Robotics 2020 Multi-Annual Roadmap

Total Page:16

File Type:pdf, Size:1020Kb

Robotics 2020 Multi-Annual Roadmap Robotics 2020 Multi-Annual Roadmap For Robotics in Europe Horizon 2020 Call ICT-2017 (ICT-25, ICT-27 & ICT-28) Release B 02/12/2016 Rev A: Initial release for Comment. Rev B: Final release. Contents In this MAR Release… ................................................................................................................. i 1. Introduction ............................................................................................................................. 1 1.1 MAR Content ...................................................................................................................... 2 1.2 Reading the Roadmap........................................................................................................ 2 1.2.1. Why read this document? ................................................................................................ 2 1.3 Understanding the MAR .................................................................................................... 4 1.3.1. MAR Background............................................................................................................... 4 1.3.2. Structure of the MAR ....................................................................................................... 5 1.3.3. Technical Progression in the MAR ................................................................................. 6 1.3.4. Use of the MAR in Proposals .......................................................................................... 7 1.3.5. Focus within ICT-25, ICT-27 & ICT-28 ......................................................................... 8 1.3.6. Step Changes and TRLs .................................................................................................... 9 1.3.7. MAR Summary ................................................................................................................... 9 2. Markets and Applications ................................................................................................... 11 2.1.1. Application Domains ....................................................................................................... 11 2.2 Manufacturing Domain .................................................................................................. 12 2.2.1. Domain Overview............................................................................................................ 12 2.2.2. Current and Future Opportunity .................................................................................. 12 2.2.3. Barriers to Market ........................................................................................................... 12 2.2.4. Key Market Data.............................................................................................................. 13 2.2.5. Relationship to other Domains and Markets ............................................................. 13 2.2.6. Europe’s Place in the Market ........................................................................................ 13 2.2.7. Key Stakeholders ............................................................................................................. 13 2.2.8. Current Key Projects....................................................................................................... 14 2.2.9. European Products .......................................................................................................... 15 2.2.10. Manufacturing Sub-Domains: ..................................................................................... 15 2.2.11. Key System Ability Targets ......................................................................................... 18 2.2.12. Key Technology Targets .............................................................................................. 23 2.2.13. Technology Combinations ........................................................................................... 26 2.2.14. Product Visions .............................................................................................................. 27 2.3 Healthcare ........................................................................................................................ 28 2.3.1. Domain Overview............................................................................................................ 28 2.3.2. Current and Future Opportunity .................................................................................. 29 2.3.3. Relationship to other Domains and Markets ............................................................. 34 2.3.4. Unknowns ......................................................................................................................... 34 2.3.5. Key Market Data.............................................................................................................. 35 ii 2.3.6. Key System Abilities ........................................................................................................ 40 2.3.7. Key Technology Targets................................................................................................. 43 2.3.8. Key Technology Combinations ..................................................................................... 54 2.3.9. Current Key Projects....................................................................................................... 55 2.4 Agriculture Domain ......................................................................................................... 59 2.4.1. Domain Overview............................................................................................................ 59 2.4.2. Current and Future Opportunity .................................................................................. 61 2.4.3. Barriers to Market ........................................................................................................... 62 2.4.4. Key Market Data.............................................................................................................. 62 2.4.5. Relationship to other domains and markets............................................................... 64 2.4.6. Europe’s Place in the Market ........................................................................................ 64 2.4.7. Key Stakeholders ............................................................................................................. 65 2.4.8. Current Key Projects....................................................................................................... 65 2.4.9. European Products .......................................................................................................... 66 2.4.10. Agriculture ...................................................................................................................... 66 2.4.11. Forestry ........................................................................................................................... 67 2.4.12. Fisheries .......................................................................................................................... 67 2.4.13. Key System Ability Targets ......................................................................................... 67 2.4.14. Key Technology Targets .............................................................................................. 71 2.4.15. Technology Combinations ........................................................................................... 73 2.4.16. Product Visions .............................................................................................................. 74 2.5 Civil Domain ..................................................................................................................... 75 2.5.1. Domain Overview............................................................................................................ 75 2.5.2. Current and Future Opportunity .................................................................................. 76 2.5.3. Barriers to Market ........................................................................................................... 78 2.5.4. Key Market Data.............................................................................................................. 79 2.5.5. Relationship to other Domains and Markets ............................................................. 79 2.5.6. Europe's Place in the Market ........................................................................................ 80 2.5.7. Key Stakeholders ............................................................................................................. 80 2.5.8. Current Key Projects....................................................................................................... 81 2.5.9. European Products .......................................................................................................... 82 2.5.10. Civil Infrastructure ........................................................................................................ 82 2.5.11. Search and Rescue ........................................................................................................ 84 2.5.12. Environment ................................................................................................................... 85 2.5.13. Law Enforcement .......................................................................................................... 85 2.5.14. Emergency Services .....................................................................................................
Recommended publications
  • Pdf • Cynthia Breazeal
    © copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019. https://www.human-robot-interaction.org Human{Robot Interaction An Introduction Christoph Bartneck, Tony Belpaeme, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, Selma Sabanovi´cˇ This material has been published by Cambridge University Press as Human Robot Interaction by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. ISBN: 9781108735407 (http://www.cambridge.org/9781108735407). This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019. https://www.human-robot-interaction.org This material has been published by Cambridge University Press as Human Robot Interaction by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. ISBN: 9781108735407 (http://www.cambridge.org/9781108735407). This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. © copyright by Christoph Bartneck, Tony Belpaeime, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic 2019. https://www.human-robot-interaction.org Contents List of illustrations viii List of tables xi 1 Introduction 1 1.1 About this book 1 1.2 Christoph
    [Show full text]
  • Employing Animatronics in Teaching Engineering Design
    AC 2011-190: EMPLOYING ANIMATRONICS IN TEACHING ENGINEER- ING DESIGN Arif Sirinterlikci, Robert Morris University ARIF SIRINTERLIKCI received B.S. and M.S. degrees in Mechanical Engineering from Istanbul Tech- nical University, Turkey, and a Ph.D. degree in Industrial and Systems Engineering from the Ohio State University. Currently, he is a Professor of Engineering as well as Co-Head of Research and Outreach Cen- ter at Robert Morris University in Moon Township, Pennsylvania. His teaching and research areas include rapid prototyping and reverse engineering, robotics and automation, bioengineering, and entertainment technology. He has been active in ASEE and SME, serving as an officer of the ASEE Manufacturing Division and SME Bioengineering Tech Group. c American Society for Engineering Education, 2011 Employing Animatronics in Teaching Engineering Design Introduction This paper presents a cross-disciplinary methodology in teaching engineering design, especially product design. The author has utilized this animatronics-based methodology at college and secondary school levels for about a decade. The objective was to engage students in practical and meaningful projects. The result is an active learning environment that is also creative. The methodology was also employed for student recruitment and retention reasons. The effort has spanned two universities and included a senior capstone project1, an honors course2, multiple summer work-shops and camps3,4,5,6,7 as well as an introduction to engineering course. The curriculum encompasses the basics of engineering and product design, and development as well as team work. Students follow the following content sequence and relevant activities through concept development, computer-aided design (CAD), materials and fabrication, rapid prototyping and manufacturing, mechanical design and mechanisms, controls and programming.
    [Show full text]
  • SRS Deliverable 1.2 Due Date: 30 April 2010
    SRS Deliverable 1.2 Due date: 30 April 2010 SRS Multi-Role Shadow Robotic System for Independent Living Small or medium scale focused research project (STREP) DELIVERABLE D1.2 Technology Assessment Contract number : 247772 Project acronym : SRS Project title : Multi-Role Shadow Robotic System for Independent Living Deliverable number : D1.2 Nature : R – Report Dissemination level : PU – Public Delivery date : 27 May 2010 Author(s) : Georg Arbeiter Partners contributed : CU, CLMI-BAS, Fraunhofer, HdM, HPIS, INGEMA, PROFACTOR, ROBOTNIK and BED Contact : Georg Arbeiter, Fraunhofer IPA, Nobelstrasse 12, 70569 Stuttgart Phone: +49(0)711/970-1299, Fax +49(0)711/970-1008 Email: [email protected] The SRS project was funded by the European Commission under the 7th Framework Programme (FP7) – Challenges 7: Independent living, inclusion and Governance Coordinator: Cardiff University FP7 ICT Contract No. 247772 1 February 2010 – 31 January 2013 Page 1 of 89 SRS Deliverable 1.2 Due date: 30 April 2010 Table of Contents 1. Introduction ........................................................................................................................ 4 1.1. Assistive technologies and daily life difficulties......................................................... 4 1.2. Summary of the technology assessment...................................................................... 8 2. Telerobotics Control Model ............................................................................................... 9 2.1. Introduction.................................................................................................................
    [Show full text]
  • Commercials Issueissue
    May 1997 • MAGAZINE • Vol. 2 No. 2 CommercialsCommercials IssueIssue Profiles of: Acme Filmworks Blue Sky Studios PGA Karl Cohen on (Colossal)Õs Life After Chapter 11 Gunnar Str¿mÕs Fumes From The Fjords An Interview With AardmanÕs Peter Lord Table of Contents 3 Words From the Publisher A few changes 'round here. 5 Editor’s Notebook 6 Letters to the Editor QAS responds to the ASIFA Canada/Ottawa Festival discussion. 9 Acme Filmworks:The Independent's Commercial Studio Marcy Gardner explores the vision and diverse talents of this unique collective production company. 13 (Colossal) Pictures Proves There is Life After Chapter 11 Karl Cohen chronicles the saga of San Francisco's (Colossal) Pictures. 18 Ray Tracing With Blue Sky Studios Susan Ohmer profiles one of the leading edge computer animation studios working in the U.S. 21 Fumes From the Fjords Gunnar Strøm investigates the history behind pre-WWII Norwegian animated cigarette commercials. 25 The PGA Connection Gene Walz offers a look back at Canadian commercial studio Phillips, Gutkin and Associates. 28 Making the Cel:Women in Commercials Bonita Versh profiles some of the commercial industry's leading female animation directors. 31 An Interview With Peter Lord Wendy Jackson talks with co-founder and award winning director of Aardman Animation Studio. Festivals, Events: 1997 37 Cartoons on the Bay Giannalberto Bendazzi reports on the second annual gathering in Amalfi. 40 The World Animation Celebration The return of Los Angeles' only animation festival was bigger than ever. 43 The Hong Kong Film Festival Gigi Hu screens animation in Hong Kong on the dawn of a new era.
    [Show full text]
  • Review on Animatronics
    Imperial Journal of Interdisciplinary Research (IJIR) Vol-2, Issue-9, 2016 ISSN: 2454-1362, http://www.onlinejournal.in Review on Animatronics Chandrashekhar Kalnad B.E E.X.T.C, D.K.T.E Abstract— Animatronics is one of the sub branch of robotics . It includes the functionality of robots and real life animation .It is used to emulate humans or animals[1][2] . It is used in movies for special effects and theme parks . Animatronic figures are often powered by pneumatics, hydraulics, or by electrical means, and can be implemented using both computer control and human control . Motion actuators are often used to imitate muscle movements and create realistic motions in limbs. Figures are covered with body shells and flexible skins made of hard and soft plastic materials, and finished with details like colors, hair and feathers and other components to make the figure more realistic. Figure 1. Cuckoo clock I. HISTORY The making of Animatronics began by the clock makers . Many years ago there were mechnical clocks with animated characters . It moved according to the time of the clock and also created sounds .These clock were large .The Germans created affordable clocks popularly known as the cuckoo clocks[figure 1].It consisted of a mechanical bird which popped out on specific times such as an hour after . The modern era of animatronics was started by Walt Disney. Disney saw animatronics Figure 2. Tiki room as a novelty that would attract visitors to his World's Today the most advanced animatronics are Fair displays and later his movies and theme parks.
    [Show full text]
  • Animatronic Robot with Telepresence Vision
    © August 2020| IJIRT | Volume 7 Issue 3 | ISSN: 2349-6002 Animatronic Robot with Telepresence Vision Dhananjay Itkal1, Kedar Deshmukh2, Rudrapratapsingh Bhatti3, Prof. Dipali Dhake4 1,2,3Student, E&TC, Pimpri Chinchwad college of engineering and research, Ravet pune 4Assistant Professor, E&TC, Pimpri Chinchwad college of engineering and research, Ravet pune Abstract - We have been using tele operated robots in Index Terms - Animatronics, Joystick, Robot, Tele various industrial and military applications to reduce operated, Virtual Reality. human efforts and avoiding endangering human life. Nearly all operating robots are controlled using a pc, I.INTRODUCTION keyboard or joystick and image or video captured with camera is seen on a monitor. Due to this tradition Every day our security and rescue force risk their lives approach there is a gap between human operator wants in various operations such boom diffusion, to do and what robots do in actual. Robot can’t perform information gathering, and response to surprise attack, exact action human want them to perform due to less ambush and many more. And many times they have to interactive input system. Which reduce accuracy of the work in dangerous environment conditions. A solution system and hence reducing the capabilities of the robot. Our project is to work on a new approach with hardware to this could be wide use of AI powered robots. But and software system which will bridge this gap. still AI technology is in development stage and robot Animatronics is a field which uses anatomy, still can’t make complex and critical decisions. mechatronics, robotics to replicate human (or any other So, for now we need a robot who works in supervision living subject) motion.
    [Show full text]
  • Design of Android Type Humanoid Robot Albert HUBO€
    Design of Android type Humanoid Robot Albert HUBO Jun-Ho Oh David Hanson Won-Sup Kim Il Young Han Jung-Yup Kim Ill-Woo Park Mechanical Division of Mechanical Mechanical Mechanical Engineering Industrial Engineering Engineering Engineering Design Korea Advanced Hanson Robotics Korea Advanced Korea Advanced Korea Advanced Institute of Inc Ewha Womans Institute of Science Institute of Science Institute of Science Science and University and Technology and Technology and Technology Technology Daejeon, Korea Dallas, TX, USA Seoul, Korea Daejeon, Korea Daejeon, Korea Daejeon, Korea [email protected] David@HansonRo kimws@ewha. [email protected]. [email protected]. [email protected] botics.com ac.kr kr ac.kr ist.ac.kr Abstract incompletely. But, the combination of these two factors To celebrate the 100th anniversary of the announcement brought an unexpected result from the mutual effect. of the special relativity theory of Albert Einstein, KAIST The body of Albert HUBO is based on humanoid robot HUBO team and hanson robotics team developed android ‘HUBO’ introduced in 2004[5]. HUBO, the human scale type humanoid robot Albert HUBO which may be the humanoid robot platform with simple structure, can bi-pad world’s first expressive human face on a walking biped walking and independent self stabilize controlling. The head robot. The Albert HUBO adopts the techniques of the of Albert HUBO is made by hanson robotics team and the HUBO design for Albert HUBO body and the techniques techniques of low power consumptions and full facial of hanson robotics for Albert HUBO’s head. Its height and expressions are based on famous, worldwide recognized, weight are 137cm and 57Kg.
    [Show full text]
  • 22 VII. the New Golden Age Then Something Wonderful Happened. Just When Everything Was Looking As Grim As It Could for the Art O
    VII. The New Golden Age Then something wonderful happened. Just when everything was looking as grim as it could for the art of animation, technology came to the rescue. Here was an art form born only because technology made it possible, almost died when the human costs in time and effort became too high, and now was rescued by technology again. The computer age saved animation. Since computers first came on the scene in the 50s, there have been people who have tried to create machinery and programs to make animation faster, easier and cheaper to both make and distribute. From machines like copiers and scanners, to computers that can draw and render, to the distribution of animation by cable, Internet, phones, tablets and video games - as one character says, “To infinity and beyond” - animation has been totally reborn. As the old animators of the Golden Age were dying off, the new technologies created a huge demand for the old craft. Fortunately, many of the old men were able to pass on their skills to a younger generation, which has helped the quality of today's animation meet and exceed the animation of the Golden Age. In 1985, Girard and Maciejewski at OSU publish a paper describing the use of inverse kinematics and dynamics for animation.! The first live-action film to feature a complete computer-animated character is released, "YOUNG SHERLOCK HOLMES."! Ken Perlin at NYU publishes a paper on noise functions for textures. He later applied this technique to add realism to character animations. In 1986, "A GREEK TRAGEDY" wins the Academy Award.
    [Show full text]
  • Robotics 2020 Multi-Annual Roadmap
    Robotics 2020 Multi-Annual Roadmap For Robotics in Europe Call 2 ICT24 (2015) – Horizon 2020 Release B 06/02/2015 Rev A: Initial release for Comment. Rev B: Final Release for Call Contents 1. Introduction ........................................................................................................... 1106H 1.1 MAR Content .............................................................................................................................. 2107H 1.2 Reading the Roadmap ............................................................................................................ 3108H 1.2.2. Why read this document? .................................................................................................................. 3109H 1.3 Understanding the MAR ........................................................................................................ 5110H 1.3.1. MAR Background ................................................................................................................................... 5111H 1.3.2. Structure of the MAR ........................................................................................................................... 5112H 1.3.3. Technical Progression in the MAR ................................................................................................. 7113H 1.3.4. Use of the MAR in Proposals ............................................................................................................. 8114H 1.3.5. Step Changes and TRLs ......................................................................................................................
    [Show full text]
  • Der Japanische Monsterfilm (Daikaijū -, Kaijū -, Daimajin - Und Kaijin Eiga) – Filmographie Und Bibliographie Von Ludger Kaczmarek & Hans J
    Repositorium für die Medienwissenschaft Ludger Kaczmarek; Hans Jürgen Wulff Der japanische Monsterfilm (daikaijū -, kaijū -, daimajin - und kaijin eiga). Filmographie und Bibliographie 2018 https://doi.org/10.25969/mediarep/12780 Veröffentlichungsversion / published version Buch / book Empfohlene Zitierung / Suggested Citation: Kaczmarek, Ludger; Wulff, Hans Jürgen: Der japanische Monsterfilm (daikaijū -, kaijū -, daimajin - und kaijin eiga). Filmographie und Bibliographie. Hamburg: Universität Hamburg, Institut für Germanistik 2018 (Medienwissenschaft: Berichte und Papiere 147). DOI: https://doi.org/10.25969/mediarep/12780. Erstmalig hier erschienen / Initial publication here: http://berichte.derwulff.de/0147_18.pdf Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer Creative Commons - This document is made available under a creative commons - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0/ Attribution - Non Commercial - No Derivatives 4.0/ License. For Lizenz zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz more information see: finden Sie hier: https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/ Medienwissenschaft: Berichte und Papiere 147, 2018: Japanischer Monsterfilm Redaktion und Copyright dieser Ausgabe: Ludger Kaczmarek u. Hans J. Wulf. ISSN 1613-7477. URL: htp://berichte.derwulf.de/0147_18.pdf. Letzte Änderung: 25.09.2018. Der japanische Monsterfilm (daikaijū -, kaijū -, daimajin - und kaijin eiga) – Filmographie und Bibliographie von Ludger Kaczmarek & Hans J. Wulf Inhalt: 1. Vom Horror zum Trash – der japanische Monsterflm / Oliver Miller [1] 1.1 Die Wurzeln des Monsterflms [1] 1.2 Der Ursprung des japanischen Monsterflms: oodzilla [2] 1.3 Die Monster sind los – auf dem Weg in die Kommerzialisierung [3] 1.4 Der japanische Monsterflm als eigenstänndiges oenre [4] 1.5 Die Rückkehr oodzillas und ein Blick in die ZukunF [4] 1.6 Fazit [5] Anmerkungen [5] 2.
    [Show full text]
  • Realistic and Interactive Robot Gaze
    Realistic and Interactive Robot Gaze Matthew K.X.J. Pan∗, Sungjoon Choi∗, James Kennedy∗, Kyna McIntosh∗, Daniel Campos Zamora∗, Gunter¨ Niemeyery, Joohyung Kimz, Alexis Wieland x, and David Christensen∗ ∗Disney Research, Glendale, California, USA yCalifornia Institute of Technology, Pasadena, California, USA zUniversity of Illinois at Urbana-Champaign, Urbana, Illinois, USA xWalt Disney Imagineering - Advanced Development, Glendale, California, USA Abstract— This paper describes the development of a system for lifelike gaze in human-robot interactions using a humanoid Audio-Animatronics® bust. Previous work examining mutual gaze between robots and humans has focused on technical im- plementation. We present a general architecture that seeks not only to create gaze interactions from a technological standpoint, but also through the lens of character animation where the fidelity and believability of motion is paramount; that is, we seek to create an interaction which demonstrates the illusion of life. A complete system is described that perceives persons in the environment, identifies persons-of-interest based on salient actions, selects an appropriate gaze behavior, and executes high fidelity motions to respond to the stimuli. We use mechanisms that mimic motor and attention behaviors analogous to those observed in biological systems including attention habituation, saccades, and differences in motion bandwidth for actuators. Additionally, a subsumption architecture allows layering of sim- ple motor movements to create increasingly complex behaviors which are able to interactively and realistically react to salient stimuli in the environment through subsuming lower levels of behavior. The result of this system is an interactive human-robot experience capable of human-like gaze behaviors. I. INTRODUCTION Animatronic figures, more commonly known as anima- tronics, combine robotics with audio and visual elements to create a life-like character.
    [Show full text]
  • DEUS EX MACHINA Towards an Aesthetics of Autonomous and Semi-Autonomous Machines by ELIZABETH ANN JOCHUM B.A., Wellesley College, 2001
    DEUS EX MACHINA Towards an Aesthetics of Autonomous and Semi-Autonomous Machines by ELIZABETH ANN JOCHUM B.A., Wellesley College, 2001 M.A., University of Colorado, 2007 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Theatre and Dance 2013 This thesis entitled: Deus Ex Machina: Towards an Aesthetics of Autonomous and Semi-Autonomous Machines written by Elizabeth Ann Jochum has been approved for the Department of Theatre and Dance Professor Oliver Gerland III Professor Todd Murphey Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. iii Jochum, Elizabeth Ann (Ph.D., Theatre, Department of Theatre and Dance) Deus ex Machina: Towards an Aesthetics of Autonomous and Semi-Autonomous Machines Thesis directed by Associate Professor Oliver Gerland III Robots and puppets are linked by a common human impulse: the desire to give life to nonliving objects through the animation of material forms. Like puppets, robots are technological objects capable of revealing aspects of the human experience and have demonstrated the ability to provoke the suspension of disbelief and evoke agency. While the role of puppets and automata in theatre history is well established (Segel 1995, Jurkowski 1996, Reilly 2011), the study of robots in theatre performance is largely unexamined. Citing the presence of autonomous and semi- autonomous machines in live performance and technological developments that result in increasingly responsive and interactive robots, I argue that these technological players warrant critical investigation and study of their methods of representation.
    [Show full text]