Concentrating (CSP) Tutorial

Chuck Kutscher Director Buildings and Thermal Systems Center

` "*/**"'&

• &,-*-%;808'9

• HH, ,20,4-,*0)2808'9

• 10&,8*-.+,2

a &,-*-%'1;0)22-0

9L2-0%Q'1.2&*R N 0-*'20-7%& N -902-90 N ',001,* 

9L-2-0%Q-,M'1.2&*R N '1&L,%',

b Concentrating (Focusing) Solar Collectors

Parabolic Trough

Line Focus

',001,*

Dish Stirling

Point Focus

Power Tower 4

c ,0%;`_`'-

  '&&+),& '$)'1) EDE

88()+%&+'   aG`d  999H0+7*4+'H,0%;H%-8L1-*0L8'-1L ,0%;O`_`O-,,204,%O1-*0O.-90

d &),0%;`_`'- 3EDE"'

aG`d  &6.1GLL999H0+7*4+'H,0%;H%-8L1-*0L  *2J8'-1K7,00-91;';.1 e e -90*,2 9'2&-72&0+*2-0%

-*0'*

-*0 2+70', 7.0&20

-,,10

2+ ,02-0

-*0 0&20 -901170 02-0 0&20 -*0 &20

f -90*,2 9'2&aM,)&0+*2-0%

-*0'*

-*0 2+70', 7.0&20

Hot Salt Tank

-,,10

HX

aM,)*22-0% 2+ ,02-0

-*0 0&20 -901170 02-0 0&20 Cold Salt Tank -*0 &20

g -90*,2 9'2&aM,)&0+*2-0%

-*0'*

-*0 2+70', 7.0&20

Hot Salt Tank

-,,10

aM,)*22-0% 2+ ,02-0

-*0 0&20 -901170 Cold Salt 02-0 0&20 Tank -*0 &20

h 0-*'0-7%&

1'%,..0-&1G  P '*  – **-++0'*.*,212- 2 P -*2,*2  P '022+  P 1 

 

`_ Renewable Technology Applications

Module 3: Solar Thermal and Concentrating Solar Power Technology

CSP: Systems and Components:

11 femp.energy.gov bdc 7<-*0*20',04,%;12+1QR ',*,217'*2`hgcM`hh`

`a SEGS Historic Plant Capacity Value

On-Peak Performance For 5 Parabolic Trough Plants 120% 12 – Over 100% capacity with 100% 10 fossil backup – Averaged 80% 80% 8 on-peak capacity factor 60% 6 from solar

40% 4 On-Peak Capacity (%) Insolation (kWh/m^2/day) Insolation 20% 2

0% 0 SCE Summer On-Peak 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Weekdays: Jun - Sep Solar Contribution Boiler Contribution Direct Normal Radiation 12 noon - 6 pm

Source: KJC Operating Company ec'-,8-*0, -*00-*'0-7%&*,2

`c d_,-*,,9- 0-*'0-7%&*,29LfM&02-0%E.',

`d ,%-ad_-*,*,29'2&e&012-0% 0'<-,

`e Linear Fresnel

Linear Fresnel

Parabolic Trough

National Laboratory 17 ',001,*

08-*0 `g Renewable Applications

Module 3: Solar Thermal and Concentrating Solar Power Technology

CSP: Systems and Components: Linear Fresnel

19 femp.energy.gov -90-90Q,20*'80R

1'%,..0-&1G  P '022+  – ,%-Q`_La_E &'R – 0'%&2-70Q 8,.&R

P -*2,*2  – -001-*Q+1-*0R – -*0108Q01,27,1R

P '0  

a_ Renewable Energy Technology Applications

Module 3: Solar Thermal and Concentrating Solar Power Technology

CSP: Systems and Components: Power Tower

21 femp.energy.gov Renewable Energy Technology Applications

Module 3: Solar Thermal and Concentrating Solar Power Technology Stand-Alone Solar Power Plant: Power Tower

Molten Salt Heat Transfer Fluid

22 Figure Credit: SolarReserve 22 femp.energy.gov -90-90'-

ab -90-901'-

bGbf

ac -*0,

-*09-

ad ,%-`_,a_

ae ,%-`_,a_ 8'**E.',

af -001-*,0%;a_+1-*0-*2,*2-90 `d -701-*2,*22-0% 8'**E.',

28 0'%&2-70bha 8,.&-90-90 *' -0,'L8-00 ,8'0-,+,2*+1701G • -*0!*'1,-2%0 • '0M--*-,,10071920 -,17+.4-,;-80h_k

ah b_ 01,27,1E``_E8 `_ -701-*2,*22-0% • `_&-701- 2&0+*,0%;12-0% • ;0'--*',%

b` Renewable Energy Technology Applications

Module 3: Solar Thermal and Concentrating Solar Power Technology CSP: Systems and Components: Dish Engine Systems

32 femp.energy.gov '1&;12+1

"*!9& "&7 ("$'+:*$($'3%&+*

-,,204,%G-++0'*,.'*-2M 1*.*-;+,21 0'-.`Hd+-.*,2E&-,':

P '/$)

bb '1&L,%',;12+1

b) ,!,''1&40*',%1;12+1 '**0-*-E.', Q ,!,'-0.-04-,ER

,!,'I1-90'1& 

bc Stand-Alone Solar Power Plant: Dish Engine Hydrogen Working Fluid in Stirling Engine

35 ;12+"','1

be be 0-7%&,,7*,0%;1

`__k

cgk cek

`fk `ek

,',2 0-+ - 0-11 2   -*0 -90 *20' *20' '* *-) -90,,7*,0%;1

`__k

c`k c`k

`fk `ek

,',2 0-+ - 0-11 2   -*0 -90 *20' *20' '* *-) ,,7*,0%;1

`__k

b_k adk a`k a`k a_k `hk

,',2      2   -+',* 0-11 2 0-11 2 *20' ;0'-11'*L;12+1

c_ c_ *,21, ,2%029'2&-11'*;12+1

&0+*,0%; -*0'* 2-0% -90*-)

-11'* 7* ,!21G &;0''<4-, •)7.0*''*'2; • 12012027.

c` '$):/ %&+''**"$'1)$&+* ,2%02-*0-+',;*;12+Q R 1;12+1,17..*;12+2-7%+,2 -11'*M!0-'*01H

,!21G •1&0.-90*-)E20,1+'11'-,11E12  •%--1-*0M2-M*20'"',;

0.&'G 

ca -*0M7%+,2-2,4*',2&HH'1p`_

&6.GLL+.1H,0*H%-8L.0-1.2-0 cb fd-*0M7%+,2*,2',*-0'

&-2-0'2G 04,-*0,0%;,20

cc 201%2*,21

• '00-091&',% • 2+;*+',2,, • 2 Q-+14R • -90;*--*',%

'00-091&',% 2+;* -+14 --*',%

cd All Thermoelectric Power Systems Need Cooling

Coal Gas Oil CSP Nuclear

T Efficiency ∝ ⎛1− C ⎞ ⎜ T ⎟ ⎝ H ⎠

National Renewable Energy Laboratory 46 20M--*0-7%&*,2

20--*',%G fa_%*L&

'00-091&',%G -'*0*-9-9,G a_%*L& e_%*L& '0M--*0-7%&*,2

'00-091&',%G -'*0*-9-9,G a_%*L& e_%*L& *20''2;-12 ,01 M-(8102Glgk M, 7'1**;EGlbk 0;--*',% ,011 ;aHdk2-fHdk

+.2.,1-,*-4-,,2&,-*-%;H21&-9, -0 .0-*'20-7%&1H

 "&)*0*81+:''$*" & gH_k fH_k eH_k dH_k cH_k bH_k aH_k `H_k _H_k *+-1 1%1E,- 1%1 %%6

NREL/TP-5500-49468, December 2010

ch

Primary Cooling Options Background

1. Wet cooling 2. Dry cooling 3. Hybrid cooling

+

National Renewable Energy Laboratory ;0'M--*0-7%&*,2

20--*',%G `__%*L&D

'00-091&',%G -'*0*-9-9,G a_%*L& e_%*L& 201%- -*0&,-*-%'1

`___

h__ 0-7%&Q92--*R g__ 0-7%&Q0;--*R f__ '1&L40*',% e__  d__

$9 ! c__ b__ a__ `__ _ -**2-0*,',% -'*0)7. --*',% -2*

*710.01,248F1.'!71%80'1;*-4-,E.*,21'%,,91&',% 0/7,;H

db 201.0 ,0

bHd

b

aHd

a

`Hd

` ): 9)()3) _Hd

_ Q92M Q0;M * *  -6-, 07'201 -* -7011 --*R --*R ,,7*08,7 0-+1-*0 0+nb_08,7 0-+* *  0+ -701G G7',%20-,17+.4-,- *20''2;,04-,E.-022--,%011a__hH 0-.1G*,;E-,2&*;-,17+.4871- 20; 00'%20-.1W270*%24-,E`hdfH -* G21-,2*HE&-,-+'-,20'74-,1- -*-0-I1-*  ,7120;G,8'0-,+,2*1.21H

dc 011',%,8'0-,+,2* 1171

• 1022-02-'1 • '0+-02*'2;

dd -*0&,-*-%;7++0;-+.0'1-,

)'/ ! '1) "*!9  '1) & "& ;.'*.04,%+. bh_- ded- g__- +',2 4*'2;1*Qpd_R     '120'72Qo`_R   ,0%;2-0%   ;0'9'2& -11'*,0%;   2071Q,-,M--*',%R    2-,-, 2071 -0--*',% .0 00 .0 00 ,1Q0LRV dMh bMh gMh dMh ,*-. obk odk odk odk &,'*+270'2; &'%& *-9 *-9 *-92- &'%&

V ,%EHF+.**EHF,&-*+EHF0%-*'1EHF 2&EHQa_`bRH ,M1/7'0+,21 -0-*0-90*,21 ',2&,'2221Hcf..HF .-02-HMea_Mdeah_H

de Life Cycle Gas Emissions by Generation Source (IPCC)

National Renewable Energy Laboratory 57 "*/**"'&

• &,-*-%;808'9

• HH, ,20,4-,*0)2808'9

• 10&,8*-.+,2

dg &HH-2,4*

dh Exclude:

- Used and sensitive land

- Solar < 6.75 kWh/m2 per day

- Ground slope > 1%

e_ e` 94*'2;-*01-70-2,4*

Solar Solar Generation Land Area Capacity Capacity State (mi2)(MW)GWh AZ 13,613 1,742,461 4,121,268 CA 6,278 803,647 1,900,786 CO 6,232 797,758 1,886,858 NV 11,090 1,419,480 3,357,355 NM 20,356 2,605,585 6,162,729 UT 6,374 815,880 1,929,719 TX 23,288 2,980,823 7,050,242 Total 87,232 11,165,633 26,408,956

/))&+88 )"7 E6DDD&%($+("+3 H6DDD6DDD!&&/$ &),'&

ea 2013-2014: US CSP High Water Mark

Project Solana Ivanpah Genesis Crescent Dunes Mojave

Utility APS SCE + PG&E PG&E NVE PG&E

State Arizona California California Nevada California Size 280 MW 392 MW 250 MW 110 MW 280 MW Technology Trough/Storage To we r  Trough Tower/Storage Trough

COD  Oct. 2013 Feb. 2014 2014 June 2014 Late 2014 DOE Loan $1.45 B $1.63 B $0.85 B $.74 B $1.2 B

Company  BrightSource NextEra SolarReserve Abengoa

Total CSP under construction: 1,312 MW

March 15, 2013: Abengoa and BrightSource announced a joint venture to build the 500 MW Palen Solar Complex ec -0*9'.*-;+,2- 

ed -0*9'.*-;+,2;%'-,

.04-,* ,0-,12074-, 8*-.+,2

ee -0*9'.*-;+,2;&,-*-%;

0-*'0-7%& -90-90   '1&,%',

ef &;D

eg &0+*,0%;2-0%

eh Themal Storage

One Hot Tank, One Cold Tank With Fluid (Typically Molten Salt) Circulated Between the Tanks Current Deployments are Indirect, Meaning They Comprise a Fluid Loop Separate from the Solar Field and is Connected via Heat Exchanger (Therminol VP-1 and Molten Salt) Direct Two-Tank Storage Possible if the Solar Field Fluid and Storage Fluid are the Same. The Current Indirect Configurations are Preferred for Operational and Cost Reasons.

Note: Images Relate to System at the Andasol I Project in Spain 70 &0+*,0%;2-0%G11'82-0% -0 -701

Thermal

f` &0+*,0%;2-0%G"',;, -9-12

!)%$ &) 3 $'1 '%()**") /%( +')  .)3> &) 3+') > 3)'> -7,20'.,0%; hgk fdk d_k fdk "',;Q2;.'*R ,0%;.'2;Q&R `___ `_ `___ `_E___ -90.'2;QR `__l d `__l d__ 2-0%704-, &-701 &-701 ;1 ;1 .'2*-12Q\L)&MR faQ2-901R fd_M`d__ h_Ma__ fdM`d_ a`_Q20-7%&1R 08' ' Q;01R b_ `d b_ b_

U7*-8E7&*0EW&02-7,'E-0.-0210&,20E J4*'2;*..*'4-,1- ,0%;2-0%EK ,0%;Ea_b_E2*,2EE-8+0a__gH

fa !)%$&) 3+') ;%+)"$*0$'(%&+

'*&220,1 0#7' +-*2,1*21 -0%,'1 oC 0 150 300 450 600 750 900 1,050 1,200

fb !)%$&) 3+') ;%+)"$*0$'(%&+

• '1)%$,&  *7%/$,:'%('&&+&"+)+*$+/+,*

fc 1"+!!)%$&) 3+')  214*'2;+,1 -0-90 Peak Hourly Load

Solar Resource • +') ()'0"*7

– ,01%,04-, Q&'%&0.'2; 2-0R -0%'8,,+.*2 .'2; – &'%&08*771 %,04-,,+2& 74*'2;    ,04-,9L  ,1 &0+* 2-0% – *-90,0%;-1217 2-%02074*'<4-,-  .-90*-)

D J EF EK FH

fd '+','1&',%*7- 7,0 ,01 8*1-  0)2,204-,Q7++0;R

01 .'2; *7 ,01,204-, fe :11'8+.21,','+7+ --,120',21 Q.0',%;R

ff 7,4 ;',%2&,!21- 9'2&&0+* ,0%;2-0%

• -+.44-,9'2&'1-$,1-, -0' .0' • )- .7*'**;8'**,*;11.0-.0*; /7,4 ;',%27*8*7- 9'2& • 2-7274*'41E0%7*2-01E,-2&0 12)&-*01-,.0-.0+2&-1 -08*74,% '1.2&*

fg 7,4 ;',%2&,!21- 9'2&&0+* ,0%;2-0%

8'**2 &6.GLL999H,0*H%-8L.7*'4-,1

fh +.*+,24-,- 9'2&',-++0'*,'2 -++'2+,2,-,-+''1.2&-*Q R

*,2 &020'141 Q-*07*4.*STE 2-0%'<R

-*02 -70*; Q -70*;'02 -* *20''2;   -0+* 00', Qm`H_R S TR 0-!*1

.04-,* ;12+8'1-0-* &020'141 '+7*4-,1 Q721' R

&1&'12-0'**;,-2,',*7',-++0'*+-*1 712-,1'02&#:''*'2;- -,!%704-,

g_ HH:+.*N,*;1'1- .04-,*,.'2; ,!21- ',2&HH-72&912*,',%)

 

g` Adding Utility-Scale PV or CSP-TES to the original California 33% RPS

Base case configuration has: • a solar multiple (SM) of 1.3 • 6 hours of thermal storage storage

ga 7++00','1.2&

;12+,2*-, +0%',*.0' -0 7*;`Mb

;12++0%',*.0' ,-001.-,',% %,04-,-, 7*;`Mb lb__EmaE e&01H12-0%

gb ',200','1.2&

;12+,2*-, +0%',*.0' -0 ,70;ahNb`

;12++0%',*.0', -001.-,',% %,04-,-, ,70;ahMb` lb__EmaE e&01H12-0%Q1'+'*02-R a

gc  ,*;1'1N.04-,**7

Lowest solar multiples (lower annual capacity factors) yield the highest operational system value

gd California ISO Analysis – 33% Renewable Portfolio Standard Relative to PV, CSP provides additional operational value to California grid

) "&$ (),'&$$/

"*($%"**"'&* `_Hb bH`

'+$ daHf b`He

ge  ,*;1'1N.'2;*7

CSP integrated with storage maintains high capacity value • Highest net-load hours analysis for CSP • Standard ELCC analysis for PV

("+3)"+

GGN&)"' haHak aak

HDN&)"' heHek bHck

gf CAISO Analysis – Total Valuation

Relative value (operational + capacity) of CSP is • $48/MWh greater than PV in 33% scenario • $63/MWh greater in 40% scenario

gg :22.G2*7,*;1'1

• $/;'*+O +$/

M

*7 0-+bbk1,0'- 700,22-9014+21 -  m

gh 2;12+*7

              2.,1-,,270*%1.0'1E',,481Qb_k,`_k RE2H

h_ ;,0%'14,!21- ,9'2&&0+*,0%; 2-0%

,814%22&'+.2- 9L 2&0+*,0%;12-0%1, ,*',%2&,-*-%; -0&'%& .,204-,1- 1-*0Q,RH

h` 0%',*702'*+,221- 

nabk+0%',* 702'*+,22 a_k.,204-,

ha 0%',*702'*+,221- -*0

9'2&/7*':- , '%&0.,204-,-  1-*0%020 .,204-,- 7 2-'4-,*#:''*'2; .0-8';  

hb "*/**"'&

• &,-*-%;808'9

• HH, ,20,4-,*0)2808'9

• 10&,8*-.+,2

hc -**2-0"',;

hd Flat Plate Collector Efficiency Q η = coll IA

Qcoll = Qin − Qloss

Qcoll = FRτα IA − FRU L A(Tin −Tamb ) (T −T ) η = F τα − F U in amb R R L I

- Hottel-Whillier-Bliss equation 96 Plotting Collector Efficiency Flat Plate Collector

slope Y-intercept

97 Plotting Collector Efficiency Parabolic Trough

Y-intercept

Modified Hottel-Whillier-Bliss equation

98 Y );0-7%& "',;81H&3

1 0.9 0.8

) 0.7 η

( 1000 W/m² 0.6 800 W/m² 0.5 600 W/m² 0.4

Efficiency Efficiency 0.3 0.2 0.1 0 50 150 250 350 450 550

Thtf °C hh SkyTrough® Efficiency vs.

Thtf – 25°C

1 0.9 0.8

) 0.7

η 0.6 1000 W/m² ( 0.5 0.4 800 W/m² 0.3 600 W/m²

Efficiency 0.2 0.1 0 0 100 200 300 400 500

Thtf – 25 °C

100 Effect of Ambient Temperature on Traditional Way of Plotting Efficiency

101 Effect of Ambient Temperature on New Way of Plotting Efficiency

102 Collapsing Radiation Curves

0.9 0.8 0.7 ) 1000 W/m² η 0.6 0.5 800 W/m² 0.4 600 W/m² 0.3 Efficiency ( Efficiency 0.2 0.1 0 0 20 40 60

103 .4*0 -0+,81H 2 -11

`_ 105 Relationship Between Thermal Losses and Efficiency

1

0.9 Optical Losses 0.8

0.7 &0+* 0.6 -111

0.5 .04,% 1000 W/m² Efficiency 0.4 +.0270 800 W/m² ,% 600 W/m² 0.3

0.2

0.1

0 50 100 150 200 250 300 350 400 450 500 550

Theat transfer fluid [⁰C]

,2W

`_ .4*0 -0+,

`_ Optical Collector Characterization

Field test

Indoor test Optical Efficiency Test Loop

SkyTrough undergoing test

Control room showing tracker and loop controls Distant Observer Field Assessment Tool

114 NREL Approach: Outdoor Transient Test Under Real Conditions --*1-80,'%&2.0'-02-212 a.+

`_+

;. 2&0+--7.*1+-,'2-0 +11E1-00E,%*11 2+.027012,7+0-71 *-4-,1H

*-. β, !: 70',% 212.0'-

115 Governing equation

⎛ ΔT ⎞ 1 ηrcvr−opt = ∑ Mici ⋅⎜ ⎟ ⋅ i ⎝ Δt ⎠i IA

Where slope is determined near ambient temperature

Small correction term (qrad/IA) is added to account for radiation loss from absorber to glass

116 Modeling of test using water for

117 Temperature Profiles at Different Locations Inside Receiver

Absorber

Aluminum

Glass

Time period for slope measurement Air

118 .4*,*;1'1--*1

-*0 N 8*-.W7.%0;  N '*-01.'!**; -0 ..*'4-,1 N 0-',7120;',2012,7172 7,17..-02 ASAP – Generic optical analysis software – Flexible interface – Very steep learning curve

4-,* NATIONAL ,9* RENEWABLE ENERGY ,0%; LABORATORY -02-0; &0+*0 -0+,

`a Receiver heat loss: laboratory measurements

Receiver test rig Receiver heat loss: field surveys

Infrared image of hot and cold tubes

Camera and GPS for exact positioning 8,;*1

`a • 8,.-90;*1G – 7.00'4*12+

– 7.00'4*a – '00;2-, – '022&0+*M2-M*20'

7.00'4*a.-901)' Q&-%,-90;12+1R

.4+'<',%1;12+"',;'1*, 29,17,*'%&2-**4-,"',;,.-90 ;*-,801'-,"',;H

`a Typical Thermal Cycle Efficiencies

edk

e_k Typical Engineering Limit (75% Carnot) Natural Gas Combined Cycle ddk (air Brayton + S-CO2 Brayton steam Rankine) (recompression) d_k

Supercritical Steam (commercial for coal) cdk

Solar Power Tower with steam Rankine cycle c_k Simple-cycle Note: combustion turbine !)%$'&0)*"'&"&3 bdk (air Brayton) Nuclear light-water reactor b_k b__ c__ d__ e__ f__ g__ h__ `___ ``__ `a__ `b__ `c__ %()+/)6

National Renewable Energy Laboratory 125 Supercritical-CO2 Power Towers

PCM Thermal Storage

Solar Receiver

Generator Main Turbine Compressor

Precooler

Recuperator Attractive features of s-CO2 Cycle

• Simpler cycle design than steam Rankine • Higher efficiency than steam Rankine • High-density working fluid yields compact turbomachinery • Wide range of efficient turbine sizes: 10 to 300 MWe • Low-cost, low-toxicity, low-corrosivity, thermally stable working fluid • Single phase fluid reduces operational complexity

National Renewable Energy Laboratory 127 8,20'*1

`a Advanced Materials Development

ReflecTech® film

Low-ε receiver coating -*01.207+81H0'48*-111

• Next-generation SunShot tower receiver temperatures ≥ 650 °C • The efficiency of a receiver increases if the energy absorbed is maximized while the radiative black body loss to the environment is minimized Spectral Selectivity

• `fbN'02-0+*W'07+1-*0Q*7R • *,)I1*9*)-;1.207+Q0R

`b -*01*481-00QR"',; • " !)+%()+/)*/) o -0-80*.9'2&1-*01.207+ o -,1'0*;*0%0.-2,4*0'48*-111QcR 4 • /&,+!)'/ !*$,0"&37 η αεσsQT− >1m1-*01-0.2, m'00',-,2&0'80 sel = ?m2&0+*+'6, Cm2 ,M-*2<+,,-,12,2 Q

mf__ZEme_L+aEA maHcgq+ mf__ZEme_L+aE@ Q+:Rm_Hhfh   1*

`b ..0-&

• +)"$*$,'& o ,20',1'1*48'2; o -9+-'*'2; o :'4-,01'12, • /$,:$3)'(,$',&  o ,&,1-0.2, o 7,* o &',!*+1 • !3*"$0(')('*",'& o .760',%,*20-,+ o ',-,20-*- +20'*.0-.041 o :.0'+,2*#:''*'2; • !)+)"4,'& o .20*NM'1M W  o 207270*NEE

`b 8, 20,1 0W2-0%20'*1

• '%&M2+.1*21 • '%&M2+.+-*2,+2*1

MgCl2 - KCl - NaCl • Projection (ASalt-liquid) &1M&,%+20'*1 1 MgCl2

Four-Phase Intersection Points with ASalt-liquid T(min) = 334 oC, T(max) = 8169.79 oC 425

0.1

1: AAMX3-Perovskite#1 / K3Mg2Cl7_solid(s) / KMgCl3_perovskite(s) 0.9 • &0+-&+'*12-0% 2: AAMX3-Perovskite#1 / AAlkCl-ss_rocksalt#1 / Na2MgCl4_solid(s) 415 3: AAlkCl-ss_rocksalt#1 / AAlkCl-ss_rocksalt#2 / K2MgCl4_solid(s) 4: AAlkCl-ss_rocksalt#1 / K2MgCl4_solid(s) / K3Mg2Cl7_solid(s) 5: AAMX3-Perovskite#1 / AAlkCl-ss_rocksalt#1 / K3Mg2Cl7_solid(s) 0.2 405 0.8 A = MgCl2, B = NaCl, C = KCl W(A) W(B) W(C) oC 395

1: 0.43350 0.00001 0.56648 440.11 0.3 2: 0.47312 0.25906 0.26782 359.93 0.7 3: 0.35354 0.13806 0.50840 357.34 385 4: 0.39234 0.16487 0.44280 339.11 5: 0.41368 0.18363 0.40269 334.00 0.4

0.6 375

365 0.5

0.5

355 2

1 0.6 -*2,*212 --.E,'4-,* 1 0.4 5 345 4

3 335 0.7 5

0.3

325

o 0.8 T C

0.2

0.9

0.1

NaCl0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 KCl mass fraction

`b &0+*,0%;2-0%N+20'*1&020'<4-,

&0+-.&;1'*.0-.041+170+,21 • 2&0+*-,748'2;E&2.'2;E.&1M&,%,2&*.'1E +*4,%.-',21E,1'2;E8'1-1'2; • ',1207+,24-,N' 0,4*,,',%*-0'+20QRE&0+* 08'+20',*;<0QRE,1'2;,-,748'2; ,1207+,21E 0&-+20

National Renewable Energy Laboratory Innovation for Our Energy Future S-CO2 Corrosion Testing

S-CO2 static autoclave testing Sample holder with metallic samples to

METERING be tested VALVE METERING VALVE GCMS EXHAUST BYPASS LINE PNEUMATIC VALVE PNEUMATIC EMERGENCY VALVE RELIEF SUPPLY PUMP

HEAT-EX PRE-HEAT LINE

AUTOCLAVE

PRESSURE GAUGE THERMOCOUPLE

National Renewable Energy Laboratory 135 8,'801

`b Particle Receiver and Storage Integrated with Fluidized-Bed Heat Exchanger

Incident solar flux on tubularullar absorber openings NREL Particle Receiver with Integrated Fluidized Bed Project

 Develop particle receiver design that meets design metrics of 800ºC particle- exit temperature, ≥90% thermal efficiency, with adequate service life, and cost below $150/kWt.  Perform on-sun test of particle receiver prototype with on-sun testing results, reaches ≥ 90% calculated thermal Incident solar flux on efficiency for a commercial-scale product. tubular absorber openings  Design a preliminary FB-CSP thermal system for the integration with different power cycles. Schematic of the NREL Particle Receiver Objective: By using low-cost, stable material and improving CSP plant performance, the development intends to reduce the CSP LCOE by 20%.

`b g Critical Components for FB-CSP System Integration

70'4*L7.00'4* 2+-90;*G "',;0,%bfkMcfk 7.00'4*Ma0;2-, ;*G"',;0,% c_kMd_kU 1M70',-+', ;*G"',;0,% cdkMddkU * Efficiency depends on turbine inlet temperature.

`b h 8,-**2-01

`c Low Cost for Modular Systems

1. Advanced prototypes

3. Optical tracking and calibration

2. Wireless control • 0&'$$+')*" &*7 – '0212+20-7%&1 – -*2,1*220-7%&1 – ',001,* – -9-12&*'-1221 0'%&2-70,0%;

-*#2,0%;

`c 2&2-7,&-2-12-*1

`c 2010 Trough/2013 Tower CSP Baselines and SunShot Goal

`c `c '80W

  8,0'801'%,1 8,1*481-001

'80L 

`c -90*,2W

-2&0+*M ;0',*;1'1 &;0'.0-(2

-90*,2 W

`c &0+*2-0%W

,).0-248-4,%8*-.+,2 ,4M-00-1'-,-4,%214,%

&0+* 2-0%

`c -*0'*W

8,&*'-1229'0*11-,20-*1 20'**' 4+.0'4-,

-*0'* W

`c :'14,% '*'41',7..-02- 

High Flux '/+!$ '/&+"&

Outdoor Optical Efficiency Test Loop   

Receiver Optical Test Advanced Optical Stand Materials Laboratories

`d 9 -02-0'1',2&,0%;;12+1 ,2%04-,'*'2;

Collector Characterization Receiver Characterization Laboratory Laboratory

TES Process and Components Integration and Materials Characterization Laboratories

`d `d -*',%,,*;1'1/7, -*00-1.2-0 ;12+8'1-0-*QR

%'-,*,0%;.*-;+,2;12+  ,'2-++'2+,2,'1.2& 60 Gas hydro Base Case (30% ITC to 2007, 10% thereafter) PV Combined 50 CSP Extend 30% ITC to 2012 (10% thereafter) cycle Extend 30% ITC to 2017 (10% thereafter) 40

30 wind Capacity (GW) 20

10 coal 0 nuclear

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050 `d  

      !!   !!     &7) 721&0E&HHEHH '02-0 7'*',%1,&0+*;12+1,20 &7)H)721&0X,0*H%-8  0)&-1 0-7.,0-%0+,%0 +0)H+&-1X,0*H%-8

`d