Mathematics for Physics II

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics for Physics II Mathematics for Physics II A set of lecture notes by Michael Stone PIMANDER-CASAUBON Alexandria Florence London • • ii Copyright c 2001,2002,2003 M. Stone. All rights reserved. No part of this material can be reproduced, stored or transmitted without the written permission of the author. For information contact: Michael Stone, Loomis Laboratory of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA. Preface These notes cover the material from the second half of a two-semester se- quence of mathematical methods courses given to first year physics graduate students at the University of Illinois. They consist of three loosely connected parts: i) an introduction to modern “calculus on manifolds”, the exterior differential calculus, and algebraic topology; ii) an introduction to group rep- resentation theory and its physical applications; iii) a fairly standard course on complex variables. iii iv PREFACE Contents Preface iii 1 Tensors in Euclidean Space 1 1.1 CovariantandContravariantVectors . 1 1.2 Tensors .............................. 4 1.3 CartesianTensors. .. .. 18 1.4 Further Exercises and Problems . 29 2 Differential Calculus on Manifolds 33 2.1 VectorandCovectorFields. 33 2.2 DifferentiatingTensors . 39 2.3 ExteriorCalculus . .. .. 48 2.4 PhysicalApplications. 54 2.5 CovariantDerivatives. 63 2.6 Further Exercises and Problems . 70 3 Integration on Manifolds 75 3.1 BasicNotions ........................... 75 3.2 Integrating p-Forms........................ 79 3.3 Stokes’Theorem ......................... 84 3.4 Applications............................ 87 3.5 ExercisesandProblems. .105 4 An Introduction to Topology 115 4.1 Homeomorphism and Diffeomorphism . 116 4.2 Cohomology............................117 4.3 Homology .............................122 4.4 DeRham’sTheorem .. .. .138 v vi CONTENTS 4.5 Poincar´eDuality . .142 4.6 CharacteristicClasses. .147 4.7 HodgeTheoryandtheMorseIndex . 154 5 Groups and Group Representations 171 5.1 BasicIdeas ............................171 5.2 Representations . .179 5.3 PhysicsApplications . .192 5.4 Further Exercises and Problems . 201 6 Lie Groups 207 6.1 MatrixGroups ..........................207 6.2 GeometryofSU(2) . .. .. .213 6.3 LieAlgebras............................234 6.4 Further Exercises and Problems . 253 7 The Geometry of Fibre Bundles 257 7.1 FibreBundles ..........................257 7.2 PhysicsExamples . .259 7.3 WorkingintheTotalSpace . .274 8 Complex Analysis I 291 8.1 Cauchy-Riemannequations. 291 8.2 Complex Integration: Cauchy and Stokes . 303 8.3 Applications............................312 8.4 Applications of Cauchy’s Theorem . 318 8.5 Meromorphic functions and the Winding-Number . 334 8.6 AnalyticFunctionsandTopology . 337 8.7 Further Exercises and Problems . 353 9 Complex Analysis II 359 9.1 ContourIntegrationTechnology . 359 9.2 The Schwarz Reflection Principle . 370 9.3 Partial-Fraction and Product Expansions . 381 9.4 Wiener-HopfEquationsII . .387 9.5 Further Exercises and Problems . 396 CONTENTS vii 10 Special Functions II 401 10.1 TheGammaFunction . .401 10.2 LinearDifferentialEquations. 406 10.3 Solving ODE’s via Contour integrals . 414 10.4 AsymptoticExpansions. .421 10.5 EllipticFunctions . .432 10.6 Further Exercises and Problems . 439 viii CONTENTS Chapter 1 Tensors in Euclidean Space In this chapter we explain how a vector space V gives rise to a family of associated tensor spaces, and how mathematical objects such as linear maps or quadratic forms should be understood as being elements of these spaces. We then apply these ideas to physics. We make extensive use of notions and notations from the appendix on linear algebra, so it may help to review that material before we begin. 1.1 Covariant and Contravariant Vectors When we have a vector space V over R, and e , e ,..., e and e0 , e0 ,..., e0 { 1 2 n} { 1 2 n} are both bases for V , then we may expand each of the basis vectors eµ in terms of the eµ0 as µ eν = aν eµ0 . (1.1) We are here, as usual, using the Einstein summation convention that repeated indices are to be summed over. Written out in full for a three-dimensional space, the expansion would be 1 2 3 e1 = a1e10 + a1e20 + a1e30 , 1 2 3 e2 = a2e10 + a2e20 + a2e30 , 1 2 3 e3 = a3e10 + a3e20 + a3e30 . We could also have expanded the eµ0 in terms of the eµ as 1 µ eν0 =(a− )ν eµ0 . (1.2) 1 2 CHAPTER 1. TENSORS IN EUCLIDEAN SPACE µ 1 µ As the notation implies, the matrices of coefficients aν and (a− )ν are inverses of each other: µ 1 ν 1 µ ν µ aν (a− )σ =(a− )ν aσ = δσ . (1.3) µ If we know the components x of a vector x in the eµ basis then the compo- µ nents x0 of x in the eµ0 basis are obtained from µ ν ν µ x = x0 eµ0 = x eν =(x aν ) eµ0 (1.4) µ µ ν by comparing the coefficients of eµ0 . We find that x0 = aν x . Observe how µ µ the eµ and the x transform in “opposite” directions. The components x are therefore said to transform contravariantly. Associated with the vector space V is its dual space V ∗, whose elements µ are covectors, i.e. linear maps f : V R. If f V ∗ and x = x e , we use → ∈ µ the linearity property to evaluate f(x) as µ µ µ f(x)= f(x eµ)= x f(eµ)= x fµ. (1.5) Here, the set of numbers fµ = f(eµ) are the components of the covector f. If µ we change basis so that eν = aν eµ0 then µ µ µ fν = f(eν )= f(aν eµ0 )= aν f(eµ0 )= aν fµ0 . (1.6) µ We conclude that fν = aν fµ0 . The fµ components transform in the same man- ner as the basis. They are therefore said to transform covariantly. In physics it is traditional to call the the set of numbers xµ with upstairs indices (the components of) a contravariant vector. Similarly, the set of numbers fµ with downstairs indices is called (the components of) a covariant vector. Thus, contravariant vectors are elements of V and covariant vectors are elements of V ∗. The relationship between V and V ∗ is one of mutual duality, and to mathematicians it is only a matter of convenience which space is V and which space is V ∗. The evaluation of f V ∗ on x V is therefore often ∈ ∈ written as a “pairing” (f, x), which gives equal status to the objects being put togther to get a number. A physics example of such a mutually dual pair is provided by the space of displacements x and the space of wave-numbers 1 k. The units of x and k are different (meters versus meters− ). There is therefore no meaning to “x + k,” and x and k are not elements of the same vector space. The “dot” in expressions such as ik x ψ(x)= e · (1.7) 1.1. COVARIANT AND CONTRAVARIANT VECTORS 3 cannot be a true inner product (which requires the objects it links to be in the same vector space) but is instead a pairing (k, x) k(x)= k xµ. (1.8) ≡ µ In describing the physical world we usually give priority to the space in which we live, breathe and move, and so treat it as being “V ”. The displacement vector x then becomes the contravariant vector, and the Fourier-space wave- number k, being the more abstract quantity, becomes the covariant covector. Our vector space may come equipped with a metric that is derived from a non-degenerate inner product. We regard the inner product as being a bilinear form g : V V R, so the length x of a vector x is g(x, x). The set of numbers × → k k p gµν = g(eµ, eν) (1.9) comprises the (components of) the metric tensor. In terms of them, the inner of product x, y of pair of vectors x = xµe and y = yµe becomes h i µ µ x, y g(x, y)= g xµyν. (1.10) h i ≡ µν Real-valued inner products are always symmetric, so g(x, y) = g(y, x) and gµν = gνµ. As the product is non-degenerate, the matrix gµν has an inverse, which is traditionally written as gµν. Thus νλ λν λ gµν g = g gνµ = δµ. (1.11) The additional structure provided by the metric permits us to identify V with V ∗. The identification is possible, because, given any f V ∗, we can ∈ find a vector f V such that ∈ f(x)= f, x . (1.12) e h i We obtain f by solving the equation e ν e fµ = gµνf (1.13) ν νµ to get f = g fµ. We may now drop thee tilde and identify f with f, and hence V with V ∗. When we do this, we say that the covariant components µ fµ are relatede to the contravariant components f by raising e µ µν f = g fν, (1.14) 4 CHAPTER 1. TENSORS IN EUCLIDEAN SPACE or lowering ν fµ = gµνf , (1.15) the index µ using the metric tensor. Bear in mind that this V ∼= V ∗ identi- fication depends crucially on the metric. A different metric will, in general, identify an f V ∗ with a completely different f V . ∈ ∈ We may play this game in the Euclidean space En with its “dot” inner product. Given a vector x and a basis e fore which g = e e , we can µ µν µ · ν define two sets of components for the same vector. Firstly the coefficients xµ appearing in the basis expansion µ x = x eµ, (1.16) and secondly the “components” x = e x = g(e , x)= g(e , xνe )= g(e , e )xν = g xν (1.17) µ µ · µ µ ν µ ν µν of x along the basis vectors. These two set of numbers are then respectively called the contravariant and covariant components of the vector x.
Recommended publications
  • Tensors and Differential Forms on Vector Spaces
    APPENDIX A TENSORS AND DIFFERENTIAL FORMS ON VECTOR SPACES Since only so much of the vast and growing field of differential forms and differentiable manifolds will be actually used in this survey, we shall attempt to briefly review how the calculus of exterior differential forms on vector spaces can serve as a replacement for the more conventional vector calculus and then introduce only the most elementary notions regarding more topologically general differentiable manifolds, which will mostly be used as the basis for the discussion of Lie groups, in the following appendix. Since exterior differential forms are special kinds of tensor fields – namely, completely-antisymmetric covariant ones – and tensors are important to physics, in their own right, we shall first review the basic notions concerning tensors and multilinear algebra. Presumably, the reader is familiar with linear algebra as it is usually taught to physicists, but for the “basis-free” approach to linear and multilinear algebra (which we shall not always adhere to fanatically), it would also help to have some familiarity with the more “abstract-algebraic” approach to linear algebra, such as one might learn from Hoffman and Kunze [ 1], for instance. 1. Tensor algebra. – A tensor algebra is a type of algebra in which multiplication takes the form of the tensor product. a. Tensor product. – Although the tensor product of vector spaces can be given a rigorous definition in a more abstract-algebraic context (See Greub [ 2], for instance), for the purposes of actual calculations with tensors and tensor fields, it is usually sufficient to say that if V and W are vector spaces of dimensions n and m, respectively, then the tensor product V ⊗ W will be a vector space of dimension nm whose elements are finite linear combinations of elements of the form v ⊗ w, where v is a vector in V and w is a vector in W.
    [Show full text]
  • Tensors Notation • Contravariant Denoted by Superscript Ai Took a Vector and Gave for Vector Calculus Us a Vector
    Tensors Notation • contravariant denoted by superscript Ai took a vector and gave For vector calculus us a vector • covariant denoted by subscript Ai took a scaler and gave us a vector Review To avoid confusion in cartesian coordinates both types are the same so • Vectors we just opt for the subscript. Thus a vector x would be x1,x2,x3 R3 • Summation representation of an n by n array As it turns out in an cartesian space and other rectilinear coordi- nate systems there is no difference between contravariant and covariant • Gradient, Divergence and Curl vectors. This will not be the case for other coordinate systems such a • Spherical Harmonics (maybe) curvilinear coordinate systems or in 4 dimensions. These definitions are closely related to the Jacobian. Motivation If you tape a book shut and try to spin it in the air on each indepen- Definitions for Tensors of Rank 2 dent axis you will notice that it spins fine on two axes but not on the Rank 2 tensors can be written as a square array. They have con- third. That’s the inertia tensor in your hands. Similar are the polar- travariant, mixed, and covariant forms. As we might expect in cartesian izations tensor, index of refraction tensor and stress tensor. But tensors coordinates these are the same. also show up in all sorts of places that don’t connect to an anisotropic material property, in fact even spherical harmonics are tensors. What are the similarities and differences between such a plethora of tensors? Vector Calculus and Identifers The mathematics of tensors is particularly useful for de- Tensor analysis extends deep into coordinate transformations of all scribing properties of substances which vary in direction– kinds of spaces and coordinate systems.
    [Show full text]
  • Laplacians in Geometric Analysis
    LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1.
    [Show full text]
  • Arxiv:2012.13347V1 [Physics.Class-Ph] 15 Dec 2020
    KPOP E-2020-04 Bra-Ket Representation of the Inertia Tensor U-Rae Kim, Dohyun Kim, and Jungil Lee∗ KPOPE Collaboration, Department of Physics, Korea University, Seoul 02841, Korea (Dated: June 18, 2021) Abstract We employ Dirac's bra-ket notation to define the inertia tensor operator that is independent of the choice of bases or coordinate system. The principal axes and the corresponding principal values for the elliptic plate are determined only based on the geometry. By making use of a general symmetric tensor operator, we develop a method of diagonalization that is convenient and intuitive in determining the eigenvector. We demonstrate that the bra-ket approach greatly simplifies the computation of the inertia tensor with an example of an N-dimensional ellipsoid. The exploitation of the bra-ket notation to compute the inertia tensor in classical mechanics should provide undergraduate students with a strong background necessary to deal with abstract quantum mechanical problems. PACS numbers: 01.40.Fk, 01.55.+b, 45.20.dc, 45.40.Bb Keywords: Classical mechanics, Inertia tensor, Bra-ket notation, Diagonalization, Hyperellipsoid arXiv:2012.13347v1 [physics.class-ph] 15 Dec 2020 ∗Electronic address: [email protected]; Director of the Korea Pragmatist Organization for Physics Educa- tion (KPOP E) 1 I. INTRODUCTION The inertia tensor is one of the essential ingredients in classical mechanics with which one can investigate the rotational properties of rigid-body motion [1]. The symmetric nature of the rank-2 Cartesian tensor guarantees that it is described by three fundamental parameters called the principal moments of inertia Ii, each of which is the moment of inertia along a principal axis.
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • A Some Basic Rules of Tensor Calculus
    A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e.
    [Show full text]
  • Is It Time for a New Paradigm in Physics?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012024 doi:10.1088/1742-6596/1251/1/012024 Is it time for a new paradigm in physics? Shukri Klinaku University of Prishtina Sheshi Nëna Terezë, Prishtina, Kosovo [email protected] Abstract. The fact that the two main pillars of modern Physics are incompatible with each other; the fact that some unsolved problems have accumulated in Physics; and, in particular, the fact that Physics has been invaded by weird concepts (as if we were in the Middle Ages); these facts are quite sufficient to confirm the need for a new paradigm in Physics. But the conclusion that a new paradigm is needed is not sufficient, without an answer to the question: is there sufficient sources and resources to construct a new paradigm in Physics? I consider that the answer to this question is also yes. Today, Physics has sufficient material in experimental facts, theoretical achievements and human and technological potential. So, there is the need and opportunity for a new paradigm in Physics. The core of the new paradigm of Physics would be the nature of matter. According to this new paradigm, Physics should give up on wave-particle dualism, should redefine waves, and should end the mystery about light and its privilege in Physics. The consequences of this would make Physics more understandable, and - more importantly - would make it capable of solving current problems and opening up new perspectives in exploring nature and the universe. 1. Introduction Quantum Physics and the theory of relativity are the ‘two main pillars’ of modern Physics.
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]
  • Tensor Calculus and Differential Geometry
    Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane .
    [Show full text]
  • 1.3 Cartesian Tensors a Second-Order Cartesian Tensor Is Defined As A
    1.3 Cartesian tensors A second-order Cartesian tensor is defined as a linear combination of dyadic products as, T Tijee i j . (1.3.1) The coefficients Tij are the components of T . A tensor exists independent of any coordinate system. The tensor will have different components in different coordinate systems. The tensor T has components Tij with respect to basis {ei} and components Tij with respect to basis {e i}, i.e., T T e e T e e . (1.3.2) pq p q ij i j From (1.3.2) and (1.2.4.6), Tpq ep eq TpqQipQjqei e j Tij e i e j . (1.3.3) Tij QipQjqTpq . (1.3.4) Similarly from (1.3.2) and (1.2.4.6) Tij e i e j Tij QipQjqep eq Tpqe p eq , (1.3.5) Tpq QipQjqTij . (1.3.6) Equations (1.3.4) and (1.3.6) are the transformation rules for changing second order tensor components under change of basis. In general Cartesian tensors of higher order can be expressed as T T e e ... e , (1.3.7) ij ...n i j n and the components transform according to Tijk ... QipQjqQkr ...Tpqr... , Tpqr ... QipQjqQkr ...Tijk ... (1.3.8) The tensor product S T of a CT(m) S and a CT(n) T is a CT(m+n) such that S T S T e e e e e e . i1i2 im j1j 2 jn i1 i2 im j1 j2 j n 1.3.1 Contraction T Consider the components i1i2 ip iq in of a CT(n).
    [Show full text]
  • On Frame-Invariance in Electrodynamics
    On Frame-Invariance in Electrodynamics Giovanni Romanoa aDepartment of Structural Engineering, University of Naples Federico II, via Claudio 21, 80125 - Naples, Italy e-mail: [email protected] Abstract The Faraday and Ampere` -Maxwell laws of electrodynamics in space- time manifold are formulated in terms of differential forms and exterior and Lie derivatives. Due to their natural behavior with respect to push-pull operations, these geometric objects are the suitable tools to deal with the space-time observer split of the events manifold and with frame-invariance properties. Frame-invariance is investigated in complete generality, referring to any automorphic transformation in space-time, in accord with the spirit of general relativity. A main result of the new geometric theory is the assess- ment of frame-invariance of space-time electromagnetic differential forms and induction laws and of their spatial counterparts under any change of frame. This target is reached by a suitable extension of the formula governing the correspondence between space-time and spatial differential forms in electro- dynamics to take relative motions in due account. The result modifies the statement made by Einstein in the 1905 paper on the relativity principle, and reproposed in the subsequent literature, and advocates the need for a revision of the theoretical framework of electrodynamics. Key words: Electrodynamics, frame-invariance, differential forms 1. Introduction arXiv:1209.5960v2 [physics.gen-ph] 10 Oct 2012 The history of electromagnetism is a really fascinating one, starting from the brilliant experimental discoveries by Romagnosi-Ørsted in 1800-1820 and by Zantedeschi-Henry-Faraday in 1829-30-31, and from the early beautiful theoretical abstractions that soon led to Faraday’s and Ampere` - Maxwell laws of electromagnetic inductions.
    [Show full text]
  • The Infinite and Contradiction: a History of Mathematical Physics By
    The infinite and contradiction: A history of mathematical physics by dialectical approach Ichiro Ueki January 18, 2021 Abstract The following hypothesis is proposed: \In mathematics, the contradiction involved in the de- velopment of human knowledge is included in the form of the infinite.” To prove this hypothesis, the author tries to find what sorts of the infinite in mathematics were used to represent the con- tradictions involved in some revolutions in mathematical physics, and concludes \the contradiction involved in mathematical description of motion was represented with the infinite within recursive (computable) set level by early Newtonian mechanics; and then the contradiction to describe discon- tinuous phenomena with continuous functions and contradictions about \ether" were represented with the infinite higher than the recursive set level, namely of arithmetical set level in second or- der arithmetic (ordinary mathematics), by mechanics of continuous bodies and field theory; and subsequently the contradiction appeared in macroscopic physics applied to microscopic phenomena were represented with the further higher infinite in third or higher order arithmetic (set-theoretic mathematics), by quantum mechanics". 1 Introduction Contradictions found in set theory from the end of the 19th century to the beginning of the 20th, gave a shock called \a crisis of mathematics" to the world of mathematicians. One of the contradictions was reported by B. Russel: \Let w be the class [set]1 of all classes which are not members of themselves. Then whatever class x may be, 'x is a w' is equivalent to 'x is not an x'. Hence, giving to x the value w, 'w is a w' is equivalent to 'w is not a w'."[52] Russel described the crisis in 1959: I was led to this contradiction by Cantor's proof that there is no greatest cardinal number.
    [Show full text]