/ JP9611322 KEK Proceedings 95-13 February 1996 M KEK-PROC—95-13 JP9611322 — 9 7 *- 9 's 3 "j 7° Proceedings of the Workshop on Small Angle Scattering Data Analysis - Micelle related topics - December 13-14, 1995 KEK, Tsukuba, Japan C/jX i" oto r Nto j' O r- edited by T. Yamaguchi, M. Furusaka and T.Otomo NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS National Laboratory for High Energy Physics, 1996 KEK Reports are available from: Technical Information & Library National Laboratory for High Energy Physics 1-1 Oho, Tsukuba-shi Ibaraki-ken, 305 JAPAN Phone: 0298-64-5136 Telex: 3652-534 (Domestic) (0)3652-534 (International) Fax: 0298-64-4604 Cable: KEK OHO E-mail: [email protected] (Internet Address) 'hftmir- 9 Ilf7 - 9 '> 3 y 7” < f- 0B# : 1 2M 1 3 0 (tK) — 1 4 B (A) ^^ 2 ## 13 0 (*) • 7-^73 'y7<D£WmW (KEK) l (^A) 3 WINK T- (#%#) 12 WINK ^e%Am (m#) 24 SAN (D$ft^^r-9 rn^7 A (Sj£) 37 Small-Angle X-ray Scattering Data Analysis Program (SAXS) (0A) 48 14 0 (A) ¥H*&A (£XA) 84 • ##fy7 /d^7A 0-/(0 ver 1.0 XEB%A (£XA) 96 (g^MA) 105 rr> h yx h h" • WINK COFJ A^:#^& (KEK) 147 • KENS/J'^tfcSL^S^^tCOV'f *K)M (KEK) 152 itirMA LliPic^ TEL:092-87 1 -663 lext6224, FAX:092-865-6030, E-mail: YAM AGUCH @ SUNSP1 .SC.FUKUOKA-U. AC. JP ke^ib]) ^A • a [email protected] ¥B £xa • [email protected] urn fm^A • a yamaguchi@ sunsp 1 .sc.fukuoka-u.ac.jp n b f@MA ■ a 4-# X$ mA • m» [email protected] suzuya @ schnee. tokai.j aeri.go.j p m^a#A•ax [email protected] TfelS ##A • x [email protected] % BA [email protected] H PAX sea •ax [email protected] fgRI fmMA • a SB • a SB ^XA • X mgA KEK [email protected] AA KEK otomo @ kekvax.kek.jp 7 — ir '> a 7 7°C0±bB itS4 (KEK) — 1 — SAN/WINK Workshop Workshop ’C't'o $A,sm o 1. < -t IV (~IM13$ L tz Analysis % b° 7 $ t* 9 LTV>* 3^ f o LtzbKT# 3 fr =$7 4 77 ’J -it 2. Wink 5-E? t- (i k" 9 L£ t i *Hard Ware Low-angle > Mid-angle > High-angle *Soft Ware Data reduction> Data analysis 3. S AN/Reflectometer 1996 # 10 M 1-lWT * h"<7) beam line ! ~ *h"A^ST' install "t* b) 5 ^PX7JI-V3 c) 3?l:fll*JU5K>l»<D®J)nc J:« a) a 9H3 ^12^25" N-0 ^12^25" SO4" Na+ ch 3 dodecyldimethylamine oxide sodium dodecyl sulfate (C12DAO) (SDS) total concentration Ct = 80 raM mole fraction X = [SDS]/([Ci2DAO]+[SDS]) NaCl concentration Cs = 0, 50 mM l(Q) O N) G) small-angle neutron scattering intensity l(Q) = np[<F(Q)>g.2 S(Q) + < I F(Q) I 2>fl- - <F(Q)>6.2] particle scattering factor for prolate ellipsoid - pj +(p, - Cj = CizDAO/SDS = S2((a + P2 + (£+ ^)2(l - P2))2 o in o 80 H = cos 6 [/c = 2(aVJ + tJ(l-nf mM, sin X - X cos X J,(X)-3x C s : O, OmM; interparticle structure factor mixtures a rescaled mean spherical approximation (RMSA) by Hansen and Hayter [Molec. Phys. 46, 651 (1982)] •, ° ro co 50mM g(r) = 1 + (1/12* nr)io"[S(Q)-l]QrsinQrdQ g(r) - 1 = h(r) = c(r) + npR3 $ h( I r-r' I )c(r')dr' c(r) = -V(r)/kBT r>R h(r) = -1 rS R V(r) = re £q s Rz*o zexp[-x (r-R)]/r r>R V(r) = °° r5R rho = zm/ it £p £ R(2 + k R) C TABLE 1 12 1—' o o o o o o O O | DAO X o CO ■sj on £> w fO I—* 1 II: 1 and 1 1 Parameters o o o o o o O o SDS the L_i phase in a 1 in un crv C\ ON in In ON 1 VO o o »-• VO VO O 1 dodecyldimethylamine oxide (C^DAO) U» o «0 ro U1 N) CO 1 in /hexanol/water ternary system 1 the H- u* h-* H i—• 1 CO CO CO CD CD 00 CO CO O' > Obtained 1 Absence in in in in in in in in in 1 C-C12DAO ~ 20, 50 mM 2 1 X = [hexanol]/([Ci DAO]+[hexanol]) >-* H-* u* to ro ro ro H* M (a 1 N “ 0, 0.29, 0.44 U in in w w vo cr of o o in o GO •o o in in from 1 NaCl. 1 1 SANS in in in ON in in in in vo i-* u ON o CD CD in M I 1 > Q M «o ON O *o vo ON 1 1 Analysis 1 H-* »-* M H t-» 1 VO w in vo -O -J 3 CO CJ w vo in vo 4* CD O 1 1 1 for o o o o o O O o O 1 o o o o o O O o O 1 cj tO ro to ro to to to ro U> 1 Mixed -O vo CO CO •o CO CO vo o • ON -o ,5. ■o w «o in •O 1 TEM of Li phase in 1 Solutions CO -O •o CN ON O n ON o “ 1 SOmMC-^DAO/hexanol *-* CD to VO *o vo VO w to 1 (X=0.29)/water. bar=200nm. I / 1 1 o O o O o o o O I N M f*—i O o o o o of ro o CO 'O •o CO ON »—1 1 o in vo in l 3 polydisperse spherical particle system 5(8) 2: | 1(0.) = ^ CNN(bm - psVm f exp(-Rg NQ.2 / 3) (1) Rg,n-(3/5)Rn (2) %) -^SiNCbm - psVm)2exp(-R^Q.2/5) (3) Cn : the molar concentration of N-mer particle Rq.n •' the radius of gyration of N-mer particle Rn : the radius of of N-mer sphere No : the minimum aggregation number bm : the sum of the coherent neutron scattering length of a monomer p s : the coherent neutron scattering length density of the solvent Vm : the volume of monomer in a particle [C12DAO] = 50 mM 100 10 1 0.1 100 i x-0.29 x=0.29 10 (cm-!) 1 I(Q} 0.1 100 x=0.44 x=0.44 ’0 1 0.1 0 0.005 0.01 0.015 0.02 0.025 100 150 200 Q} (A-2) Rn (A) - 7 - Small-angle Neutron Scattering Intensity l(Q) = np < I F(Q) | 2>fl- = np P(Q) for a dilute solution at S(Q) ~1 dioctadecyldimethylammonium Intraparticle Structure Factor for a Monodisperse System CH=CH-COOI-I Prolate Ellipsoidal particles P(Q) = V2 (p-p s)2 | So 1 (3ji(u)/u) dcos0' | 2 V = 4rtab2/3 u = Q[a 2 cos 2fl '+ b2(1 - cos 2 Q ')]1/2 j i(x) = (sin x - x cos x)/x 2 chloride 3Ji(x)/x = 1 at x -* 0 P(Q) = V2 (p-p s)2 exp(-R G2Q2/3) Rg2 = (a2 + 2b2)/5 at small QRg values (2C18DAC) (a Guinier equation) V : the total volume of a particle p and ps : the mean coherent neutron scattering length density of the particle and the solvent, respectively ji(x) : the first-order spherical Bessel function a and b : semimajor and semiminor axes, respectively Rg : the radius of gyration Rigid rod particles QP(Q) = 7t V At (0-0 s)2 [2ji(QRt)/QRt]z V — LAt = ft Rt2L QP(Q) = ;t V At (0- 0 s)2 exp(-RG,c2Q2/2) Rg.c = RtAT2 at small QRq.c values Lamellar layers with a periodic multilamellar At ; an area of the transversal cross-section of rod structure of infinitely extended bilayers Rt : radius of the transversal cross-section L : length of a cylindrical structure L > Rt Q2P(Q) = (27t/np) (t2/D)( p - p s)2[sin(Qt/2)/(Qt/2)]2 D = tV* = 27t/Qmax Rq,c : the radius of gyration for the transversal cross-section Q2P(Q) = (2zt/np) (t2/D)(p- 0S)2 exp(-RGiC2Q2) Rg,c = t//" 12 at small QRg.c values Vesicles with a unilamellar spherical shell t : the width of the scattering length density profile D : the repeat distance of the bilayers P(Q) = (0-0 s)2 [3V0j1(QRo)/QRo - 3VJ1(QRi)/QRi] t' : the bilayer thickness, that is, the width Vj = 4«R,3/3 of the mass-density profile, t' ^ t V0 = 47tR03/3 : the volume fraction of the component molecules ax : the first-order Bragg peak position Q2 P(Q) - ?7t(A/V)(0-0s)2(Ro - Ri)2 c : the radius of gyration of the thickness t Rg2 = 3(Ro5 - RiS)/5(Ro3 - Rj3) V = V0 - Vj A = 47t(Ro2 + Rj2) at the large QRq values Ri and R@ : inner and outer radii, respectively Vj and V0 : volumes of spheres with radii Rj and R0, respectively CieDAO/cinnamic acid/water Ci2DAO/cinnamic acid/water 1) X - 0.17 0.003 (cm - X = 0 I(Q) 0.002 0.001 0 0.1 0.2 Q (A-i) 0.(A-1> X - 0.31 ) 1 X = 0.29 ') (cm ' (cm 1(0) 0 0.05 0.1 0.15 0.2 —rrnin Q.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages166 Page
-
File Size-