Teach the Amphibian Crisis!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kambô: a Shamanic Medicine - Personal Testimonies
Review Article JOJ Case Stud Volume 8 Issue 3 - September 2018 Copyright © All rights are reserved by Jan M Keppel Hesselink DOI: 10.19080/JOJCS.2018.08.555739 Kambô: A Shamanic Medicine - Personal Testimonies Jan M Keppel Hesselink1,2* 1Department of Health, University of Witten/Herdecke, Germany 2Institute for Neuropathic Pain, Netherlands Submission: August 24, 2017; Published: September 07, 2018 *Corresponding author: Jan M Keppel Hesselink, Department of Health, University of Witten/Herdecke, Germany & Institute for Neuropathic Pain, Bosch en Duin, Netherlands, Email: Abstract Since the beginning of this century more and more people in Europe and USA make use of a shamanic product based on the secretion of an Amazonian frog, the Phyllomedusa bicolor. This secretion contains a great number of bio-active peptides and is administered in a ritual via a fresh burn created on the skin of forearm or leg. The desired effects are related to acute intoxication and consist amongst others of nausea and vomiting, diarrhea and swelling of the face as in Quinke’s edema. These effects occur within minutes after the inoculation with the secretion and last mostly for few hours. After this intense period people feel rejuvenated and many participants of the cleansing ritual claim long lasting positive effects for their health. We present the history and context of Kambô use and some case-studies based on personal testimonies. Clearly the increasing use of a shamanic intervention as Kambô is also an expression and a signal of the dissatisfaction of consumers with the results of Western medicine. Keywords: Phyllomedusa bicolor; Shaman; Healing; Target; Side-effects Introduction Phyllomedusa bicolor is an Amazonian frog and the source of Kambô. -
The New Age of Extinction
Wednesday, Apr. 01, 2009 The New Age of Extinction By Bryan Walsh / Madagascar There are at least 8 million unique species of life on the planet, if not far more, and you could be forgiven for believing that all of them can be found in Andasibe. Walking through this rain forest in Madagascar is like stepping into the library of life. Sunlight seeps through the silky fringes of the Ravenea louvelii, an endangered palm found, like so much else on this African island, nowhere else. Leaf-tailed geckos cling to the trees, cloaked in green. A fat Parson's chameleon lies lazily on a branch, beady eyes scanning for dinner. But the animal I most hoped to find, I don't see at first; I hear it, though — a sustained groan that electrifies the forest quiet. My Malagasy guide, Marie Razafindrasolo, finds the source of the sound perched on a branch. It is the black-and-white indri, largest of the lemurs — a type of small primate found only in Madagascar. The cry is known as a spacing call, a warning to other indris to keep their distance, to prevent competition for food. But there's not much risk of interlopers. The species — like many other lemurs, like many other animals in Madagascar, like so much of life on Earth — is endangered and dwindling fast. Madagascar — which separated from India 80 million to 100 million years ago before eventually settling off the southeastern coast of Africa — is in many ways an Earth apart. All that time in geographic isolation made Madagascar a Darwinian playground, its animals and plants evolving into forms utterly original. -
Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. -
Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency. -
Newsletter V5-N2
V irg in ia Herpetological Society August 1995 Volume 5, Number 2 NEWSLETTER Catesheiana Co-editors President Paul W. Saltier Ron Southwick R. Terry Spohn Paul Sattler - Pres. Elect Newsletter Editor Sccrctarv/Trcasurcr Mike Finder Bob Hogan microdistribution patterns of Worldwide Amphibian Decline salamanders in terrestrial environments Is There a Virginia Connection? (Wyman and Hawksley-Lescault, 1987). Increased ultraviolet radiation, apparently due to the thinning of the Submitted by Joseph C. Mitchell, Department of Biology, ozone layer, has been shown to k ill University o f Richmond, Richmond, VA 23173 developing eggs of the Cascades frog (Rana cascadae) and western toad (Bufo boreas) (Blaustein et al., 1994a). Amphibians have received Congress of Herpetology held in The widespread fungus (Saprolegnia considerable media and scientific Canterbury, England in 1989. ferax) introduced into ponds and lakes attention over the past half dozen years Pin-pointing the causes of in the Pacific northwest by introduced because of species extinctions and these problems has been elusive. Early fish has caused egg mortality in the population declines worldwide. on, scientists were looking for one western toad (Blaustein et al., 1994b). Observations such as (1) the last global smoking gun, but the results of An unidentified virus carried by individual of the Australian gastric studies that have been published since introduced fish, such as tilapia, brooding frog (Rheobatrachus silus) the alarm surfaced indicate that the guppies, and carp, is suspected as was seen in 1979 (Tyler and Davies, causes are varied and often local. The causing frog decline in Australia 1985); (2) the golden toad (Bufo most common cause of local population (Anderson, 1995). -
Tadpole Consumption Is a Direct Threat to the Endangered Purple Frog, Nasikabatrachus Sahyadrensis
SALAMANDRA 51(3) 252–258 30 October 2015 CorrespondenceISSN 0036–3375 Correspondence Tadpole consumption is a direct threat to the endangered purple frog, Nasikabatrachus sahyadrensis Ashish Thomas & S. D. Biju Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi 110 007, India Corresponding author: S. D. Biju, e-mail: [email protected] Manuscript received: 5 July 2014 Accepted: 30 December 2014 by Alexander Kupfer Amphibians across the world are suffering alarming popu- Southeast Asia have witnessed drastic population declines lation declines with nearly one third of the ca 7,300 species caused by overexploitation over the last couple of decades being threatened worldwide (Stuart et al. 2008, Wake & (Warkentin et al. 2008). Often, natural populations are Vredenburg 2008, IUCN 2014). Major factors attributed harvested without regard of the consequences or implica- to the decline include habitat destruction (Houlahan et tions of this practice on the dynamics or sustainability of al. 2000, Sodhi et al. 2008), chemical pollution (Ber ger the exploited populations (Getz & Haight 1989). When 1998), climate change (Adams 1999, Carpenter & Tur- the extent of exploitation is greater than the sustaining ca- ner 2000), diseases (McCallum 2007, Cushman 2006), pacity or turnover rate of a species, there is every possi- and invasive species (Boone & Bridges 2003). The West- bility that the species may become locally extinct, which ern Ghats of India, a global hotspot for amphibian diver- would subsequently have drastic ecological implications sity and endemism (Biju 2001, Biju & Bossuyt 2003), has in the particular region (Duffy 2002, Wright et al. 2006, more than 40% of its amphibian fauna threatened with ex- Carpenter et al. -
Full Text in Pdf Format
Vol. 78: 87–95, 2007 DISEASES OF AQUATIC ORGANISMS Published December 13 doi: 10.3354/dao01861 Dis Aquat Org Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade Jodi J. L. Rowley1, 5,*, Simon Kin Fung Chan2, Wing Sze Tang2, Richard Speare3, Lee F. Skerratt 4, Ross A. Alford1, Ka Shing Cheung 2, Ching Yee Ho2, Ruth Campbell4 1School of Marine and Tropical Biology and Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland, Australia 4811 2Herpetofauna Working Group, Agriculture, Fisheries and Conservation Department, The Government of the Hong Kong Special Administrative Region, 7/F, Cheung Sha Wan Government Offices, 303 Cheung Sha Wan Road, Kowloon, Hong Kong, China 3School of Public Health, Tropical Medicine and Rehabilitation and Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland, Australia 4811 4School of Veterinary and Biomedical Sciences and Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland, Australia 4811 5Present address: Conservation International Indo-Burma, PO Box 1356, Phnom Penh, Cambodia ABSTRACT: Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, is respon- sible for many amphibian declines and has been identified in wild amphibian populations on all con- tinents where they exist, except for Asia. In order to assess whether B. dendrobatidis is present on the native amphibians of Hong Kong, we sampled wild populations of Amolops hongkongensis, Paa exil- ispinosa, P. spinosa and Rana chloronota during 2005–2006. Amphibians infected with B. dendro- batidis have been found in the international trade, so we also examined the extent and nature of the amphibian trade in Hong Kong during 2005–2006, and assessed whether B. -
Toxicity of Glyphosate on Physalaemus Albonotatus (Steindachner, 1864) from Western Brazil
Ecotoxicol. Environ. Contam., v. 8, n. 1, 2013, 55-58 doi: 10.5132/eec.2013.01.008 Toxicity of Glyphosate on Physalaemus albonotatus (Steindachner, 1864) from Western Brazil F. SIMIONI 1, D.F.N. D A SILVA 2 & T. MO tt 3 1 Laboratório de Herpetologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 2 Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 3 Setor de Biodiversidade e Ecologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Maceió, Alagoas, CEP 57072-970, Brazil. (Received April 12, 2012; Accept April 05, 2013) Abstract Amphibian declines have been reported worldwide and pesticides can negatively impact this taxonomic group. Brazil is the world’s largest consumer of pesticides, and Mato Grosso is the leader in pesticide consumption among Brazilian states. However, the effects of these chemicals on the biota are still poorly explored. The main goals of this study were to determine the acute toxicity (CL50) of the herbicide glyphosate on Physalaemus albonotatus, and to assess survivorship rates when tadpoles are kept under sub-lethal concentrations. Three egg masses of P. albonotatus were collected in Cuiabá, Mato Grosso, Brazil. Tadpoles were exposed for 96 h to varying concentrations of glyphosate to determine the CL50 and survivorship. The -1 CL50 was 5.38 mg L and there were statistically significant differences in mortality rates and the number of days that P. albonotatus tadpoles survived when exposed in different sub-lethal concentrations of glyphosate. Different sensibilities among amphibian species may be related with their historical contact with pesticides and/or specific tolerances. -
A New Species of the Genus Nasikabatrachus (Anura, Nasikabatrachidae) from the Eastern Slopes of the Western Ghats, India
Alytes, 2017, 34 (1¢4): 1¢19. A new species of the genus Nasikabatrachus (Anura, Nasikabatrachidae) from the eastern slopes of the Western Ghats, India S. Jegath Janani1,2, Karthikeyan Vasudevan1, Elizabeth Prendini3, Sushil Kumar Dutta4, Ramesh K. Aggarwal1* 1Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Tarnaka, Hyderabad, 500007, India. <[email protected]>, <[email protected]>. 2Current Address: 222A, 5th street, Annamalayar Colony, Sivakasi, 626123, India.<[email protected]>. 3Division of Vertebrate Zoology, Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York NY 10024-5192, USA. <[email protected]>. 4Nature Environment and Wildlife Society (NEWS), Nature House, Gaudasahi, Angul, Odisha. <[email protected]>. * Corresponding Author. We describe a new species of the endemic frog genus Nasikabatrachus,from the eastern slopes of the Western Ghats, in India. The new species is morphologically, acoustically and genetically distinct from N. sahyadrensis. Computed tomography scans of both species revealed diagnostic osteological differences, particularly in the vertebral column. Male advertisement call analysis also showed the two species to be distinct. A phenological difference in breeding season exists between the new species (which breeds during the northeast monsoon season; October to December), and its sister species (which breeds during the southwest monsoon; May to August). The new species shows 6 % genetic divergence (K2P) at mitochondrial 16S rRNA (1330 bp) partial gene from its congener, indicating clear differentiation within Nasikabatra- chus. Speciation within this fossorial lineage is hypothesized to have been caused by phenological shift in breeding during different monsoon seasons—the northeast monsoon in the new species versus southwest monsoon in N. -
Vocalizations of Eight Species of Atelopus (Anura: Bufonidae) with Comments on Communication in the Genus
Copeia, 1990(3), pp. 631-643 Vocalizations of Eight Species of Atelopus (Anura: Bufonidae) With Comments on Communication in the Genus REGINALD B. COCROFT, ROY W. MCDIARMID, ALAN P. JASLOW AND PEDRO M. RUIZ-CARRANZA Vocalizations of frogs of the genus Atelopus include three discrete types of signals: pulsed calls, pure tone calls, and short calls. Repertoire composition is conservative across species. Repertoires of most species whose calls have been recorded contain two or three of these identifiable call types. Within a call type, details of call structure are very similar across species. This apparent lack of divergence in calls may be related to the rarity of sympatry among species of Atelopus and to the relative importance of visual communication in their social interactions. COMMUNICATION in frogs of the genus lopus by comparing the structure and behavioral Atelopus has been httle studied despite sev- context, where available, of calls of these species eral unique features of their biology that make with calls of other species reported in the lit- them an important comparative system in light erature. of the extensive work on other species of an- METHODS urans (Littlejohn, 1977; Wells, 1977; Gerhardt, 1988). First, the auditory system oí Atelopus is Calls were analyzed using a Kay Digital Sona- highly modified, and most species lack external Graph 7800, a Data 6000 Waveform Analyzer and middle ears (McDiarmid, 1971). Second, in with a model 610 plug-in digitizer, and a Mul- contrast to most anurans, species oiAtelopus are tigon Uniscan II real-time analyzer. Call fre- diurnal and often brightly colored, and visual quencies were measured from waveform and communication plays an important role in the Fourier transform analyses; pulse rates and call social behavior of at least some species (Jaslow, lengths were measured from waveform analyses 1979; Crump, 1988). -
Species Diversity and Conservation Status of Amphibians in Madre De Dios, Southern Peru
Herpetological Conservation and Biology 4(1):14-29 Submitted: 18 December 2007; Accepted: 4 August 2008 SPECIES DIVERSITY AND CONSERVATION STATUS OF AMPHIBIANS IN MADRE DE DIOS, SOUTHERN PERU 1,2 3 4,5 RUDOLF VON MAY , KAREN SIU-TING , JENNIFER M. JACOBS , MARGARITA MEDINA- 3 6 3,7 1 MÜLLER , GIUSEPPE GAGLIARDI , LILY O. RODRÍGUEZ , AND MAUREEN A. DONNELLY 1 Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE-167, Miami, Florida 33199, USA 2 Corresponding author, e-mail: [email protected] 3 Departamento de Herpetología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Lima 11, Perú 4 Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA 5 Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA 6 Departamento de Herpetología, Museo de Zoología de la Universidad Nacional de la Amazonía Peruana, Pebas 5ta cuadra, Iquitos, Perú 7 Programa de Desarrollo Rural Sostenible, Cooperación Técnica Alemana – GTZ, Calle Diecisiete 355, Lima 27, Perú ABSTRACT.—This study focuses on amphibian species diversity in the lowland Amazonian rainforest of southern Peru, and on the importance of protected and non-protected areas for maintaining amphibian assemblages in this region. We compared species lists from nine sites in the Madre de Dios region, five of which are in nationally recognized protected areas and four are outside the country’s protected area system. Los Amigos, occurring outside the protected area system, is the most species-rich locality included in our comparison. -
An Action Plan for Darwin's Frogs Brings Key Stakeholders Together
A flagship for Austral temperate forest conservation: an action plan for Darwin's frogs brings key stakeholders together C LAUDIO A ZAT,ANDRÉS V ALENZUELA-SÁNCHEZ,SOLEDAD D ELGADO A NDREW A. CUNNINGHAM,MARIO A LVARADO-RYBAK,JOHARA B OURKE R AÚL B RIONES,OSVALDO C ABEZA,CAMILA C ASTRO-CARRASCO,ANDRES C HARRIER C LAUDIO C ORREA,MARTHA L. CRUMP,CÉSAR C. CUEVAS,MARIANO DE LA M AZA S ANDRA D ÍAZ-VIDAL,EDGARDO F LORES,GEMMA H ARDING,ESTEBAN O. LAVILLA M ARCO A. MENDEZ,FRANK O BERWEMMER,JUAN C ARLOS O RTIZ,HERNÁN P ASTORE A LEXANDRA P EÑAFIEL-RICAURTE,LEONORA R OJAS-SALINAS J OSÉ M ANUEL S ERRANO,MAXIMILIANO A. SEPÚLVEDA,VERÓNICA T OLEDO C ARMEN Ú BEDA,DAVID E. URIBE-RIVERA,CATALINA V ALDIVIA S ALLY W REN and A RIADNE A NGULO Abstract Darwin’sfrogsRhinoderma darwinii and Rhino- the Austral temperate forests of Chile and Argentina. This derma rufum are the only known species of amphibians recommendation forms part of the vision of the Bination- in which males brood their offspring in their vocal sacs. We al Conservation Strategy for Darwin’sFrogs,whichwas propose these frogs as flagship species for the conservation of launched in . The strategy is a conservation initiative CLAUDIO AZAT* (Corresponding author, orcid.org/0000-0001-9201-7886), EDGARDO FLORES* Fundación Nahuelbuta Natural, Cañete, Chile MARIO ALVARADO-RYBAK*, ALEXANDRA PEÑAFIEL-RICAURTE* and CATALINA VALDIVIA GEMMA HARDING* Durrell Institute of Conservation and Ecology, School of Sustainability Research Centre, Life Sciences Faculty, Universidad Andres Anthropology and Conservation, University of Kent, Canterbury, UK Bello, Republica 440, Santiago, Chile.