/ JP9611322

KEK Proceedings 95-13 February 1996 M

KEK-PROC—95-13 JP9611322 — 9 7 *- 9 's 3 "j 7°

Proceedings of the Workshop on Small Angle Scattering Data Analysis - Micelle related topics -

December 13-14, 1995 KEK, Tsukuba, Japan

C/jX i" oto r Nto j' O r-

edited by T. Yamaguchi, M. Furusaka and T.Otomo

NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS National Laboratory for High Energy Physics, 1996

KEK Reports are available from:

Technical Information & Library National Laboratory for High Energy Physics 1-1 Oho, Tsukuba-shi Ibaraki-ken, 305 JAPAN

Phone: 0298-64-5136 Telex: 3652-534 (Domestic) (0)3652-534 (International) Fax: 0298-64-4604 Cable: KEK OHO E-mail: [email protected] (Internet Address) 'hftmir- 9 Ilf7 - 9 '> 3 y 7” < f-

0B# : 1 2M 1 3 0 (tK) — 1 4 B (A) ^^ 2 ##

13 0 (*) • 7-^73 'y7

(^A) 3

WINK T- (#%#) 12 WINK ^e%Am (m#) 24 SAN (D$ft^^r-9 rn^7 A (Sj£) 37 Small-Angle X-ray Scattering Data Analysis Program (SAXS) (0A) 48

14 0 (A)

¥H*&A (£XA) 84 • ##fy7 /d^7A 0-/(0 ver 1.0 XEB%A (£XA) 96

(g^MA) 105 rr> h yx h h"

• WINK COFJ A^:#^& (KEK) 147 • KENS/J'^tfcSL^S^^tCOV'f *K)M (KEK) 152

itirMA LliPic^ TEL:092-87 1 -663 lext6224, FAX:092-865-6030, E-mail: YAM AGUCH @ SUNSP1 .SC.FUKUOKA-U. AC. JP ke^ib])

^A • a [email protected] ¥B £xa • [email protected] urn fm^A • a yamaguchi@ sunsp 1 .sc.fukuoka-u.ac.jp n b f@MA ■ a 4-# X$ mA • m» [email protected] suzuya @ schnee. tokai.j aeri.go.j p m^a#A•ax [email protected] TfelS ##A • x [email protected] % BA [email protected] H PAX sea •ax [email protected] fgRI fmMA • a SB • a SB ^XA • X mgA KEK [email protected] AA KEK otomo @ kekvax.kek.jp 7 — ir '> a 7 7°C0±bB

itS4 (KEK)

— 1 — SAN/WINK Workshop

Workshop ’'t'o

$A,sm o

1. < -t IV (~IM13$ L tz Analysis % b° 7 $ t* 9 LTV>* 3^

f o LtzbKT# 3 fr =$7 4 77 ’J -it

2. Wink 5-E? t- (i k" 9 L£ t i

*Hard Ware Low-angle > Mid-angle > High-angle *Soft Ware Data reduction> Data analysis

3. S AN/Reflectometer 1996 # 10 M 1-lWT * h"<7) beam line ! ~ *h"A^ST' install "t*

b) 5 ^PX7JI-V3

c) 3?l:fll*JU5K>l»

9H3

^12^25" N-0 ^12^25" SO4" Na+

ch 3 dodecyldimethylamine oxide sodium dodecyl sulfate (C12DAO) (SDS)

total concentration Ct = 80 raM mole fraction X = [SDS]/([Ci2DAO]+[SDS]) NaCl concentration Cs = 0, 50 mM l(Q) O N) G) small-angle neutron scattering intensity l(Q) = np[g.2 S(Q) + < I F(Q) I 2>fl- - 6.2]

particle scattering factor for prolate ellipsoid

- pj +(p, - Cj

= CizDAO/SDS = S2((a + P2 + (£+ ^)2(l - P2))2 o in o 80 H = cos 6

[/c = 2(aVJ + tJ(l-nf mM,

sin X - X cos X J,(X)-3x C s :

O,

OmM;

interparticle structure factor mixtures

a rescaled mean spherical approximation (RMSA)

by Hansen and Hayter [Molec. Phys. 46, 651 (1982)] , •

° ro co 50mM

g(r) = 1 + (1/12* nr)io"[S(Q)-l]QrsinQrdQ

g(r) - 1 = h(r) = c(r) + npR3 $ h( I r-r' I )c(r')dr' c(r) = -V(r)/kBT r>R h(r) = -1 rS R

V(r) = re £q s Rz*o zexp[-x (r-R)]/r r>R V(r) = °° r5R rho = zm/ it £p £ R(2 + k R) C TABLE

1 12

1—' o o o o o o O O | DAO X o CO ■sj on £> w fO I—* 1

II: 1 and 1

1 Parameters o o o o o o O o SDS the L_i phase in a 1 in un crv C\ ON in In ON 1 VO o o »-• VO VO O 1 dodecyldimethylamine oxide (C^DAO) U» o «0 ro U1 N) CO 1 in

/hexanol/water ternary system 1 the H- u* h-* H i—• 1

CO CO CO CD CD 00 CO CO O'

> Obtained 1 Absence in in in in in in in in in 1 C-C12DAO ~ 20, 50 mM 2 1 X = [hexanol]/([Ci DAO]+[hexanol]) >-* H-* u* to ro ro ro H* M (a 1 N “ 0, 0.29, 0.44 U in in w w vo cr of o o in o GO •o o in in from 1 NaCl. 1

1 SANS in in in ON in in in in vo i-* u ON o CD CD in M I 1 > Q M «o ON O *o vo ON 1

1 Analysis 1 H-* »-* M H t-» 1 VO w in vo -O -J 3 CO CJ w vo in vo 4* CD O 1 1

1 for o o o o o O O o O 1

o o o o o O O o O 1 cj tO ro to ro to to to ro U> 1 Mixed -O vo CO CO •o CO CO vo o • ON -o ,5. ■o w «o in •O 1

TEM of Li phase in

1 Solutions CO -O •o CN ON O n ON o “ 1 SOmMC-^DAO/hexanol *-* CD to VO *o vo VO w to 1 (X=0.29)/water. bar=200nm. I / 1 1 o O o O o o o O I N

M f*—i O o o o o of ro o CO 'O •o CO ON »—1 1 o in vo in l 3 I(Q} (cm-!) 100 0.1 100 0.1 100 0.1 ’ 10 10 0 1 1 V 1 b R R No

C p

0

i m m

n q n s

.

: n : : : :

:

the the the the the 0.005 the •'

polydisperse R %) the g 1(0.)

x=0.44

, x-0.29 volume sum radius n minimum coherent molar

-(3/5)R -^SiNCbm radius

= 0.01

Q} of ^

of

concentration

the (A-2)

of

C

of

n N of

0.015 neutron aggregation N(b monomer

coherent gyration N-mer

- m

spherical p - s [C

p V 0.02

s scattering m V

sphere 12 )

m of

2 in

neutron exp(-R^Q. of f

DAO]

exp(-Rg N-mer number

a - 0.025 N-mer

particle 7

- particle

length

scattering 2

particle

N

/5) particle Q. = 2

/

3) 50 density

system

length mM

of (3) ( ( 2 1

) ) the of

R a 100 solvent

n 5(8) monomer

(A) x=0.29 x=0.44

2: 150

|

200

2 solvent,

|

' scattering

the respectively

function values dcos0 1/2

and

neutron ')] axes, Intensity QRg Q

/3)

0 2

2

equation) Bessel

Q

2 -* 2 ~1

P(Q) small G

cos x

particle

p (3ji(u)/u) - n

at

at 1

x)/x

S(Q) coherent Guinier semiminor particle

(1 =

So the Factor

2 -

a at (a b

exp(-R

| fl cos spherical

Scattering 2

> and of

of '+ 2 ) x 2

System 1

) s

| fl mean )/5

s -

2

= 2 gyration

x

particles

2b solution /3

of

F(Q) the 2 cos + (p-p

volume I

(p-p

(sin density

2 2 2

: Structure first-order

<

semimajor 2

Neutron V =

(a p

dilute V : s

3Ji(x)/x n

4rtab

Q[a radius total p = a =

=

b

the

= =

= respectively

2

i(x)

g length :

u Ellipsoidal V for j the R the

and Monodisperse and

: P(Q) : P(Q) l(Q)

a

g V a p R ji(x)

Prolate for Intraparticle Small-angle

CH=CH-COOI-I

dioctadecyldimethylammonium chloride (2C18DAC) Rigid rod particles

QP(Q) = 7t V At (0-0 s)2 [2ji(QRt)/QRt]z V — LAt = ft Rt2L

QP(Q) = ;t V At (0- 0 s)2 exp(-RG,c2Q2/2) Rg.c = RtAT2 at small QRq.c values Lamellar layers with a periodic multilamellar At ; an area of the transversal cross-section of rod structure of infinitely extended bilayers Rt : radius of the transversal cross-section L : length of a cylindrical structure L > Rt Q2P(Q) = (27t/np) (t2/D)( p - p s)2[sin(Qt/2)/(Qt/2)]2 D = tV* = 27t/Qmax Rq,c : the radius of gyration for the transversal cross-section Q2P(Q) = (2zt/np) (t2/D)(p- 0S)2 exp(-RGiC2Q2) Rg,c = t//" 12 at small QRg.c values Vesicles with a unilamellar spherical shell t : the width of the scattering length density profile D : the repeat distance of the bilayers P(Q) = (0-0 s)2 [3V0j1(QRo)/QRo - 3VJ1(QRi)/QRi] t' : the bilayer thickness, that is, the width Vj = 4«R,3/3 of the mass-density profile, t' ^ t V0 = 47tR03/3 : the volume fraction of the component molecules ax : the first-order Bragg peak position Q2 P(Q) - ?7t(A/V)(0-0s)2(Ro - Ri)2 c : the radius of gyration of the thickness t Rg2 = 3(Ro5 - RiS)/5(Ro3 - Rj3) V = V0 - Vj A = 47t(Ro2 + Rj2) at the large QRq values

Ri and R@ : inner and outer radii, respectively Vj and V0 : volumes of spheres with radii Rj and R0, respectively Ci2DAO/cinnamic

Q?I(QJ 1(0) (cm') 0.003 0.003 0.002 0.001 0.002 0.001 0

0 0.05 0.05

Q. 0.1 0.(A-1> Q.

0.1 (A-1

(A-1) ) acid/water X

X = 0.15 X

0.15

= 0.29 =

0.5 0 0.2 0.2

(cm1 ' ) I(Q) (cm1) - CieDAO/cinnamic 0.003 0.002 0.001 0

0 0.05 Q 0.1 Q. —

Q.(A-i)

(A-i) 0.1 (A-1 rrnin

acid/water ) X X X

- - 0.15 -

0.31 0.17 0.5 0.2 0.2 C^DAO/cinnamic acid/water CieDAO/cinnamic acid/water

X = 0 30A

■■ 53" 58A lamellar layer ellipsoidal micelle

50A X = 0.2 Si Si 44 A <------> 104A rodlike micelle ellipsoidal micelle

<0m> -30A or 35-36 A

multilamellar vesicle multilamellar vesicle

— 11 — • WINK t'- 9

(###)

-12- PET 88°C Annealing Process WINK measurement

30min

2 min 60min

10 min

J__l l 1 Mil J_l l i_U 11

0.01 0.1 1 10

Q/A'

-13- Intensity 0.01

i

PET i

i

i

0.1 11

WINK 88°C

360 240 Q/A'

120 — Annealing measurement

14

min min min

— 1

Process 720 1310

min

min 10 wn W/i

(l /4. Qmit* Qewui f IQ 3 0.0106 0.1696 0.0270 0.4314 10 4 0.0132 0.2107 smzso.o'i 0.5038 10 5 0.0180 0.2517 #m#o °yj o.576i {106 0.0200 0.2927 0=6405 °-°l 0.6483 007 0.0240 0.3337 0.0450 o.oj 0.7202 10 8 0.0270 0.3746 0.0495 0.7919 0 9 0.0234 0.3764 0.0540 0.8634 0 10 0.0234 0.3764 (fc©584 oj e’ 0.9346 "IX 11 0.0183 0.2927 0=8270 oA 0.4314 1 IX 12 0.0209 0.3337 o.o'i 0.5038 .lx 13 0.0234 0.3746 6=6966 0.5761 0 14 0.0 0.0 0.0000 10.0000 [10 15 0.0183 0.2927 0.0000 10.0000 hoi6 0.0209 0.3337 0.0000 10.0000 ll 0 17 0.0234 0.3746 0.0000 10.0000 0 18 0.0 0.0 0.0000 10.0000 f Ox 19 0.0270 0.4314 0.0270 0.4314 1 0 20 8=8955 ' -<’r 0.5038 0.0315 0,5038 1 o 21 -6=6360 o.of> 0.5761 0.0360 0.5761 7 Oo 22 6=6465 o.o^o.6483 0.0405 0.6483 \ IQ 23 0t6450 °-otr0.7202 0.0450 0.7202 1 Q 24 0:649 5 0.7919 0.0495 0.7919 1 p 25 #6540 ^,0 0.8634 0.0540 0.8634 ;0 X26 0.0584 0.9346 0.0584 0.9346 A o 27 0.0270 0.4314 0.0270 0.4314 1 o 28 0,6315 ojds- 0.5038 0.0315 o.diy 0.5038 1 o 29 0.0360 o,e>£ 0.5761 0.0360 °yis 0.5761 1 o 30 0.0405 »x»7 0.6483 0.0405 0.6483 1 ° 31 0.0450 o.oH0.7202 0.0450 0.7202 0 X32 0.0495 0.7919 6=6495 °x°7r 0.7919 10 33 0.0540 0.8634 #6340 0.8634 1 o 34 0.0584 o.ofl 0.9346 #6584°. ^0.9346 1 o 35 0.0270 ".or 0.4314 0.0978 1.5644 1 o 36 0.0315 osi 0.5038 &&66oJ> 1.7048 1 o 37 0.0360 ^0.5761 6rM52 ®sT 1.8432 0 X38 0.0405 0.6483 0.1233 1.9796 0 x39 0.0450 0.7202 6^462-1 2.1138 0 X40 0.0495 0.7919 0.0000 10.0000 0 x41 0.0540 0.8634 0.0000 10.0000 [0 x 42 0.0584 0.9346 0.0000 10.0000 0 x 43 0.0270 0.4314 6=646-Ko 4.330 0X44 0.0315 0.5038 #430 lx^ 5.372 1 0 45 06330ostr 0.5761 #521 o.7 7.131 0 X 46 0.0405 0.6483 97657 0-7 8.207 1 0 47 06456 o^y>0.7202 07739 9.233 lo 48 0.0495 ©.^0.7919 0.818 10.228 Ox 49 0.0540 0.8634 M98 14.981 1°50 979584 ojO 0.9346 0.0 10.0 H - U'M 7 'K '• Ti xv/v/v Y h/t^j

D-PET 2750min Annealed at 88°C WINK ; 2.5 HIT -

1.5 3

j_i_i—_ i i i i i i i i 0/A"

D-PET 2750min Annealed at 88°C

WINK HIT

i i i i ml 0.01 0.1 1 10 0/A"

— 16 — AlW/dQ • L I(«> /t T J r/t 1. &a. A .

I(Q) iTMOWitJ* /tat* C c«wn£ fi )

4 A. dtfoob 1* q/IZA, r t# tjUfoctr *>

e ditbcfcn*

A - Aa*»- (cm1)

t- ' S+njd* Tf)Tck-*4*4 few )

"T T

T -- • +ff c- f

-

(5"a, : a.L5orptf»n qro&f sec-tw^

^ '- : $ct.iien«j £t s^en

I(Q ) *• “1 -Tl *) ^ 1 4f $, TcC grp

-17- Se-Ce* ihiy $V*a

lio) MWr ctr Ts_ JiJf(o) Altai/cHQ 1 M«f d -T ~u

^■s(p ) Me****^ l*t TCxt'ty /f" S-rtu-J+d $at»f>)e *tS

As 1 7 ft ic-le-nser t>jr SrarJ^d P**'fJ e'

Ts : TrMfw;sri,i o/- 5* •ian*lm( &* **&£■

StOrA&d

* A./ V»u^

-18- I). ])yu*£ .

*H e. counter /U ^ i;

2. -A ) Van^ftm C ''-'b""< ,c

(Tt.k 01** (M* (b*r*s ) v <\oi 7 4.7? 4.?7

» multiple S'catfch’i*^ ^ ^

o sur-f^cc Scattering ( Surface to volume ratio 1

1(8) -- I.M («/r‘)W?»)/Jal'T

*1 ZCQ)/ol& * f<% /f^ (* f ticr,/^)) ^ °f-uA <1 ( 0.1 < t < l.pt» )

^ -t ^.y: K j&r i% Kt 5 »fle

i* i t . ^

"tl°A * a? (in *a->

f°it-W(-fn,t) 1 Ur,- ^6f-foit; [ Z- ty(-fcr>t)]

-19- ' b ) y*sa~te tr ( in coherent -Ir** H }

07 AC C kxrnJ ) H U75T* 79.7 £>..? $

I(Q) = £l,/l »8.U

7 * *ff (-P

<-t < 2»»

Ifqv I, *££ Lu-rV^l^

g : -cfitet *i A| cIas-D'c- je*

5'u> -- (/- -w^ ^

2-c.) M*neel>sf>ir'sc

*z fQ;/7^2 - Xp XH )2//2^/>f q )

P(Q ) ' f*rtn {a&t,r eff P/r[jrtUT M*Ue»le.

Table 2. Measurement of KN = el0Aa for 2 5 cm diameter slit

Calibration technique/standard Ks = zl0da Water using g = 15 838 Vanadium single crystal (t = 0-44 cm)* 867 Partially labeled polystyrene using 893 GPC values for 2 Partially labeled polystyrene using 846 RJMl!1 = 0-21 A g* ,/2 AI-5 using dl(0)/dn= 175 cm"1 826f * Corrected for multiple scattering (7-8%) via equation (9). f Independent calibration via density measurements and vanadium; see Hendricks el al. (1974), Fig. 5.

-20- jl'tfuyizmLT .^I_. Tr = 5.73X10 V LL= D“ dQ D : Tr: b 7 > X i y 's 3 >

.«L. . - D Tr dQ &sWf5o y-'y'?Jl(D D • -^2- • Tr \%

" t*LL 2

tL u ymmm$ ts Ll yl/^ly>CDS-DggS Ls ib>X;u©s-Dgiit

j!2_= dQ D • Tr

^[U(i Poly(styrene-h 8 ) Poly(styrene-d 8 )

1 X = 6.4 A , S-DSg# = 8 m , t: - AIM X = 8 mm 0 background £dI^> 1 II#Pet!^7c <9 ©^Oy h Liz ( Figure 1 ) q > 0.01(A = 5.61 AXf <-? ti %> o

-21- Figure 1

Luporen

<1 >=5.606

40x1 0

2 Polystyrene CD$IJ/£ X = 6.4 A, S-DggH = 8 m , tf- AIM X = 5 mm 0 background t 31 ^ > 1 Fel^j/c <9 Guinier PlotUM ( Figure 2 ) Guinier fitting [HisSANS (96.7A) 6UT:t#:L/c^ (97 .2A) = 267

Polystyrene (Rg=97A) ln=5.59 Guinier plot

a 5.5 -

5.0 -

4.5 —

140x10

-22- <11>= 5.61 = 685

tUO, oeim, S-DPmtlyl'^ Xf-U y^iZ 1 B#E> 8m TfrZ)(D T =D • -i- -Tr = ^k

IC-eft-eflftAUT

D ■ lo" "Tr= 700

Xi y>3 'station D = 0.10 mm Tr = 0.6420

1q~ =109 (cm")

tfc&o

-^2- = x (l-x) (aH - aD)2 NA——— Mw dS2 Mm2 X Poly(styrene-dg)(Z)#:#^#

aH> aD styrcnc-hyStyrcnc-dgOf&S'LJx: Na T^’Kd E Pp ■t/ t—IfI'fitD^ypjS

Mw ^ V '7 — (Dfr-f-M Poly(styrene-dg)®{$#^}# 0.50 < #&### #) H#\ D#:ty-7-®#gLmC^M^2.34xl0^10.7x

Mw = 112000 6% (% (125000)66 610.6%omi^# c m -r-m u-cua^E^-cmuo ^±0j: 9 c, a c 6c

-23- • WINKf'-f ##

(WM)

— 24 — unit ru M a -, ^ m S 5 [U a )4 3| dim 4-J 5 ti- y>

CN I K? j> m 1? V IS £ y «/ -> i* AD E * i X) WS y % a. T$ I# * A AJ t\ * tK R 1C Ll. I W S\ Jl I )T\ f 1 iN < I A\ *AJ s -A ,\ 5t v S X 1 m K I ,X » fe{ w -A ■H & ^ % Ha "f § 53 Sw' w K> & A Q r< 4A O £ S A m % )A q y a ir\ 6 W § *A t_ if £ S' I 4\ | if 4\ -R X m IS X «rc Q It R K Q e R .X CD -A II <3 U rtf •o TJV K -< -o h a e 4 A 0 yi o 2 < CL H ih K? -g < ^ -w JL. u, 4 y H tV >j •u W >j w A)

-26- ( 3 - 1 £.1 ) 'K K MI s (A, d) K? 0 c< v> CD

JO c< CD O h —

1 m m i # i •w 5

K? 6 4H NZ E ij P u 0 I z c^f CD H — -27- ( >J >J p # * t

CO Q 0 o j I Aj K? z -H ✓—s +4 m \o 4£ ' & AJ s W TD Q Q h4 £ a > =0.1 o. A <% m VO CO X A I A CO w c< $5 X CD CD K o c< c-C A K? rQ x lA £ -H ! u- 4? ii K? !& xz * CD _> c

-28- line

ffcglU f <5) %5'^r^A_ /•S+'J^A

£\i, Z

(3-8)

Wo IfrU H20«I±s WL<0 3 0 D , Hmf li

|$Wz»#$t!mSLm£%tt*tv\, ttz, mmmma \t bound atom KtttZ>i>

'C* D x bound atom cross section l±s A&f^t/i/f—

ttffttt’bo-CV'i, oi 0,

(3-9)

Lt5'<), COi 9 ot < * [2] 0 Lfc^-C, (3-5) ~

(3-7) 4H2OJCJ: SAN LTV' 3 Z 0 tB

V'l 6 AtTOTf'BW i n k frv*t b ti*„ tZ?, Wink VH 2 0 t&m LM * m o A 6 « j K> -o 4 5 -•*! -R z$ E # i i ) 0 E 0 AJ I -

-V o AJ o «j fO CO K? K? £ (3 +* cd YU P 4 m t u Q 00 sc -: it ■>p YU AJ CL & i£> *

ni I I tx >J H

e 0 o * FT

0 Y@ 0 H l # -H *o O +4 P a AJ ('P

H- 5a < K? „/ AJ •H l 1 S& 4 W & 5 Stf -K % -B- 5a

K? m n a j , 4Q H- 3$$ i j £8 « ► 4 y • % Tr fc -' WS i Y@ o 1?C AJ - . ^ P K -H as

■^r'Tm * J _.I["(^1_ 45> v AJ • 4 CN -J p y -R i4 * ■tfO

31_1 J3 O H ^4: l Sf ted H-1 * . 6 W m 5a 4M t C m ■b- X & 4* H < 8i “ o o u ■a- «R ■s U_ (X) YU T -M 4&\ H |# r Q 0 A Tr

u s jrt A K? *2 O

• k < O ia Q .iA \ ( I ^ M l

>> tf a> 5a -O K O CM II ih = H CM V' *N = r$ CO Q •R X « K? T X *to o It CO _> n ■s (X,0)

u H »H ■w AJ X o O V CM I u. CM u >J •*H 5 5 S u *J»\ YU

X IF it

r 5

-30- -31- zvRvtmfrbommjs. 0-3) 0-6) rvi i\z&mt s JJ K> h(? 1

) m r m — 4 m Co 1 — 1 -32- % ■K- > co CO to 53 in ■R ■D 4\ ■H ifl!i «a y YU £ $5 » e B -»e ,\ 1 y

I 0 j J u ■« m « E -XJ 5a 4$ co *

I 1 1 0 j o

s ig ei iM AJ $* •y ft B a jj O' X3 m r~ II 1 X > CD a •o X*4ic-sin6 Messung des differcnticlicn Wirkungsquerschnittes 431 U/ . was fiir g = t bis in zweiter Ordnung von (E — E0)/E0 korrekt ist, so ergibt sich nach Integration iiber Q (r ^

(6)

<3*. Der Faktor (1 — £) korrigiert bezuglich der Vielfach-Streuung. > o

Streuwinkd ■& Fig. 4 {>.:'• t=> Fig. 3 und 4. DifferentieUer Streuquerschnitt von H,0 fiir verschiedene EinfaUsenergicn E, und Proben- temperaturen T in Einbeiten von o,/4 n (Streuwinkelverteilung). Der fiir die Wasserkurven in die Figur eingetragene statistische MeQfehler "gilt aiich fiir die iibrigen Kurven T" • Mit solchen Transmissionsversuchen gewinnt man keine sehr genaue Aussage iiber das logarithmische Energiedekrement. Das hat drei

I') r--

-33- I( A ) (arbitrary units) 1E+2

Oq W I MI ------= » “• » IB O 5 * #'Ll » * * at a -H

35 K B I Sl. =» •• B , pi (5 » ss at a. DH W \T a ' *7 it t& M S * iff > i.*W Ml' » 2 0 w % r> a -B- * at ... o> m 4< H ^ *

6 8- °t>

toi/o»cv) o o CD

HWf»T*-(A) it 2 tu# ? e * *v 16 A Io> I#

o x^** e--<611 ^ to %

ittL. (WitiV-lj n$

IS t'”,'1*™

l&ft iY>,») =

® h^Hl-

< #r*tK^ ri* . ^^0

k": * %y t3

WWvk 4»A <— VV check

I

>%&

tho, %Z

-35- tA

■» e.

+ w L

iL

* s*. comA16*^' w>/™-e) - IgCa,w)] de,«fw

L slASti'c

i —

-36- • SAN dSrLv^T-^

-37- 1, SAN (Small-Angle Neutron Scattering Instrument)

O time-of-flight (TOP) type small-angle neutron scattering instrument O O wave length of utilized neutron : 3-11 A —p | ^ \2-A -fO covered Q range : 0.006 ^ Q ^ 0.4 A'1 lm pos. : 0.02 ^ Q ^ 0.4 A'1 3~pos. : 0.01 ^ Q ^ 0.2 A":

5m pos. : 0.006 ^ Q ^ 0.1 A1 O sample position from a moderator : 19 m O 2D detector : consist of 32 lD-PSDs of 1/2 inch, in diameter. O spatial resolution : 10" x 12v mm2

CeU Metkwof Straight Ovids Tube Dent Guide Ct vinlng n*cJ 1 Dlmcnstond Tube Solkr Sill Jeitcten EXfccio# Tell Cutler Simple foilde* Sewering w# Chamber

wg B—0- * ‘"1 0J« 9.4m m -3 m- ”11 m- ol

Cwemlng Fixed Simple rwhlee 3 Olmcnilenil Sewering Seller SIU Dtiepers Deswer Owebv

SAN !Lojr®iiil PoYfftOh*

-38- O data acquisition is carried out by mac + VME O position : 8b:t (max : 256 ch) O time : ]%%bit (max : 65536 ch) /£ igl#'p<>^w x 1*** so

PSDOr-fCDffitl

D-KI *(D/(A + D))-K2

FIFO> v tieK't'o l’)

'VME CPU

SCSI \ X Macinioshll or VAXstation

-39- total

I (X,9) = I0(X) Ss-ts-p ,~jjf (X,0)T rsa) Ai3 del-,? (X)del ■!-/fla9)-Tr,a)

1 total (-*, 0) *9> 9- 3 /<)(■*) S. ‘s Ps da s d£2 (A, 0) 7>/A) K# (B.G. Sr-g-tf)

del P (A )d=t 3 # 9 y /8 (A, 6») /< 9 y KiJ' b

1 rs\A) = / 0(A ) S ,-f , p (A, e ) AC2 d„ 77 (A )dM bt£%>.

—40— ttz, TkhzMLX

1 wjotal a,e) a, 8) (A,0) water T r„a,jx) B_water (3) ds = / 0(^ >S water'* water P water~^?L 0 ) ^ del7! U )dct

(2), (3) 5% J: %,

do s dQ a,e) ^ 5 ^ ) *-* water'7 water P water dO water I water (^> @ ^ j'P j (4) dQ (A,0)

water (X, #) = tvafer = COHJf dQ 4^ (5)

iot,

r*K dcr 7 * 0- sin ‘ (%F )) ^(6) dQ water 7 water P water dX (6) water 7 sin"' (|^ )) S s'* s'P s 4;r ^mln

—41 — 3.1.a

7jc ^ ^ a, m&

"C li Jacrot \Z X.%> @8^^ (C

g(A) = [l- exp(-0.6-Au0.5'5)]m-1

1 wjotal (A, ^ ) ^ r.^XA) 1 I water (^’ ^ ) D water (h & ) 1 “ T rlw,„(A) g0 1)

-• / o(A )-S water ^ water AQ dct' )dct 1 4 n-t water tmztiz. z?>-£*R}\,'Tm®-comL&i£zm&'iki-z>t

d(J ' , n „ x ^ 5 (^» 9 ) ^ water t water 1 (K9) = dQ /wc/A,*) 4*-f water b%2>.

-42- READ rawdata ( DetectorNo, PosCh, TimeCh )

• Radial Average & b & rawdata ( DetectorNo, PosCh, TimeCh) , {32 x 64 x 50)

I_S ( Radial_Index, TimeCh ) , {128 x 50} I_BG (Radial_Index, TimeCh) , {128 x 50}

- Normalizing factor 2D ditector S_Norm = Sample_trs x S_Monitor BG_Norm = BG_trs x BG_Monitor

• BG component (DM I ^

Srad (Radial_Index, TimeCh) = I_S (Radial_Index, TimeCh) I_BG (Radial_Index, TimeCh) S_Norm BG_Norm

—43 — • 7jWT- ^ KM LX i) IsJSt- LT,

Wrad (Radial_Index, TimeCh) = I_W (Radial_Index, TimeCh) IJBG (Radial_Index, TimeCh) W Norm BGNorm

• ^ KM' 1

Tch_sum (Radial_Index ) = 22 Wrad (Radial_Index, TimeCh) TimeCh Rad_sum (TimeCh) = 2) Wrad (Rad_Index, TimeCh) Rad index

Rad_sum (t)

Tch_sum (r)

tel tc2 tc3

Tch sum (Rad Index) x Rad sum (TimeCh) Wrad (Rad_Index, TimeCh) = 22 Tch_sum (Radjkdex) Rad_index

—44— • StftOtfcgLSSjS Srad 17jC(7)fi$L^S Wrad CD jfc%7$Ub&

Srad (Rad_Index, TimeCh) —► Srad (QJndex, TimeCh)

Wrad { RadJfadex, TimeCh) —► Wrad (QJndex, TimeCh)

Srad (QJndex, TimeCh) Sq (QJndex, TimeCh) Wrad (QJndex, TimeCh)

I (Q_index) = X Sq (Q_index, TimeCh) TimeCh

T

b ivrv^v' 0#62;Mi & S £>& tz *b K £M & Z. t

(bTIS) • EIt<0fi.vvJc<7)T-9 ("TIB?) i

©M$v1k

-45- 3,4 t®#

®7jc(D7- SAN 7- ^S#7"D ^7*7 A (0{M

rawdata ( DetectorNo, PosCh, TimeCh ) , {32x64x50}

V I_S ( Q_index, 0_index, TimeCh) , {100 x 1 x 50}

OJctcoJtfc t

■ detector efficiency OWTEffi'j&W • incident beam monitor cOiSS^-SIE/i^jil'lE

m#T # 3. • y--)Vi:y $ -Z> £ i: tc J; <0 , PfiMW

range <7) $j!: £ 'SHte K ffi V' 3> i # 3 (i CO 7"n ^ 7 A Tii, TimeChW V7, ^ 7 7 d-

[ran, cm,a.- p ] Vti"11- 4. "ExTr

—46 — E 200

q

c 0.6 E 0.4

q

□ l_maca O l_mask

0.001 q_maca

—47 — • Small-Angle X-ray Scattering Data Analysis Program (SAXS)

(B*)

-48- Wmk

• i4* dlc-iecdteY'

• \>MSX CcAKAC -> (/HE)

o £"<* i6titilj§. note <* 2." % % X-WZ latc-Wer A W)4#- P"##"? ? /

[f-9 mt l

- l*ic. T-"'9 t ^"4 52;' it. @4 iSl •K-M * &. => 6=v,'C i-fctU-zuSr-* 7 fe4,emr^ It'* a 4iA jfeHU*/

4.1

—♦ 6e*tic 2-»i ^ 1= L -7 •?.

• 'ixtXM&wiHSl** A 'frltj| (4, Z*'5 $ ^XZ-CT»Za J V

-49- • <&& a 8MH t"c7 £T.

• dleWc^bv^ a Jhd&L°i "^,L^ tt- a A&

• aigoUc ^4ev.G»4y !

• 4$RK5tefc*.B 4feflr^

PpUs ^Uc

I V

— 50— ( y ) x o o o Ol Ol ro bo O

co O

Trans -i

— L i. l

_L n > >> V Trans.

% a i s

J o Trans. pO _L 00 (D -L Ll K) X a (A) Small -Angle X-ray Scattering Data Analysis Program

SAXS

Version 1.8

User's Guide l % 11

Polymer Engineering Laboratory, Department of Industrial Chemistry, College of Science and Technology, Nihon University 1994

—54— 1 s in

ztitffltnvMt)-?$>%>. ttz,

K*)x7i:V7 h oTE¥S-eti#x.^tL^v^J:d^E

Mmt'<£f%ffliz£fzt\,'z.2>. i-cr, xffii/hftmmmzj: *)&c>tifzr-?

tz.

2$ Cfl$?(7)W*

##nm^Tv^ya/7A(SAxs)(i,

?FM-8 ri?2$A£*i£0#K, FB ASICT # ^ fb ^ (D f ^ t

V —64KB, MSEIi^EteH >^FDD,

6(:cfL, ow:(i^^i;-64KB-e(imi9^< imtz Z t-?%A,tfrW'9mi& ZttfXZ tz. f <9#, FM-16P<7)#AK#v^

CP/M±COFBASIC (m%, S±ii-eCP/M£^SOS£ LTWc) , £ b MMS-DOS

<7)ME'T>E-<7)FBASICHSS£ti£. ^ to -64KB##W'W;t

MtitZti, 1 ^/D Vy At LXjt*V-±.lZV- KL i&Bt&Z t im&ttii'itz. itz, ^E-^-<7)MJ$^|6]±tU: 9 r- &

/c. Cco^ATBASIC Cornpiler^emf 6 C

7 h ^x.r^M<7)m^X>fztb, m±m%#3> t: ^ f (7)##

-55- ^EMttEPC-9801 W4'>iTS:^K)te

£twc. a

lotvH'ii^, z:<7)n> tijl-snrWz.

t Step scan, PSPC<7) n y h n - ju# £ Xfr- f &a yXy-A tcPC-9801 $ it

fc. C r- * ###(7X$# ±*cff * 9

%tz. mjj, oTv'fc*'; 7 hMiE^y^-y^;vrj'yh-jL

-* Jb^mf U£#>Zzll#$Tyn/yA S&tiFORTRANTS^ftTV'Z:Z:

*S!l^bXA-xtcS1f-t^^ f Olft li MS-FORTRAN

Compiler(Version 3.2)$: f 6 ^ ^ Z: C: b (: Z 6. M®, *SIfg$S

(HITAC M-200H)T5#(5

^LZr (#r, m###3yat7 4Ze^#f. m&

Tfi, 32kT7 h#/<-yf;i/3y , PC-9801FA(804871£ffl )T

&mo&

#l&(Z)/<-y y;i/n y

ST, mijtizmtt, ±.B, y a y 7 A ^PC-9801 S'

££#&< &^Zj. FBASICbN88 BASIC^(i|W] CBASICSEb tiv^x.,

M, #i:Zn y y < y y_hTFBASICt:: \th%> SYMBOL/^N88 BASKX& V'<7MC (i tafrtafr^Z^tziitz (Ztilt,

PC-9801 T(7)#m^oT # b % c Z:. *lt*) , iIIN88 B ASIC £ t TM&tttfi* frbii T ^ .

n±^', y n y y asaxsogz'MTh'o , c#mfm##i04mT*a.

— 56 — 3S y □

9 —7"; b'?'/>£PC-9800's1J—Xt L, MS-DOS±

l-c/o^a^^^toztizL/z. %m~±

♦S&ILilLSrfTofc. fit, &c7)2o<7)^£+£;£T£.

(1) &

(2) & v y > |§ £ tti # t" S Compiler £ fig JE t £

C(02o(0^tl:owT, f

L

$:i>MM3b2> ^Xhh>). ^D^7Ali, o

^<01<01#A^fL6.

fit, Iv^oT 3 v> KMf i i: t: l/:. ##0*6^%#, nv>

ijiuc#^ i tiim&t & <7) t fflft lr^&.

(2) N88 BASIC Compiler"C(d;Run Time Library£'J&Ic t L, Compiler

ffct, ?-.t wm

v^(0(0-j^%^m§ (C,Pascal,FORTRAN55: ^) ffU3

L'##(0-r- ^ £#o <0"C(d:^v4:-^d:, X 9 vVif> o .

#Mf 6me^)##(iC, FORTRAN<502ff$f£ # x. £. &M

Z-h, FORTRAN £ t £ Ztiz Lfz. Ztilt, *7n V 7 A&T-

Zt^o&ni., #tc/x- K'>JiTCOW<7)^E(d:^

-57- &£, /£■/□ ?7 A (iGENIES 3 V y K#cM£##

RUTHERFORD APPLETON LABORATORY*? ffi&ZtitzisAf&'Cib* ), TOP

t - * tcffl ftT V' 3. i£, MKENS t: S A $ tiSS L T

-58- 4S 7n?'7A©t7

4-1 -fe 7 h 7 7

7pny9ASAXS<7)-fe7 h ^ LIT

(7)50697 7-f $fLTw3C

1. SAXS.EXE ya^9AT#

2. SAXSINI.INI ya f 9 A ^%#69%m#m^7 7 ^

3. HELVE.FON ya ^7A^T#Mt6 7 ^ 7 h 7 7 4^)1/

4. GICOPY.COM — K 7 kf—^ cot. — 9 -f -

5. SAXS.BAT SAXS ####/< 7 T 7 7 ^

-tr 7 h 7 7 yfi, ±m0 7 7 -f 7 L"-f 6 mtTf. tztzL, SAXSINI.INI t

HELVB.FON& Yy^fA

SAXS.EXE , GICOPY.COM, SAXS.BATO/^Xfg^^^fo X&lflft'vr'T h V t-f.

4-2 3ffl±(7)$IJE

Z

-XX^-XiH£9, 512#^ T69T-f^AT7"T#Tf.

—59 — 4-3

4m##m##SAXSINI.INI (V X h 1) t&MLT >K 5*rgte7 ,7*;H'<7)K7d'7\ 7f

;iz Y%fa. 9tf0yn7^

-7-^-^^X. 1 OM#%##;%?4^1/. 1 l^fitiY#(7)7^>f;v, l 2^ffiti

^*7 7»0/’j7 K<7)E^, 1 3tfSt±Xj»^&g|£5eS:fi:oTV'i’t.

i 1-c7)-c, tc b-ti tl r r fijffl< Zf$v\

VX H (SeWB#(DSAXSINI. INI<7)1*3 W) 1: ! SAXS startup command file.

2: ! 3: ! 1994.3.17 by S.Shimizu 4: ! 5: set disk b: 6: set directory ¥ 7: set x "q (1/A)" 8: set y "I(q)" 9: set marker 4 10: toggle x linear 11: toggle y linear 12: set grid off 11: set lambda 1.54

4-4

^(D^u'fyA ZWjfrtfc f±, MS-DOS & %SAXS b* 4 7'1*S /ilfet.

ztuy-f h<7)SAXS>

— 60— Lfzfr?

ztiT, . znvmitzi'vy zvvtm?, 5$

03 vy KV 77 U^fctBffcStiTV'Snvv KOA^^hE£ * <9 St.

y o y y h 2 K& (±, yn /7

tit v\ SAXSINI.INI * £ ^ it

HELVB.FON^- hy^f 1/^ h V -t:#£l&v\

4 - 5 fO#

%^o/<-ya yeti, y?7^ y ^o/\- Fnk°-(7)^-T^ VT-f-^y^v-

±tcSB$-ti-rv^t. HfrSfflti, " h7K3'^i-^iJf MS-DOSS^ynyy

< yy$i# PC-9801 y 7 7 -r 7 y y • yn y 7 ^ yy ” , (cqmm) #7$e#

BSLT

-61- 5S =17>K‘J77t/>^

SAXST#mf 6 n:ov'T#W&&frV'2f. i-f, &n-?y

6#K, — tt.

(1) #37>KPi, ^ -? tt^ya y*)*t. iitii, z

: <>

ffy 3 y^y*-*7 : { }

(2) 37>ni, «r#

&mb~LZt.

M) DISPLAY

Display : A;£ ^ D B&S.

(3) A^(i,

(4) z^r's F£s*7*-?<7)%.W*)lt£&'Ct. AT^*££KL£1\

-62- 5.1 DISPLAY

Display A A{marker} Afcolor}

Wn : n#i<7)7-^x^-x.

marker : %

1i «h v- * -<7)^co^jS(iJ^T<7)® <9 -Ct.

m # 1 2 3 4 5 6 7 8 9 •7 — j] — O • □ ■ + X 0 • Line

color : v-^-cofe^r^i-e^^Li-f. 1^7 i-ecoM'CA* Lit.

# # 1 2 3 4 5 6 7 A w v7> v-tfy ? n 6

marker £ color v-# 1, 7# (8A)

L, Z.

—63— 5.2 EXIT

EXit

SAXS

SAXSZfcJt2>fztb<7)n-?y K£ IT, QuitkfflSWzLi Uz. nv'y KA#£LTIi, C:

—64— 5,3 FUNCTION

FUNctionA<7 r > 7 v a >^>A«d/Vn1>A«d/Vn2>

7 h tc*tS Ltz, T-? L27.

77'/^y3'4: t t.

GUinier In I(q) - q2

CROss : mmm*>£&2>tzib

In (I(q)*q) - q2

KRAtky : ^77^“-fuy .

I(q)*q 2 - q

LORentzian ! n — vyyfuy bffl(DT'— 9 Lt 'f.

1/I(q) - q2

PORod : zh°n- K7"n 7 b f8<7)f*- ?

I(q)*q 4 - q4 DEBye : 07 t'fBo-F-f&mKLaf.

1/Vl(q) - q2

Wn, :

Wn2 : t, A*T :,-^<7)7-^X^-Xtc±S^ Li t.

—65— 5.4 LIMITS

Limits / AAA{x step} Limits / AAA{y step}

x# (#) y# («)

x : x# (#) y : y# (») Xfoiftte.

xmin : x#<7)#/T#. xmax : x#<^)#±#. xstep : x m&m .

ymin : y ymax : ytt

xstep.ystepco xstep=10,ystep=5 f.

**£A,.

1.0, 1., 1,0.1, .1,1E10, iE-io#-et.

—66— 5.5 LOAD

LOad A Affile name}

7-77^-X n IZ-r-fZ n- Ftz.

Wn : (n(iEM5rEt)

filename: n-Kt^7 7^fH. 7 7T;H5t;t, K7 T 7*, 77 h V t*7 * ;v he^-ir y YZtitt. &£t7*;1/ Mg <7)^3E^ov^Tti, SETn vy K<7)Jg£#B6 LT < Zf£v\

£(7)3-7 7 KT(iJ^T<7) 3 M <0 <7)A*S^:^nt- 1. LO 7 - 7 7^-7 t 7 7 T )V% £<7)S;£"m, 7 7T^(7)A*EW$ti$'t. 3 . LO A A

V'17rtl<7)^/a‘(C & , A—7(7)3 — Fffi]E1%hZfft>tlfzi§'ultZl£, Data successfully read

mAn#^ a LT Photon Factory BL-IOC^^&t^ 3 \zLtLtz. ^7)#^-, 3-77Ffy73>

LO/PF A A ^ biz, ]: (7) Excel, KaleidaGraphT A— 7 £ E £> & <£ -) L $ l . £ tifcfirdfcfl, 3-7 7 K^7°'7 3 7 A

-67- 5.6 MULTIPLOT

MUltiplotad A > A«d/Vn1 > AA A

'*7 * Wcfc%&

Lit. 6 t)6A/, V 7L it.

AAA^/Vn4> j=|^LZ:7-^x^-7.5r — . /c/iL,

-68- 5.7 PLOT

Plot A A{marker} Afcolor}

7~7 7^-7 *77 yC^T^Ltt. £c7)r7v> KtiDISPLAYnvy F?m& l fz?7 7izzt>bzr-7* l tz

Wn : n&g

marker : -<%>##. lfrbgw&mxAJjLit. % ffi-hv-* *) X't.

% # 1 2 3 4 5 6 7 8 9 v — jj — O • □ ■ + X o • Line

color : i & & 7 a uif. m#a^-rf.

m # 1 2 3 4 5 6 7 A ft m i/7> n 6 markers colorsSQ& 2, f <^A(± 7# (6A) <9 if.

-69- 5.8 SAVE

SAVe A A{file name}

7n

Wn : /<-;%. (n

filename: n - Kt^7r^^. Fy'fr, n is? *i37'7*;uMiS tf>£5Lfcov'-n±, SETn v> KcOJi^rSMLT < Zf£v\

:«37> K-e(imT<7) 3 a»? Ztiit. 1. SAV £ iOS^'CA^J $ (i, 7-77^-7 7 r T ft* t. 3 . SAV A A

ilSn^lb d: LT, Macintosh±<7)Excel,KaleidaGrapIrCy — 7 6 «t ? iz Lt Ltz. ZtiZftilZlt, u^y K*7°V3 yt LT7MAC£*t5£LT:T£v\ #) SAV/MAC A A

ft Jo, Macintosh# "C li Apple File Exchange £ LTT 5 v\

-70- 5.9 SET

SETADIRAcrV V9 h v%> ADISKA AMA ATAA<” SrLv^XT h;W > AXA<" Sr Lv^ x$& AYA<” Sf Lv^ y $6<7) ^ T h ;u” > AGRidA ALAMbdaA

: 1/7 h V .

PyTX& : Bico^^cnn y£ XAJj LX < v\

V — ^7 — X I -9- t X{± 4 ^ £> 8 i xvmm&xt.

Sf^T Hi/ : 8 0X3=aT#2&2:&9 2f.

Sr Lv^co^^fs : " " -eti^AT-T^vx 2 OX^

XV y K : CC&ONHf 6 t, Xy 7^<7)0#tcXV y 3

em u-cv^ A^f &

-71- 5.10 SHOW

&m

SHow A AA{Wn}

DEFault : T4 U? h'J, #$*?)£ #<7)1$ as,

DAta ! f\ Wn^jta^tvrv^Jif^ti, 77^;^, h;i/j3J: X?T-?(D?'1 -fZ&TFLtt.

. Cot #, (d:77

Empty , Sffl Lx^xi>7 7 4 Unknown £ L11.

-72- 5.11 TOGGLE

Toggle A<#^,# > A

#%# : X x# (#^[6])

: lin i;r.7x^--;v^co^ LOG uy^'r-

73- 5.12 Wn=

IJSl^o# l [U*

1. Wn2=Wn1 : 3Lit.

2. Wn3 :

Wn3 :\yj = Wr^+1.30

3. Wn3 :1 yj = Wn-| - Wn2 t> #

Wn3 : = Wni -5.48

4. Wn3 : j !> = Wn-j * Wn2

Wn3 : iyj = Wn-j * 10.3

5. Wn3 : 1y| = Wni/Wn2

Wn3 : jy | = Wn-,/2.3

Zf$v\ iZ:, EMUS tcttLTti, x £>2>^teyfjZfr<7)\s'tti<0$lftlztfL<7)-iM&fr:£i%feLT < Zi$v\

-74- 5.13 $

MS-DOSoav'/

rtSS37> Kfit^-c^iTortg ’et^, >::-emiso^^37> k** l X £&tt.

(1) r-f l/^ DIR, MKDIR, CHDIR, RMDIR

(2) 7r^H^37>F COPY, DEL, REN, TYPE

DIR tcov^T Z<7)a^y K^ov^Tli, Ztitt. $t:$DIR^A^LX:#^(i, SH DEF TtfZtiZr'f A?, f^n’Jd'tU w*%ifeLtzmtn-^-& iott. 7 7 ^ ^ * i *? n@^ TFLtz^m&Kte, $D\R/PtAt)LX

-75- 5.14 MONIOTOR

MONitor{ Ft/v a >}A A<4f“^0 7 7'f 7Z& >A{uti^J 7 7

rj-^y Ff7is3's : ZP Z7 7<7)Mil£*Zy hS^E^LSt" ZM Z7 7(0##^M#CB^L^f Z C Compact camera 60 Z — ^ ^OU^^^E Lii" y£AXL&v^^{i, *Z y

-=6-^Hll^7 L-Xv^^-ti, m,jj 7 titi*7 7-r;v<7)S^:ti, migv-fuy br-?

MONITORn v y K-eE/Z$-£'C < Zi£ v\ 7 - 7 7.^-7±ii 7 7-f Monitor^ ^oTv^B#(i, 7 7 > K r ,b ttctyit. BA&tr ft tz&Jj 7 7 4 U'VjgfcZ-t-f, ?£tc 7 7 ^ ttZ'D fz^iz f±, SAVEavy FWU< Zf$v\ Z77(7)7Z-;i/^M(±, LIMITS7vy p-efiZ T < Z:$v\ Z t7n7 h. #(DZ-7 (^E-7-JW) ^7°n 7 F LZ:#, W^-7-iS£ 7°n 7 h LZ:v

MON{ 7vy FtZ>a y} A< V 9 — z> 60Z 7 tC7-7X^-7.^T7 £-ex* LT < Zf$ v\ MON{ ^vy Ft7v a >} AA<^Vn2> (DXdbZAtlt&t 2S<07-77^-7<7)^-7-^S^'e^$t. (Zr/iL, ^

&jo, ^§-7 -7X^-7(7)Z-7 60 7 ^ Z(±, SHOWn^y p-e##Ef 6 C tt.

-76- 5.15 RATIO

RATIO{ Kf/v3>}A A<4f“^07 7^H >A {ffijj7r T;i/£}

37>Ft^/3> : ZP y ZM Z77###^M#cm^L^f Z C Compact camera# 7* —$

^<7)3 vy < £ &, 4f“^^)7 7^^it!U^ IT < £'£v\ Ratio#& 7 7 T Vi/## $ 1".

> Ml, ±f. ) . C#Z-f LOADrtvy KTn - KLT& (C#£§#77-f ;i/S^iiScattering t%*) it) , 7 ^ y

RATIO7-7y re^/Tc£«< Zr£v\ v-^^^-^±|:77^;i#^^Sti, LIMITS7 vy KTfrT < /f £ v\ f ##, n y ht&tzrnte, RATIO< V^~Z> t7,D 7 F Lit. (^E-?-J^) £7°n 7 h LtM£, Rrft-7-#^T'a 7 h

RATIO{ 77'/ KtTZ a y} A < V ^ — Z> #<£ 9 IT < Zf$v\ RATIO{ 77'/ K^7°v a >} AA #Z9 a (£A? L, E 7FT & h (T)(2 2 # 4 TTy. SHOWn T y PT#Ef & C: £d*T # tt.

-77- 5.16 ROUND

Lit.

ROUnd{ n-7'y Ftyv3>}A

nv'y Ft7ya> : ZP U-slit £B*S:^3eLtt

&l u-siitM

te L ^ Z

ZPC Compact camera^ 7* — 9

-78- 5.17 REFORM

±r- 9 eDESM, POLYDESM##8#f Y a ?7 *%IZ7 * -w

REForm { rr v> \?*7v a >}A<£t-9 A

3v> k *y'> 3> : & L u-siitfflT-f /C Compact camera^ t*— ^ OB#

-79- 5.18 MAIN

MAin{ 37V^^>3>} A A <£7*- 9 A {ffi* 77^

377^^>3> : ZP MitcE^Lit ZM Z7 7###^M#(:^Lit Z C Compact camera# f— *7 #0tF

7 4 >#& 77^ L£V'«£-f±, 7 7 ^ ^(DKM^W: t & 0 it. atfj7 7^#7££te( ii^#Zn7 it > Mi, >#a&9 it. ) . LOADrrvy K-en- K LX i> (£#L£#7 7 ^^tiScatteringL&i? it) , 7 7 > $Rli AtofiTvit. l/;^t, 77>Kri^«^li, ^t'-^^MAIN 37> < Zf£ v\ 7-^X^-X±(C7 7 Yy ’l'Ss^Mainf &o Zr^rgic l±, SAVEnvy m£fflLT< Zi$v\ Z7 7#X7--;t/^jEii, LIMITSnv> Ktffot < Zi$v\ f ##, E*>t~7 e n 7 hta#^#, MA< V t — Z> ’C7 Pn 7 h Lit. ##7^-7 (^E-^-JWtl-) ^7pn 7 h LZrf&, #[FE-?-

MA{ rtvy Kf tv 3 y} A < V 7 — Z> #i 9 tC7-7X^-X#-^i-eAA LT < Zi£v\ MA{ u~?y Kt ~?'s 3 >} A«A/Vrii>A #«£ ? kzAJj't&t 2<@#7-77^-7.#^-7-^^'e^it. (ZrZ! L, A ^"e#&##2#iT-et. ^-7-7X^-X#-7,-7#7^ t(i, SHOW3-77 K-r#mt6LL^-e# it.

—80 — 5.19 UNIT

Unit{ 37'/ Ft yv s >} A A

Yt~7'SB

xu : Q momentum transfer (A) M m-value (|im) D d-spacing (A) T scattering angle (°) P point <7)5 nMtfvSiZ'Cir.

& : vU^-j'cWSifctcoviTtj:, 7o77Atlifxy^^ot^i^. I£ofcAtj£?ToT <> *-<7)fi ») fcglfe LT L S V'i t.

1. M ->Q (cm) 2. M -» 9 (cm) 3. M -»D <0^J& : (cm) 4. Q -» M AA Acslep 2>A...... 5. Q-»e : tv 6. Q->D <0$& : tv 7. D -> M AAAA...... 8. D-+Q^8i : -t-v 9. D -» 0 (0#& I t"> 10. 0 -» M AAAA...... 11. 0->Q <0'£& : t”> 12. 0—»D : t-v 13. : t-v 14. P -> Q l (cm)

1 4 ii I) #bTb&-?1-. *i3, ^<0lt, *v< 7g(cm)£B£, pm# f&TA^LTT$V\

—81 — 5.20 @

7 7 4 £-£3t*.

K7r^H>

37y^7 7^f^ili, i(0-7-a7;K:iei$titv^a-7> K£&£> /^£#b£j<&& 7 T'f JW7>£ £ £^L£1".

#!l

! test command file for SAXS i ! file name : testcom ! Nov. 3 1994 ! 01:34 ; 1/y 0 le25 l/xOO.2 set x "Q (A)" sety "I(Q) ' set grid on

X t*£, %>tifrZtb-3-7y K77f X ? &B# . r?V> K7 7Ji'Vftf&lXJ-f-'j 7

-82- 5.21 TRANSMISSON

TRANSmission { nvy KtT'ya >}A<9- > -?)V A

37>Kt/V3'/ : U-slW#^-f (t# /C Compact cameraffl T — ^ <£>B#

St#^: -9* > 'ffrtoT- f&Xlfyj U? L,

-83- (^I±) tScSLSil

(di(Q)/dQ)

W£l-I0P(Q)S>(Q) /cm"1 (1) l0:0 5i6jE • • • pf0: sm: je^HWjsH? • • -

iSMtlitf PJOfiM liiST’S ( S'(Q) =1 )

q^l. IoP(Q) /cm"1 (2)

-85- y 6CMC&U#m#mrnol/l] to 6 ;

S (a) fdZfQJ/dqjcDQtt^tt^ ff-#'e^^o

-86- S 0.8 10 = 1.3689 [cm"1]

3 0.6

-87- (A) head group

counter ion

hydrocarbon con Stem layer water molecule

Schematic micellar model of an ionic micelle for calculation of P(Q) (A) and S(Q) (B). The scattering length density profile corresponding to P(Q) model is also shown.

—88 — Prolate : ~7 y Y yl/gJ -» ; -t?;U

Oblate: K5 -V*-® -* 5 -fe;U

6 xSj=©^ /fb7j6 l-tMta

-89- Guinier Region QR « 1

0.0 0.1 0.2 0.3 0.4

Q [A"1]

P(Q) vs. Q plots calculated for model a andZ>. Model (A) : prolate ellipsoid a = 29.1, model (B) : oblate ellipsoid a =

21.8 A with b = 10 A, t = 5 A, p s = -0.4 x 10‘6 A'2, pp =

6.0 x 10-6 x -2 p = _0.4 x 10-6 a-2 and ^ = 15 A.

-90- Physical Review A, 1985, Vol.32, No.6, 3807-3810 IOI KOI Hee.lBl

OCM case

MSA case

FIG. 3. Comparison of SMSa (Q) and extracted from the same solution with (LDS) —0.312 Mole/L.

J. Phys. Chem, 1987, 91, 1535-1541

2* C..OXYS .IT. lit

Figure 7. Inlcrmicellar itructurc factor 5(0 extracted from experiment by MSA (□) for the case of 2 g/dL C|,OXYS micellar solution at T *■ 40 *C. The solid line is the fitted 5((2) using one-component macroion theory (OCM).M I1 The charge of OCM is much higher than that of NaC120XYS 2% MSa- 0 ,-C^ J3 X-

*H C..OXVS llTa <0*C

Figure 8. Same plot as Figure 7 for the case of 4 g/dL. NaC120XYS 4% — 91 — h;L/6D5SS(d:jy £ ft5 o

- IqP(Q)S'(Q) /cm"1 (1)

CCT/o teoSfcSL3&!S^ ST<2) <*?£>#;£#& &

otfca&& c/0) /0 li $

/0 -/lp10"16[(yOp -Pc)Fc +(A -Pp)Fmf /cm-1 (2)

zzp .

(C - CMC)Na /cm'3 (3) 1000/z

TS£ft5o ::t« (i$ c i cmc B5#; T^DStilitmoll-1 ]^ Na itTtfff Kn$rT£>3( 6.022 x 1023 mol"1 )0 vc, vp feck o' vm i*mt7mm ^ 7 x o % tvi/A#®##-?# 0 (Stei*[A3]) Pc> pp^ops x orng©^ (Stil*[A-2]) o - n ^cDSti^TH-Sd:

n(^head + (^ ~ ^)^ion * -^S"^solvent) pp (5)

^solvent (1-JhK^ +^H-%l2Q A ” (6) ^solvent ^solvent

CCT Flajl {± $ Fsolvenl o##. 2»«aii & s t;[/ 3 % a fn, z^head<■ut bion hi>0 a (i = ■teJls®fflm!&ZbD2ot ^nftiD2o^i h20

-92- ;mm ns (iaro^TE $n-5»o

v ^p-"kead*(l-«Kn) _ ^s------%------(9 ) n Ksolvent

cct Khead £ Kion {i-en^nsBS^^-r ^ s 0 (1) Hb ) S^SS©S$^f (Sft(*[A]) T£> ^ ck-9 (Prolate) ; UTU

Kc -y^ 2-n^ajl (10)

Mn-Vc+Vp -y(« + 0(*+0 2 (ID

(2) H 6 ) ffit£&JS©J¥3i&

Vz-^-a 2b-nV^ (12)

I'm “ Pc "*■ Ip “y(a + 02(* +1) (13) tteZo

rpre;; P(Q)te&T (D^TE £ti3< f(0-j^|F(GWl dix (14)

( 3(sin(QR1) -Q^iCOs(Q^i)), „ _ 3(sin(Q^)-g^cos(g^)) f(l2 p) - * (mr r (ctf , (15)

(Pp Pc Fc (16) (/^j Pc)K "*"(ft ~Pp)^m c;t n (2 q 11 -t?;i/CD$A6

-93- (1) BH'omm^rmu,b,b x ctztzLa>b ) (m&iiiAp (Prolate) ^ tzMZM LT(;t /?i t R2 it^tl^rtl

^-[aV+i2(l^2)f2 (17)

^-[(a+t) 2v2 + (b + t)2(l-n 2)f2 (18)

X^-ULtl (2) ^bTKSEny^fl,a, b X ) SBSJScD@$^r (Ute^A]) T£> 6 /<£ JIFFS Rf£ (oblate) ; tzMZtt LX it

Rl-[a 2(l-i?) + b2n 2]12 (19)

Rz "[(« +t)2(l-v2) + (b +r)2^2]1/2 (20)

tfcfKiilSf (SY0) itzA(sw) imTofixmztiZo

S’(0-1+ (HQ, M)[s(Q) -1] (21)

bra ^)2| (22)

±5t43CD S(Q)it Hayter b[l,2](r j: T-^X. LtlXtS <0 n ^ Eft Ltz ; MS® ©SmmZfEffl ^IBiZElT 5 Debye6£ffl^Tlf#T££0 a&m t crcDffliamTofflmmviL^o (1) JE:ESRt£ (Prolate) UTti cr-(2(f + lXa+t)(b + t)2j/3 (23)

(2) #^FSRi^ (Oblate) L'TJi

CT-(2(/ + l)(

CCT

-94- 1+ (25)

'•(aiferLT <=»

T* 3 o a £(jf cx=2(a+t) = 2(b +t )T£> 6 „ Debye# (v)

1/2 f 2000NAe2I /m"1 2 (27) \ £0 £r^B^ .

;:txe (1.602 X 10-12 C)^7 ((Wit [mol/1]) It Boltzmann

^lfc( 1.3806 X 10-23 J K-1 )N 7 *9 0 f0 ^ £r &K£.®WWM( 8.854 x lQ-i2 C2 J-i m-i )3 o

/ ~ -CMC + -CMC +-a(C- CMC) (2*) 2 2 2

Tf+S$n^o S(Q)®Vc%OMm* Hayter ^[\,2)(DmX^W,o

1. Hansen, J. P.; Hayter, J. B. Mol. Phys. 1982, 46, 631. 2. Hayter, J. B.; Penforld, J. Mol. Phys. 1981, 42, 109.

—95 — • ffitffy 7 h’? ■=■ ■* 7 t

7°a?'y^ <2-/(0 verl.O

¥B (£XA)

$^D^7AH0V'tli, 2FB$/l<7)rra:tCJ; >9 KENS FTP server ±.X’<&fflLXt3»)$ ■fo host : 130.87.132.99 ([email protected] ) username: anonymous path: Document @ gojyokai : Users: SANAVINK:

-96- Q-I(Q)ver 1.0 COt't

Z.®-7u?=rMZ^ ( 1 : 1 EM5I) © SANS (£/cl±SAXS)

©±£Ifc*)Bt'StemJi (®££JB) (StemS^li, ###, ^ &?Z) 6 6mEUT(,'&-f. a -t?Vl/CDSm Prolate (7>y h^'-Vl/#) £ Oblate ( Tfo S&ffili (dZ(Q)/dO)T-e(D#i6(i[ cm-i ]Tf o P(Q)i S(Q){r^f Fig.l K^LT o

titmm i.

W£&x.2>'*7 / -?%&TlZ7FL£?o 'Th *) £-t

qmin : It#t" 5 Q U y'J(D®tb(Dm #f&(i[A-i]

-97- qmax : 9m* % '?©*&©!# St£l;t[A-i] qst : ft&*6 2l/>vP©ai**[A-:] vt: mm*[A 3] bt: ^@^^^©-^©^>fb7j

^/b sAxs ©#*fi:mbt, bh, bci i^o^ot^^AnnifttASto

2. mn 7>a7 ,7J*&7£'b-ttZ£MT®'^J-?&mfcM<<'r£lk-t(DVAtlVTTZl'

The Average aggregation number : ^ -bVl/©5F:l~JiK'n‘E

The degree of ionization of a micelle : S "brvl/©##^ (a) 0 < a < 1 &UaA<0

Please select Micellar shape. Prolate(p) or Oblate(o) (p/o) : S Prolate p > Oblate K £ 0 To A#£Ha*S<£:M£itUT#£-fo

;nT £At)*Z£ This aggregation number is unsuitable for the selected model, because a < b. The minimum aggregation number of the selected model is OO

-98- tmw&T-r s t

Q-I(Q) Micelle ver 1.0 Micellar Shape is Oblate. Surfactant concentration [mol/1] = 0.04032 The volume fraction of D20 = 1 The average aggregation number of a micelle = 60 The degree of ionization of a micelle = 0.3 Micellar axis a [A] = 17.3417 Micellar axis b [A] = 16.68 Axis ratio a/b = 1.03967 The polar headgroup layer thicness [A] = 5.5 The average neutron scattering length density of hydrocabon chain *10 A6 [A-2] =-0.451171 The average neutron scattering length density of polar layer *10 A6 [A-2] =5.75045 The average neutron scattering length density of solvent *10 A6 [A-2] =6.33565 The averaged hydration unmber per surfactant polar head (Ns) =13.1573 The macroion diameter [A] = 45.2414 The volume fraction of macroion = 0.0189784 The ionic strength of the solution [mol/1] = 0.00717 The Debye-Huckel screening length [A] = 35.7981 The surface potential [mV] = 90.0877 10 [/cm] = 0.985532 Q[/A] P(Q) S'(Q) I(Q)[/cm] 0.005 0.998339682945639 0.0939972696575474 0.0924835417336836 0.01 0.993373280215487 0.1084147781081695 0.1061382296513638 0.015 0.985144247606727 0.1353180861279676 0.1313791817051663

Teach TEXT \Z U hT-l/T\ gjgExcel KB % tttfT -tiXo 7 77;l/& Excel 7fbT# i)i" tab" OT7 text*Cl% ftfl/TTSt'o t>U 7^r Do you want to change fitting parameters ? (y/n)"

0\>

-99- * > % # Sl Fi # null M i 5 * vj- 8 pt 35 rv at

»

© % # (O

*

r t Mico^tiifx'y^ LtzCt\$&ty£-&/u(D'(:-mft(Dl%.m$L£&/vo /:/;U Debye van der Waals tHZfrt>J$Usb t&Z.Z> T-c/cUA/ctili^Ti^ih, 6 < MVm'CDUfr (Debye SOI+S) V& < ©f^lii; tz CGS miTt^TS>-5 \'©TiMLtlh'&o UT~F£lV ^KiD2o, -<;± i : i m#*6##KXs%L-cuaih, J. B. Hayter (id ©#?#?#£ RMSA (Rescaled Mean Spherical Approximation)

m'&iui-ma&Tauo ctztzLmt^8^3^2 2 gc ^mxf, *ti&&

i)#u mm%©^i n 7°d ^5 a (c ui < t (itt b u 0 '<>:©■o t& <9 £ for, r^g-sw ^niiriiST^v^o /

¥B #A (Ob7t OZVt) t466 ^^-SSBSfDKSIsBlTinT

M#•WfflEES TEL052-732-2111 Ext.5904 (flf%S) FAX 052-735-5247 e-mail [email protected]

M# nx (jo^i^u odA^) TEL 052-735-5212 (Eil) FAX 052-735-5247 e-mail [email protected]

—101 — ^0^7^^© Debye

'fu /7AtTli^T SI 'TfW UTl ^ CDT\ Debye

tztzL £0 = 8.8541878 X10'12 [C2 J'1 nr1]

4'4b\ yD^7A4>tf*Mo/;toi: sr_|'2000Arl£V| V £0£rkBT / CUT#mUTi'3o

##]):#: 3D-f rn# g^b^E P.50~(n D-r K*£-?-]§SlcDi££fcB^-fiJS)

SAN ^ i£©flf2S©MX©'t'fCfi Debye ;E£

V £o£r*c BT) Whai)\ C±T©Sti:McDSV'fr CGS S&McD^T&ao

l:@ * ms $ flT & t d\ 4*T%«j:<{Ehn^^6D(CTE© (1) (2) i«l, (3) (4) MKSAS^fc^^BESti:^ (SI) ri%ao CCD-9 -£ (1) ~ (3) TCDSii CGS SmkKU^TEdftao mmt^ t>ftaS:CDm

cmftamm^Kftao cDSAto#a^-tc

r = Vw WifcStHC^DbftTl'ami3l3f 3X101° cm/s T^a^'o C©f|jlJ(®®7CT> y, %

-102- tlZo ( 1 ) r =1, fo = Ao=(l/9) X10-20 s2/cm2 (2)

SBS&^Ttex y =1,//0=l %-9 T f0 =(V9)x 10-20s2/cm2 «E>0 (3) £0 = 1, ^ =1 ^-5T Y= 3X10-20s2/cm2 ttZZ* CCDSti^tex tftfXx'Vl'7 j: c ^0Tx ommu: j; ^ T#s^ $ tl £ Z. t && tr 'o (4) MKSA t) ckC^SI Sti£% Tii y =1, //0=4ji x 10* 7 N/A2 % o T

l in11 £0 -—z------—ry [C2 N'1 m-2] = 8.8541878 X 10’12 [C2 J*1 nr1] 47r(3xl0 10)

-103- (A) head group

counter ion

hydrocarbon con Stern layer water molecule

Fig. 1. Schematic micellar model of an ionic micelle for calculation of P(Q) (A) and S(Q)

(B). The scattering length density profile corresponding to P(Q) model is also shown.

— 104 — =ry by xbM t"

¥# (mm*.)

SANS experiments: A small and medium angle neutron scattering spectrometer WINK at KENS

(grange: 0.015-10 A-1, neutron wavelength: 1-12 A)

SAXS experiments:

A small-angle X-ray scattering spectrometer S AXES at PF

(grange: 0.01-0.3 A* 1, X-ray wavelength: 1.49 A)

Guinier analysis by using the Guinier equation in the form,

/(

Distance distribution function p(r) by calculating the Fourier inversion of l{q) with the equation p(r)= ^lrql(q)s\n(rq)dq (2) 0 where the extrapolation of the small-angle data sets by using the least-squares method on the Guinier plot and the modification of the scattering intensity defined as ^ (*?) = /(<7)exP(- (k is the artificial damping factor) were used.

Glatter analysis for Rg and /total estimation by using the follwoing equation 'total =j0DmaXp(r)dA (3)

and 2 l°ma*p(r)r 2dr

Kg = (4) 2 Jq max p(r)dr

-106- Modeling Analysis.

A particle composed of several shells with different average scattering densities :

Structure factor ;

n >4h) = P1JP1(r)exp(/qe r)dr + £(^.- P,J ^(OexpC/q • r)dr ", ,=2 *, where p ( is the average scattering density and of / th shell with a shape function /?. (r). Therefore the scattering intensity for an

Then,

Ellipsoid of rotation composed of shells :

/(

■ |3Vi{ Wa/ AqR )'(qR f s+.|(p,- $ j3 *(« w*/ 2 dx

where ( } means the spherical average of the scattering intensity /(q) defined as 4(q)4*(q), 2 is the 3/2th Bessel function, and 1/2 R. is defined as where r/ and v/ are

the semiaxis and its ratio of / th ellipsoidal shell, respectively.

-107- scattering functions of the large subunit from E. coli ribosomes

distance distributions

-108- size distribution probability size

distribution -109- radius

given (A

)

by

Gaussian 0.0001 intensity 0.001 polydispersity by

size -no- '

*

q

'

distribution I (1/A)

weighted 0.0001 intensity 0.001 0.01

0 - - - 0.1

polydispersity 0.2 by

-ill-

size q

0.3

distribution (1/A

weighted ) 0.4 0.5 0.6 polydispersity weighted by size distribution

- -6%

• — 8 %

- -20%

-112- Rg/Rg 1.02 1.04 1.06 i

0

Deviation ______10 for i ______

of

hard

Rg — i ______113

sphere

by — S.D.

20 size-polydispersity i

______

(%)

system i ______30 L_

40 intensity Variation

of Hard [from (volume=constant)

spherical

of ellipsoid -in-

scattering

to of

prolate] rotation

function — - -

- - -1.05

1.40 1.20 p(r) (arbit. units) of [from Variation

hard (volume=constant)

oblate -115- ellipsoid

of

p(r) to

of

spherical] function

rotation —

0.90 axial

ratio=0.50 in ten sity Variation of [from

hard (volume=constant)

oblate of ellipsoid -116-

scattering

to

of spherical]

rotation

function - —

-0.90 - -

0.70 0.55 Variation of p(r) function of hard ellipsoid of rotation [from spherical to prolate] (volume=constant)

axial ratio=1.00 — 1.05

— 1.40

-117- Rg/Rg for

hard (volume=constant) Variation

ellipsoid -118- axial

of

ratio

of Rg

rotation

presence probability Shape

given (axial -119-

by axial ratio)

Gaussian

ratio

distribution - — •

• -

- SD(20%)

SD(1 SD(2.5%) SD(5%) 0%) in ten sity 0

depending Variation of

hard

on of ellipsoid 0.1

120- scattering shape-polydispersity

q

( 1

/A) of

rotation

function ...... ------

-SD(2.5%) SD(20%) SD(1 SD(5%) SD=0 0.2

0%) Variation of p(r) function of hard ellipsoid of rotation depending on shape-polydispersity

SD=0

---- SD(5%) ---- SD(10%) ...... SD(20%)

-121- Rg/Rg Deviation for

of

(volume=constant) hard

Rg -122-

ellipsoid by S.D.

shape-polydispersity

(%)

system

scattering dens. D-shell

with hard [particles

smooth sphere

boundary with -123-

different multi-shell

bounaries] ^

D-shell

50 30 with

A A

* hard ^

core intensity multi-shell double-shell Particles (hard,

double-shell,

with

with

with

different -124- hard

q smooth

( 1

/A) core)

• -sphere -

boundaries

D-shell

muti-shell D-shell boundary

with

with

smooth

hard

bound. core particles with different boundaries

------sphere(50)0.1 - -double-shell(50/30)0.1 ------smooth(50/30)0.1 ...... m ulti-shell( 5 0/3 0)0.1

-125- intensity R=4.493/q q

n

=tan(q particles i

n =50.0 and (shell/core=50A R)

with isoscattering

-126- different q

(A') ----- ...... ----- shell/core=(-l -----

-

/30A

point

- (1.5/0.5) (0.36/-0.64) (

(-0.5/-1 2 contrasts / 1

) ) .5)

/-2) particles with different contrasts (shell/core=50A /30A )

------hard sphere ------shell/core=(-1 /-2) ------(-0.5/-1.5) ------(0.36/-0.64) ...... (1.5/0.5) ------(2/1)

r /A

-127- Rg*Rg 1000 2000 1500 2500 3000 -2

0 .

I

<

------■ Stuhrmann

1 /(contrast) -128- 2 i

for

spherelcal Rg Plot 0 R=50A 4 =38.73 i

particle A 6 i

8 i) 7## 3 x h 7 X (solvent contrast variation method) rii) = (label triangulation method)

iii) (iiverse contrast variation method) iii) * transpapent &

iv) HSI1IBE&& (triple isotopic substitution method) v) x h° y n y h y 7s h (spin contrast variation method)

-129- Scattering densities

Neutrons X rays

RNA, DNA

Proteins

10 f ------Water CM I (CH2 )n E o D20

- dna, rna

— Proteins

0 (CH2 )n [B*]

1) X 3 &

2) i(dnp) k**

(-eomm, £fft£K* nifcB*)

3) 4-^oHM

/hABSUi*(0 Ky 'f >#£&L€Sik

#AifcSLWE <9 &J&fr<0¥ A/tfcSLWE lit^tg* (H20) bMiJt (D20) oTAtffcSL^ EoF5t--fiSLT.

Schematic Drawing of Contrast

-131- 3 y h 5 X hE-ffc&fciotf'S 7k is E * © $ 4- * & ti« © ¥ ® E SI $ $

X-rav scattering

RNA protein

Neutron scattering glycerol

RNA protein

lipid-head(PC) lipid-alkyl.(CH2) HzO,______|______, DzO 0 0.5 1

-132- i) solvent contrast variation method

P(r) — p(r)solute p(**)solvent •

P(r) = ^b n 8(r - r„) - PsoivcmpcO) n 2 />„ - P = — ' P= P-Solvent p(r) = ps(r) + ppc(r)

/(Q) = I 5(2) da

|/(6) = /.(G) + p/cs(2) + ^/cCe)!

f Pc(r) <73r 2 7(0) = p2 :2i/2

R2 = R2 + (a/p) - (p/p2) d3r a = f ps(r)r2 d3r, /?? = J pc(r)r: ^

P = ff ps(r)ps(r')r • r' d3r d3r\

-133- ii) inverse contrast variation method

__ _ M P(r) = 2>- §0 - r„) 8(r - r„) />=] n= 1 P(r) = u(r) -f 5'v(r) | /(Q) = /„(C) + b'Iuv(Q) + b'2Iv(Q)

/,,(Q)r invariant scattering function ii)* inverse contrast variation method

"transparent"method at vanishing contrast p = o

/(G) = /.(G) + b'lAQ) + b,2UQ)

” p2/v(0

-134- ii) double isotopic substitution method

/(G) = n — 1 m — 1 I */i * m j

/ X1 sin Qlr„ - rm| + Iv(Q}2j 2 Q|_ _ - I

n — 1 n = 1 V£|rn rm|

n = 1 m — 1 (2 | **,n

I(Q, c)=Ij(Q, c) +It(Q, c)

M+tf M+d i, co. ^ = 22 A^‘ n j? m

for c=N+M=const. 3 x=M/c 3 I„=0

I (Q, c)/c - xI f(Q)± x*I 2(Q, c)

I2(Q, c) = {I(Q. cj- xI 0(Q, c)}/x(l-x)

-135- iv) label triangulation method

i

I(Q)= [/(l) + /(2)] - [/(3) + /(4)]

=2(lp 1-p t) (rft-pJAjAjfsjn COrJ/QrJ

— 136 — v) triple isotopic substitution method

%

Pj (rj= fu (r) + Vj (r)} *b (r -rj ...... (a)

p 2 (rj= {u(r)+v2 (rJJ *b (r -rj ...... (b)

p26r)= {u(r)+v3(r)}*b(r-r 3) ...... (c)

yM(r)= (l~b) Vj(r) +bv2(r)

[ (a) x(l-b) + (b)xb]- (

+Fy Fj {sin (Qryj)/9r yj JJ

Z /y/y? <- * j

=Nb (t -b) /, ,.r ,(Q)

itl-„(Q) - fv.-r,} fv.-vj' 1

-137- a) A In 40%D20 A In H20 — in D20 i Cl 0 H- 0 UtEET * rRNA In 68%D20

•IOO%D-rRNA 65f?D-rRNA - H-rRNA

rRNA

H-Pi A in 1C

IQ.

H -Pi H-P2H

Schematic di agram of each method a) solvent contrast variation" b) inverse contrast variation c) transpa rent method+triangulation

-138- vi) spin contrast variation method ( spin label method ) Fermi scattering-length operator |A = b +2BI.sj= b + ib/v

coherent scattering \F\2 = b2 + \b2Nl2P2 + bbNIP • n

Polarization B - -2 by Nuclear Neutron |F|J (Coherent scattering)

0 0/n b1 4ti bll(l + 1) P 0 b1 + \bHiP2 4ti[bll(l 4- 1) - b2„l2P2\ P n b2 + \ b%l2P2 4 bb NP • n 4irlZ*/(/ 4- 1) - b2Nl2P2 - bl!P • n]

Parameters of spin-dependent cross-sections of some nuclei (from Glattli and Goldman, 1987)

Nucleus I b B (10-12 cm) (10"12cm)

Hygrogen 'H 1/2 -0.374 2.912 2H 1 0.667 0.285

Carbon ,2C 0 0.665 0 13C 1/2 0.629 -0.06

Nitrogen ,4N 1 0.937 0.14

Oxygen ,6o 0 0.580 0

(/ + 1) b+ + Ib~ 21 + 1 (b+ -b~) 21+ 1 -139- Pu(r)= Z bjS(T-Tj), j=i

Pv(r) = Z — ry) • 7“ I M t U(Q)= I exp[/(Q.r,], 7=1 - * U( Q): invariant y (Q)= I PjIjBj exp [/(Q . r,)] j= i------V(Q): polariz­

ation-dependent S(Q) = UU* + P„( UV* + VU*) Tt- W*

= Su(Q)+P„PSuv(Q)+P2Sv(Q)

where — 1 < P < +1 P = (/r)// = (n+-w_)/(«++n_

S(tT) = Su + P„PSt,v + P2Sv Sat) = Su-PnPSuv+P2Sv

Suv = [S(tt)-saT)]/(2P„P)

2Su + 2P2Sv=S(n) + Sat)

1/(6) = /»(6) + PIuv(Q) + P2M01

IYgj - 0.

r (nm) Fig. 3. Distance-distribution functions, P(r), calculated with the scattering curves obtained by using the extrapolation method and the artificial damping factor. Alphabetical symbols corre­ spond to various solvents as in Fig. 1.

-141- Table 2. Some characteristic parameters of urease in solutions with different surfactants determined using small-angle X-ray scattering. Urease concentration; 5.3 mg/ml. R*, 7*(0), and £>mM are the apparent radius of gyration, the zero-angle scattering intensity normalized by that of native solution (surfactant concentration = 0), and the maximum diameter of solute, respectively. DTAB, dode- cyltrimethylammonium bromide; DM, n-dodecyl /?-D-maltoside.

[Surfactant] R* /*(0) An., Peak position of ?(/•)

mg/mL nm nm

0 4.76 ± 0.15 1 19.5 3.75 7.3 (SDS) 3.40 ± 0.06 0.46 13.1 4.23 20 (SDS) 2.58 ± 0.10 0.25 7.86 3.75 7.3 (DTAB) 4.43 ± 0.11 0.88 18.6 4.04 7.3 (DM) 7.37 ± 0.28 3.1 22.3 9.23

v

Fig. 4. Presumed subunit configurations of hexameric structure for modeling analysis used to examine the structure of the urease molecule illustrated by solid spheres.

-142- a. o

r (nm) Fig. 5. Distance distribution functions, P(r), corresponding to various model structures as shown in Fig. 4, where a hexanier is assumed to consist of six cylindrical subunits with radius 2.87 nm, and height 4.44 nm, or of six spherical subunits with radius 3.11 nm. Those structural parameters were deduced by the compensation of SDS binding to the native subunit. Alphabetical symbols with the suffix * correspond to the models using cylindrical subunits.

-143- AESLfflS (DMtixUti;

iXiO/ibo/nj^^w^- z, mfc

Q = 4Jtsin0 /X I (Q)=r ^|^(p(r)-ps)exp (iQ*r) dv j

p(v): , ps : mi&comufe > Guinier plot | Guinier plot In I (0) = - (Rg 2/3)Q2 + 1 n (pV)2 Rg : urn-m p: b 7% h f P= p Ps 1 p: mmrmm Mai tiling p<> i n L P = Ps V I --'jff-fDMtfil >a

DzOiftJg-pV plot

Mioimimp omit P =0 CO }l c* P = p s ' Ps = (-0.00562 + 0. 0697% )x lO ^cmA"'1 Plot of pV vs D2O cone.

=3> hpC0^)ii ___ jr______Stuhrmann plot Rg2= Rgc2 + a(l/p) ♦ p (l/P )z

Rgc : a : mV&E&ftAi* ~ $

1/p Stuhrmann plot

-144- 1. fr-F modeling program " BAUSES (NECttS) " (l) Ovo Transferrintf)l#$li5l$'Lactoferrin Matching'?' 3

(2) Transferrin^±#K

(3) M. D1C X b

(4) AmbertC X *$6 jK£#

(l) ge %

(2) Debye Function

Fig. Theoretical Calculation of Scattering Pattern

-145- BIOCES(NEC)£fflV\ 889^ y/i?

889*

Lrsrn • # A • fliJBfc • mtt'W'Ktfb 869* >/

19 'i'*ys<.T%r\ f "J 9 • #IE LCr^6 869* i£*H>£jE£fT?

£:&* (Ambert^Um) H Z t> M

MS(QCPE)Sr/9V'TSE£%5£U D/HE&fc ^T9

Stuhrraann plot#) ^ y b y ^ Z Stuhrmann plot^rfE $/3> $il, g-mm^ 7*-** tkfe?a

Fig.2 Analysis Method of Molecular Modeling

— 146— WINK

id*. (KEK)

—147— WINK

* ftlML

t'" fi-h'

1"* t % V3>). S (QJ \%f .

• yts ?

cAM -40 m $»y£|r

S'CAnA^^vreif $% 3o^"C

4(3)*.

^ <% Da*< x pLot $

»lW

O 9*t*>vdA.rd ^A>v>plfi •

-148- iMy -v- cA-MAc.

-t VKb .

Jjj tec CpAzi^

Cdv4t^ 4-^y

M-ac

-149-

c

((

h"l\ylv \Jo\U$e- COIA-IAH c^CPr

==P 'ckb. &- WS-,''£'£f'/- .

jx | iv~ bowlc • ff) - LXu^ bl't fj$SM (-

73 H- U#: r?r^o

■H;)^1a (<2- IXvfc-

Cduu^^j Vc &Q- ^ c EW V \ y \ PSD^) M-X x t \~\T(aa^30\/^^'t iVv l/1rf^>

^ -^Yvj V'ed-Z' ir<^ V^\Oj I0'\^JH^ =%> 10”^ 3H^eUr-A

-150- L^H-4-’O scv^U_„ gffedts.

C-Iab-C-Ic^ f

($Vl

rlu-

^5> etc

t — 11

X y

-151- CD

(KEK) ^ [ o %i ^) ~ t>-u ^-{tch .

<#\ ^-'Cpi b'" 'll —80 dczys k ^ % u 43 " k-o a .

k ia.^'cjn . - Iba k B1 gv-cu-j? J^j-y “b0 b> WK C ^0 •% ?- 1

tjvj "S'". Bv,o/ Qk, # z (___ / k_ ■SAtJ’tn 1M# i o r^k%S- ?.

* Bk 13 .^WPNcbVb'^

-153- WtuJ^- x t^P fixed c 11 cpt 5" vu .,.

o ^ /(/ 4£)tiu4^ Rorfte d'l^v z\ /

f^P4

) ^'fio^-l'ii A-t

t z

^ 44. B,

'—B£X-'<- C'ZS.TL^pffO^)

"Sctu^C-

-154- Lo]d u) C^Ftlmize-

Fro vet CP)

F - I f S&rTeiT.

WV^U/ V\e,vcWoi/L- wwiV . Fe\<-. J'p

"FT? W?goj\/D^xl. jT) .

CF/EAyIFF -ftp. Kl^M^lrOiA. t 1^l\c- v

^ /We_txl k - A k

3pv\0- AA^OuJc-Ct^- 2.er'/u-cv' Ws-y j

Zl>t>lu-U*_e- F^DOXWifivvF^, Q

FF>lcLtv^ "F^~F ?* ' sclvt^ tfPMI7^ .

-155- A^A/ce/?7H

SAU LAM 90 TO?

LA~M

n

Cl C !>D-&xn3ecl /VoctrOTv C2 9AU(DW^kfL 0%^ ) )k ^.^-3 X m A OA

^ Xwt-iwsM^ * 2-'^'3 ~SAU U uA U^(bs 1 o

-156- —■ U "7

S/VUS'-J I

A-fr-gy Cdh Ui£& SVl VZA/ I 0 b ~ I o' 7 VY /2us> /ke_ e A3y/^_r* (&

-157- sample

10cm L1~2.5m L2~2 ~5m 1 st slit 2nd slit

✓Is y 2&n£i*UmDP-77)

(#7k*

D/2 175 A P 390A D 350A

P/2 195A SiS® 5 mm

159 "> o CD *$

0.05 0.1 0.15 0.2 momentum transfer Q

DP-77(7)f%##(Dprofile

-160- scattering length density (XI010/cni) 500

depth(A) O) T 1000

1500 DP-77j|jfefc# momentum transfer Q( 1 /A) wavelength A (A) incident angle 6 (rad/deg) Det.Pos. L2(m) slit width(mm) resolution A 6 / 0 Time(h) 0.009 —0.017 9.33-23.2 0.017/0.95* 5 3(1 St Slit) 0.056 8.0 2(2nd slit) 0.017-0.027 7.26-14.7 0.016/0.92* 5 5(1 st slit) 0.062 1.2 1(2nd slit) 0.0027-0.1 2.90-17.7 0.039/2.2* 3 5(1 st slit) 0.037 12.5 2(2nd slit) 0.1-0.25 2.90-10.4 0.061/3.5* 2 6(1 st slit) 0.034 6,0 3(2nd slit) Total Time(h) 27.7