqsl2 at q = e as defined in [AP1995]. Later Crane, Kauffman, and Yetter [CKY1997] extend this~ definition+ to colorings with objects from a premodular category (i.e. -
Segre Embedding and Related Maps and Immersions in Differential Geometry
SEGRE EMBEDDING AND RELATED MAPS AND IMMERSIONS IN DIFFERENTIAL GEOMETRY BANG-YEN CHEN Abstract. Segre embedding was introduced by C. Segre (1863–1924) in his famous 1891 article [50]. The Segre embedding plays an important roles in algebraic geometry as well as in differential geometry, mathemat- ical physics, and coding theory. In this article, we survey main results on Segre embedding in differential geometry. Moreover, we also present recent differential geometric results on maps and immersions which are constructed in ways similar to Segre embedding. Table of Contents.1 1. Introduction. 2. Basic formulas and definitions. 3. Differential geometric characterizations of Segre embedding. 4. Degree of K¨ahlerian immersions and homogeneous K¨ahlerian subman- ifolds via Segre embedding. 5. CR-products and Segre embedding. 6. CR-warped products and partial Segre CR-immersions. 7. Real hypersurfaces as partial Segre embeddings. 8. Complex extensors, Lagrangian submanifolds and Segre embedding. 9. Partial Segre CR-immersions in complex projective space. 10. Convolution of Riemannian manifolds. Arab. J. Math. Sci. 8 (2002), 1–39. 2000 Mathematics Subject Classification. Primary 53-02, 53C42, 53D12; Secondary arXiv:1307.0459v1 [math.AG] 1 Jul 2013 53B25, 53C40, 14E25. Key words and phrases. Segre embedding, totally real submanifold, Lagrangian subman- ifold, CR-submanifold, warped product, CR-warped product, complex projective space, geo- metric inequality, convolution, Euclidean Segre map, partial Segre map, tensor product im- mersion, skew Segre embedding. 1 The author would like to express his thanks to the editors for the invitation to publish this article in this Journal 1 2 BANG-YEN CHEN 11. Convolutions and Euclidean Segre maps. -
Euler Sequence and Koszul Complex of a Module
Ark. Mat. DOI: 10.1007/s11512-016-0236-4 c 2016 by Institut Mittag-Leffler. All rights reserved Euler sequence and Koszul complex of a module Bj¨orn Andreas, Dar´ıo S´anchez G´omez and Fernando Sancho de Salas Abstract. We construct relative and global Euler sequences of a module. We apply it to prove some acyclicity results of the Koszul complex of a module and to compute the cohomology of the sheaves of (relative and absolute) differential p-forms of a projective bundle. In particular we generalize Bott’s formula for the projective space to a projective bundle over a scheme of characteristic zero. Introduction This paper deals with two related questions: the acyclicity of the Koszul com- plex of a module and the cohomology of the sheaves of (relative and absolute) differential p-forms of a projective bundle over a scheme. Let M be a module over a commutative ring A. One has the Koszul complex · ⊗ · · · Kos(M)=Λ M A S M,whereΛM and S M stand for the exterior and symmetric algebras of M. It is a graded complex Kos(M)= n≥0 Kos(M)n,whosen-th graded component Kos(M)n is the complex: 0 −→ ΛnM −→ Λn−1M ⊗M −→ Λn−2M ⊗S2M −→ ... −→ SnM −→ 0 It has been known for many years that Kos(M)n is acyclic for n>0, provided that M is a flat A-module or n is invertible in A (see [3]or[10]). It was conjectured in [11]thatKos(M) is always acyclic. A counterexample in characteristic 2 was given in [5], but it is also proved there that Hμ(Kos(M)μ)=0 for any M,whereμ is the minimal number of generators of M. -
Stable Model Categories Are Categories of Modules 1
STABLE MODEL CATEGORIES ARE CATEGORIES OF MODULES STEFAN SCHWEDE AND BROOKE SHIPLEY Abstract: A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent ‘the same homotopy theory’. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a ‘ring spectrum with several objects’, i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard’s work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the Eilenberg-Mac Lane spectrum HR and (unbounded) chain complexes of R-modules for a ring R. 1. Introduction The recent discovery of highly structured categories of spectra has opened the way for a new wholesale use of algebra in stable homotopy theory. In this paper we use this new algebra of spectra to characterize stable model categories, the settings for doing stable homotopy theory, as categories of highly structured modules. This characterization also leads to a Morita theory for equivalences between categories of highly structured modules. -
Arxiv:1909.05807V1 [Math.RA] 12 Sep 2019 Cs T
MODULES OVER TRUSSES VS MODULES OVER RINGS: DIRECT SUMS AND FREE MODULES TOMASZ BRZEZINSKI´ AND BERNARD RYBOLOWICZ Abstract. Categorical constructions on heaps and modules over trusses are con- sidered and contrasted with the corresponding constructions on groups and rings. These include explicit description of free heaps and free Abelian heaps, coprod- ucts or direct sums of Abelian heaps and modules over trusses, and description and analysis of free modules over trusses. It is shown that the direct sum of two non-empty Abelian heaps is always infinite and isomorphic to the heap associated to the direct sums of the group retracts of both heaps and Z. Direct sum is used to extend a given truss to a ring-type truss or a unital truss (or both). Free mod- ules are constructed as direct sums of a truss. It is shown that only free rank-one modules are free as modules over the associated truss. On the other hand, if a (finitely generated) module over a truss associated to a ring is free, then so is the corresponding quotient-by-absorbers module over this ring. 1. Introduction Trusses and skew trusses were defined in [3] in order to capture the nature of the distinctive distributive law that characterises braces and skew braces [12], [6], [9]. A (one-sided) truss is a set with a ternary operation which makes it into a heap or herd (see [10], [11], [1] or [13]) together with an associative binary operation that distributes (on one side or both) over the heap ternary operation. If the specific bi- nary operation admits it, a choice of a particular element could fix a group structure on a heap in a way that turns the truss into a ring or a brace-like system (which becomes a brace provided the binary operation admits inverses). -
Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel
Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel Institute of Mathematics “Simion Stoilow” of the Romanian Acad- emy, P.O. Box 1-764, 014700 Bucharest, ROMANIA & S¸coala Normala˘ Superioara˘ Bucures¸ti, 21, Calea Grivit¸ei, 010702 Bucharest, Sector 1 ROMANIA E-mail address: [email protected] Universite´ Lille 1, Mathematiques´ – Bat.ˆ M2, 59655 Villeneuve dAscq Cedex, FRANCE E-mail address: [email protected] 2000 Mathematics Subject Classification. Primary 14H51, 14C20, 14F99, 13D02 Contents Introduction vii Chapter 1. Basic definitions 1 1.1. The Koszul complex 1 1.2. Definitions in the algebraic context 2 1.3. Minimal resolutions 3 1.4. Definitions in the geometric context 5 1.5. Functorial properties 6 1.6. Notes and comments 10 Chapter 2. Basic results 11 2.1. Kernel bundles 11 2.2. Projections and linear sections 12 2.3. Duality 17 2.4. Koszul cohomology versus usual cohomology 19 2.5. Sheaf regularity. 21 2.6. Vanishing theorems 22 Chapter 3. Syzygy schemes 25 3.1. Basic definitions 25 3.2. Koszul classes of low rank 32 3.3. The Kp,1 theorem 34 3.4. Rank-2 bundles and Koszul classes 38 3.5. The curve case 41 3.6. Notes and comments 45 Chapter 4. The conjectures of Green and Green–Lazarsfeld 47 4.1. Brill-Noether theory 47 4.2. Numerical invariants of curves 49 4.3. Statement of the conjectures 51 4.4. Generalizations of the Green conjecture. 54 4.5. Notes and comments 57 Chapter 5. Koszul cohomology and the Hilbert scheme 59 5.1.