Antimicrobial Properties of Pseudomonas Strains Producing

Total Page:16

File Type:pdf, Size:1020Kb

Antimicrobial Properties of Pseudomonas Strains Producing University of Birmingham Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin Matthijs, Sandra; Vander Wauven, Corinne; Cornu, Bertrand; Ye, Lumeng; Cornelis, Pierre; Thomas, Christopher; Ongena, Marc DOI: 10.1016/j.resmic.2014.09.009 License: Other (please specify with Rights Statement) Document Version Peer reviewed version Citation for published version (Harvard): Matthijs, S, Vander Wauven, C, Cornu, B, Ye, L, Cornelis, P, Thomas, C & Ongena, M 2014, 'Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin', Research in Microbiology, vol. 165, no. 8, pp. 695-704. https://doi.org/10.1016/j.resmic.2014.09.009 Link to publication on Research at Birmingham portal Publisher Rights Statement: NOTICE: this is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as S. Matthijs, C.V. Wauven, B. Cornu, Y. Lumeng, P. Cornelis, C.M. Thomas, M. Ongena, Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin, Research in Microbiology (2014), doi: 10.1016/j.resmic.2014.09.009. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact [email protected] providing details and we will remove access to the work immediately and investigate. Download date: 25. Sep. 2021 Accepted Manuscript Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin Sandra Matthijs, Corinne Vander Wauven, Bertrand Cornu, Ye Lumeng, Pierre Cornelis, Christopher M. Thomas, Marc Ongena PII: S0923-2508(14)00189-2 DOI: 10.1016/j.resmic.2014.09.009 Reference: RESMIC 3345 To appear in: Research in Microbiology Received Date: 6 March 2014 Revised Date: 17 September 2014 Accepted Date: 29 September 2014 Please cite this article as: S. Matthijs, C.V. Wauven, B. Cornu, Y. Lumeng, P. Cornelis, C.M. Thomas, M. Ongena, Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin, Research in Microbiology (2014), doi: 10.1016/j.resmic.2014.09.009. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 ACCEPTED MANUSCRIPT 1 Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin 2 Sandra Matthijs a*, Corinne Vander Wauven a, Bertrand Cornu a, Ye Lumeng b, Pierre 3 Cornelis b, Christopher M. Thomas c, Marc Ongena d 4 5 aInstitut de Recherches Microbiologiques – Wiame, Campus du CERIA, 1 avenue Emile 6 Gryson, bât 4B, B-1070 Bruxelles, Belgium 7 bDepartment of Bioengineering Sciences, Research Group of Microbiology and Vlaams 8 Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium 9 cSchool of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 10 dWalloon Center for Industrial Biology, University of Liège/Gembloux Agro-Bio Tech, 11 Gembloux, Belgium. MANUSCRIPT 12 13 Sandra Matthijs: [email protected], correspondence and reprints 14 Corinne Vander Wauven: [email protected] 15 Bertrand Cornu: [email protected] 16 Ye Lumeng: [email protected] 17 Pierre Cornelis: [email protected] 18 Christopher M. Thomas: [email protected] 19 Marc Ongena: [email protected] 20 2 ACCEPTED MANUSCRIPT 21 Abstract 22 Mupirocin is a polyketide antibiotic with broad antibacterial activity. It was isolated 23 and characterized about 40 years ago from Pseudomonas fluorescens NCIMB 10586. To 24 study the phylogenetic distribution of mupirocin producing strains in the genus Pseudomonas 25 a large collection of Pseudomonas strains of worldwide origin, consisting of 117 26 Pseudomonas type strains and 461 strains isolated from different biological origins, was 27 screened by PCR for the mmpD gene of the mupirocin gene cluster. Five mmpD + strains from 28 different geographic and biological origin were identified. They all produced mupirocin and 29 were strongly antagonistic against Staphylococcus aureus . Phylogenetic analysis showed that 30 mupirocin production is limited to a single species. 31 Inactivation of mupirocin production leads to complete loss of in vitro antagonism 32 against S. aureus , except on certain iron-reduced media where the siderophore pyoverdine is 33 responsible for the in vitro antagonism of a mupirocin-negativeMANUSCRIPT mutant. In addition to 34 mupirocin some of the strains produced lipopeptides of the massetolide group. These 35 lipopeptides do not play a role in the observed in vitro antagonism of the mupirocin producing 36 strains against S. aureus . 37 38 Key words : mupirocin; massetolide; pyoverdine, Pseudomonas fluorescens NCIMB 10586; 39 Pseudomonas sp. W2Aug9 40 ACCEPTED 3 ACCEPTED MANUSCRIPT 41 1. Introduction 42 Mupirocin is a polyketide antibiotic which has been isolated and characterized from 43 the soil bacterium P. fluorescens NCIMB 10586 [1]. In fact mupirocin is a mixture of four 44 pseudomonic acids (A-D). The basic structure of mupirocin comprises a monic acid (a 45 heptaketide) containing a pyran ring, attached to 9-hydroxynonanoic acid via an ester linkage 46 [2]. Mupirocin has a broad spectrum activity against both Gram-positive and Gram-negative 47 bacteria, although most Gram-negative bacteria tested are less susceptible than Gram-positive 48 bacteria [3]. The antibiotic acts through the inhibition of bacterial isoleucyl-tRNA synthetase 49 [4]. Mupirocin is currently used topically for the treatment of skin infections, impetigo and for 50 the decolonization of patients with nasal carriage of Staphylococccus [5]. 51 Although the biosynthetic pathway and the antimicrobial activity of mupirocin have 52 been extensively studied [6], the strain producing this antibiotic is not well characterized. The 53 taxonomic position of strain P. fluorescens NCIMB 10586 is not known since its 16S rRNA 54 gene nor any other housekeeping gene have been MANUSCRIPTsequenced yet. It is also not known whether 55 the ability to produce mupirocin is widespread throughout the genus Pseudomonas or limited 56 to only a few species. Besides P. fluorescens NCIMB 10586, another two mupirocin 57 producing strains, strain D7 and G11 isolated from groundwater sediment samples, have been 58 reported [7]. Both strains were allocated to the P. fluorescens group [7] based on their 16S 59 rRNA sequence. 60 The aim of this study was dual; first to assess the distribution of mupirocin producing 61 Pseudomonas spp.ACCEPTED throughout the genus Pseudomonas and to subsequently study their 62 diversity. Therefore a specific mupirocin primer set was developed based on the mmpD gene. 63 This multifunctional gene is involved in the synthesis of the backbone of monic acid. A large 64 collection of Pseudomonas type strains and partially identified environmental strains 65 representing a high phylogenetic diversity was screened using the mupirocin primer set. 4 ACCEPTED MANUSCRIPT 66 Mupirocin production was confirmed through isolation and identification of the antibiotic and 67 in vitro antagonism tests against Staphylococcus aureus . The second part of the work focused 68 on the mupirocin producing strains themselves whereby it was investigated whether the 69 strains produce additional well-known antimicrobial metabolites and extracellular enzymes to 70 gain insight in their antimicrobial potential. The respective role of the antimicrobial 71 compounds in the in vitro antagonism against S. aureus was further investigated via 72 transposon mutagenesis. 73 74 2. Material and Methods 75 2.1. Bacterial strains 76 A total of 578 strains and isolates from different biological origins were studied. These 77 included 117 type strains of the genus Pseudomonas (listed in Supplementary Table S1) and a 78 collection of 198 Pseudomonas isolates from the River Woluwe, which were isolated from the 79 source (site W2) and the mouth of the river (siteMANUSCRIPT W15) (Supplementary Table S2 in [8]). In 80 addition, a collection of 48 Pseudomonas non type strains obtained from different culture 81 collections (Supplementary Table S2) were included together with 215 strains and isolates 82 received from different laboratories (Supplementary Table S3). 83 84 2.2. Growth conditions 85 The Pseudomonas strains (Table 1) were routinely grown at 28°C on an in house -1 -1 -1 86 medium, mediumACCEPTED 853, composed of 10 g l bacto tryptone, 5 g l yeast extract, 5 g l NaCl, 1 -1 -1 -1 87 g l glucose, 0.7 g l K2HPO 4 and 0.3 g l KH 2PO 4.
Recommended publications
  • Evolutionary Patchwork of an Insecticidal Toxin
    Ruffner et al. BMC Genomics (2015) 16:609 DOI 10.1186/s12864-015-1763-2 RESEARCH ARTICLE Open Access Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus Beat Ruffner1, Maria Péchy-Tarr2, Monica Höfte3, Guido Bloemberg4, Jürg Grunder5, Christoph Keel2* and Monika Maurhofer1* Abstract Background: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Results: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Conclusions: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
    [Show full text]
  • Pseudomonas Chlororaphis PA23 Biocontrol of Sclerotinia Sclerotiorum on Canola
    Pseudomonas chlororaphis PA23 Biocontrol of Sclerotinia sclerotiorum on Canola: Understanding Populations and Enhancing Inoculation LORI M. REIMER A Thesis Submitted to the Faculty of Graduate Studies In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba © Copyright by Lori M. Reimer 2016 GENERAL ABSTRACT Reimer, Lori M. M.Sc., The University of Manitoba, June 2016. Pseudomonas chlroraphis PA23 Biocontrol of Sclerotinia sclerotiorum on Canola: Understanding Populations and Enhancing Inoculation. Supervisor, Dr. Dilantha Fernando. Pseudomonas chlororaphis strain PA23 has demonstrated biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary, a fungal pathogen of canola (Brassica napus L.). This biocontrol is mediated through the production of secondary metabolites, of which the antibiotics pyrrolnitrin and phenazine are major contributers. The objectives of this research were two-fold: to optimize PA23 phyllosphere biocontrol and to investigate PA23’s influence in the rhizosphere. PA23 demonstrated longevity, both in terms of S. sclerotiorum biocontrol and by having viable cells after 7 days, when inoculated on B. napus under greenhouse conditions. Carbon source differentially effected growth rate and antifungal metabolite production of PA23 in culture. PA23 grew fasted in glucose and glycerol, while mannose lead to the greatest inhibition of S. sclerotiorum mycelia and fructose lead to the highest levels of antibiotic production relative to cell density. Carbon source did not have a significant effect on in vivo biocontrol. PA23 demonstrated biocontrol ability of the fungal root pathogens Rhizoctonia solani J.G. Kühn and Pythium ultimum Trow in radial diffusion assays. PA23’s ability to promote seedling root growth was demonstrated in sterile growth pouches, but in a soil system these results were reversed.
    [Show full text]
  • Management of Tomato Diseases Caused by Fusarium Oxysporum
    Crop Protection 73 (2015) 78e92 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Management of tomato diseases caused by Fusarium oxysporum R.J. McGovern a, b, * a Chiang Mai University, Department of Entomology and Plant Pathology, Chiang Mai 50200, Thailand b NBD Research Co., Ltd., 91/2 Rathburana Rd., Lampang 52000, Thailand article info abstract Article history: Fusarium wilt (FW) and Fusarium crown and root rot (FCRR) of tomato (Solanum lycopersicum) caused by Received 12 November 2014 Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici, respectively, continue to Received in revised form present major challenges for production of this important crop world-wide. Intensive research has led to 21 February 2015 an increased understanding of these diseases and their management. Recent research on the manage- Accepted 23 February 2015 ment of FW and FCRR has focused on diverse individual strategies and their integration including host Available online 12 March 2015 resistance, and chemical, biological and physical control. © 2015 Elsevier Ltd. All rights reserved. Keywords: Fusarium oxysporum f. sp. lycopersici F. oxysporum f. sp. radicis-lycopersici Fusarium wilt Fusarium crown and root rot Solanum lycopersicum Integrated disease management Host resistance Biological control Methyl bromide alternatives 1. Background production. Losses from FW can be very high given susceptible host- virulent pathogen combinations (Walker,1971); yield losses of up to Fusarium oxysporum represents a species complex that includes 45% were recently reported in India (Ramyabharathi et al., 2012). many important plant and human pathogens and toxigenic micro- Losses from FCRR in greenhouse tomato have been estimated at up organisms (Nelson et al., 1981; Laurence et al., 2014).
    [Show full text]
  • Università Degli Studi Di Padova Dipartimento Di Biomedicina Comparata Ed Alimentazione
    UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI BIOMEDICINA COMPARATA ED ALIMENTAZIONE SCUOLA DI DOTTORATO IN SCIENZE VETERINARIE Curriculum Unico Ciclo XXVIII PhD Thesis INTO THE BLUE: Spoilage phenotypes of Pseudomonas fluorescens in food matrices Director of the School: Illustrious Professor Gianfranco Gabai Department of Comparative Biomedicine and Food Science Supervisor: Dr Barbara Cardazzo Department of Comparative Biomedicine and Food Science PhD Student: Andreani Nadia Andrea 1061930 Academic year 2015 To my family of origin and my family that is to be To my beloved uncle Piero Science needs freedom, and freedom presupposes responsibility… (Professor Gerhard Gottschalk, Göttingen, 30th September 2015, ProkaGENOMICS Conference) Table of Contents Table of Contents Table of Contents ..................................................................................................................... VII List of Tables............................................................................................................................. XI List of Illustrations ................................................................................................................ XIII ABSTRACT .............................................................................................................................. XV ESPOSIZIONE RIASSUNTIVA ............................................................................................ XVII ACKNOWLEDGEMENTS ....................................................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider Et Al
    USOO7476532B2 (12) United States Patent (10) Patent No.: US 7476,532 B2 Schneider et al. (45) Date of Patent: Jan. 13, 2009 (54) MANNITOL INDUCED PROMOTER Makrides, S.C., "Strategies for achieving high-level expression of SYSTEMIS IN BACTERAL, HOST CELLS genes in Escherichia coli,” Microbiol. Rev. 60(3):512-538 (Sep. 1996). (75) Inventors: J. Carrie Schneider, San Diego, CA Sánchez-Romero, J., and De Lorenzo, V., "Genetic engineering of nonpathogenic Pseudomonas strains as biocatalysts for industrial (US); Bettina Rosner, San Diego, CA and environmental process.” in Manual of Industrial Microbiology (US) and Biotechnology, Demain, A, and Davies, J., eds. (ASM Press, Washington, D.C., 1999), pp. 460-474. (73) Assignee: Dow Global Technologies Inc., Schneider J.C., et al., “Auxotrophic markers pyrF and proC can Midland, MI (US) replace antibiotic markers on protein production plasmids in high cell-density Pseudomonas fluorescens fermentation.” Biotechnol. (*) Notice: Subject to any disclaimer, the term of this Prog., 21(2):343-8 (Mar.-Apr. 2005). patent is extended or adjusted under 35 Schweizer, H.P.. "Vectors to express foreign genes and techniques to U.S.C. 154(b) by 0 days. monitor gene expression in Pseudomonads. Curr: Opin. Biotechnol., 12(5):439-445 (Oct. 2001). (21) Appl. No.: 11/447,553 Slater, R., and Williams, R. “The expression of foreign DNA in bacteria.” in Molecular Biology and Biotechnology, Walker, J., and (22) Filed: Jun. 6, 2006 Rapley, R., eds. (The Royal Society of Chemistry, Cambridge, UK, 2000), pp. 125-154. (65) Prior Publication Data Stevens, R.C., “Design of high-throughput methods of protein pro duction for structural biology.” Structure, 8(9):R177-R185 (Sep.
    [Show full text]
  • Classification of Isolates from the Pseudomonas Fluorescens
    ORIGINAL RESEARCH published: 15 March 2017 doi: 10.3389/fmicb.2017.00413 Classification of Isolates from the Pseudomonas fluorescens Complex into Phylogenomic Groups Based in Group-Specific Markers Daniel Garrido-Sanz, Eva Arrebola, Francisco Martínez-Granero, Sonia García-Méndez, Candela Muriel, Esther Blanco-Romero, Marta Martín, Rafael Rivilla and Miguel Redondo-Nieto* Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain The Pseudomonas fluorescens complex of species includes plant-associated bacteria with potential biotechnological applications in agriculture and environmental protection. Many of these bacteria can promote plant growth by different means, including modification of plant hormonal balance and biocontrol. The P. fluorescens group is Edited by: currently divided into eight major subgroups in which these properties and many other Martha E. Trujillo, ecophysiological traits are phylogenetically distributed. Therefore, a rapid phylogroup University of Salamanca, Spain assignment for a particular isolate could be useful to simplify the screening of putative Reviewed by: Youn-Sig Kwak, inoculants. By using comparative genomics on 71 P. fluorescens genomes, we have Gyeongsang National University, identified nine markers which allow classification of any isolate into these eight South Korea subgroups, by a presence/absence PCR test. Nine primer pairs were developed for David Dowling, Institute of Technology Carlow, Ireland the amplification of these markers. The specificity and sensitivity of these primer pairs *Correspondence: were assessed on 28 field isolates, environmental samples from soil and rhizosphere and Miguel Redondo-Nieto tested by in silico PCR on 421 genomes. Phylogenomic analysis validated the results: [email protected] the PCR-based system for classification of P.
    [Show full text]
  • Hydrogen Cyanide, Which Contributes to Pseudomonas Chlororaphis Strain PA23 Biocontrol, Is Upregulated in the Presence of Glycine ⇑ Munmun Nandi A, Carrie Selin B, G
    Biological Control 108 (2017) 47–54 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine ⇑ Munmun Nandi a, Carrie Selin b, G. Brawerman c, W.G. Dilantha Fernando b, Teresa de Kievit a, a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada b Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada c Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada highlights graphical abstract HCN contributes to Pseudomonas chlororaphis PA23 biocontrol in vitro and planta. Glycine increases production of HCN, phenazine and pyrrolnitrin. Glycine upregulates the PhzRI quorum-sensing system. In quorum-sensing deficient strains, FeCl3 increases hcn gene expression. article info abstract Article history: Pseudomonas chlororaphis strain PA23 is a biocontrol agent capable of suppressing the pathogenic fungus Received 5 December 2016 Sclerotinia sclerotiorum. This bacterium secretes the antibiotics pyrrolnitrin (PRN) and phenazine (PHZ), Revised 10 February 2017 together with degradative enzymes and siderophores. Strain PA23 also produces hydrogen cyanide Accepted 21 February 2017 (HCN); however, the role of this compound in PA23 antifungal (AF) activity remains unknown. The Available online 24 February 2017 aim of the current study was to characterize an hcn mutant and determine whether HCN contributes to biocontrol. Analysis of an hcn mutant revealed decreased AF activity both in vitro and in a newly estab- Keywords: lished model of S. sclerotiorum root-rot infection in lettuce. When glycine (20 mM) and ferric chloride Antifungal (100 mM) were included as media amendments, elevated AF activity was observed.
    [Show full text]
  • 1 Molecular and Environmental Plant Sciences Texas A&M University
    MEPS academic program review 2014 Molecular and Environmental Plant Sciences Texas A&M University External Review Molecular and Environmental Plant Sciences Graduate Program Self Study March 2014 Molecular and Environmental Plant Sciences 1 MEPS academic program review 2014 Molecular and Environmental Plant Sciences Texas A&M University Molecular and Environmental Plant Sciences Graduate Program Self Study March 2014 College of Agriculture and Life Sciences College of Geosciences College of Science Molecular and Environmental Plant Sciences 2 MEPS academic program review 2014 TABLE OF CONTENTS EXECUTIVE SUMMARY 5 1. INTRODUCTION 8 1.1 Welcome 1.2 Charge to the Review Team 2. TEXAS A&M UNIVERSITY SYSTEM 10 2.1 Texas A&M University 2.2 The College of Agriculture and Life Sciences (COALS) 2.3 Aggie Traditions 2.4 Graduate Interdisciplinary Programs 3. MEPS PROGRAM STRUCTURE 18 3.1 Program History 3.2 Program Description 3.3 University Administration of MEPS Program 3.4 Administrative Structure of the MEPS Program 3.4.1 Executive Committee and Chair 3.4.2 Program Coordinator 3.4.3 Admissions Committee 3.4.4 Symposium Committee 3.4.5 Nomination and Awards Committee 3.5 Budget Allocations and Program Expenditures 3.5.1 Funding for current graduate students 4. THE MEPS GRADUATE PROGRAM 31 4.1 Admission Requirements and Procedures 4.2 The Curriculum 4.2.1 Master of Molecular and Environmental Plant Sciences 4.2.2 Doctoral Degree 4.2.3 Degree Plan 4.2.4 Advisory Committee 4.2.5 Designated MEPS Courses 4.2.6 MEPS funded Assistantships 4.2.7 MEPS Graduate Student Engagement 5.
    [Show full text]
  • Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: an Underestimated Risk and the Control Strategies
    foods Review Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies Laura Quintieri , Francesca Fanelli * and Leonardo Caputo Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy * Correspondence: [email protected]; Tel.: +39-0805929317 Received: 19 July 2019; Accepted: 23 August 2019; Published: 1 September 2019 Abstract: Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few “hubs” where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa.
    [Show full text]
  • Characterisation of Pseudomonas Spp. Isolated from Foods
    07.QXD 9-03-2007 15:08 Pagina 39 Annals of Microbiology, 57 (1) 39-47 (2007) Characterisation of Pseudomonas spp. isolated from foods Laura FRANZETTI*, Mauro SCARPELLINI Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Agraria Alimentare Ecologica, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Received 30 June 2006 / Accepted 27 December 2006 Abstract - Putative Pseudomonas spp. (102 isolates) from different foods were first characterised by API 20NE and then tested for some enzymatic activities (lipase and lecithinase production, starch hydrolysis and proteolytic activity). However subsequent molecular tests did not always confirm the results obtained, thus highlighting the limits of API 20NE. Instead RFLP ITS1 and the sequencing of 16S rRNA gene grouped the isolates into 6 clusters: Pseudomonas fluorescens (cluster I), Pseudomonas fragi (cluster II and V) Pseudomonas migulae (cluster III), Pseudomonas aeruginosa (cluster IV) and Pseudomonas chicorii (cluster VI). The pectinolytic activity was typical of species isolated from vegetable products, especially Pseudomonas fluorescens. Instead Pseudomonas fragi, predominantly isolated from meat was characterised by proteolytic and lipolytic activities. Key words: Pseudomonas fluorescens, enzymatic activity, ITS1. INTRODUCTION the most frequently found species, however the species dis- tribution within the food ecosystem remains relatively The genus Pseudomonas is the most heterogeneous and unknown (Arnaut-Rollier et al., 1999). The principal micro- ecologically significant group of known bacteria, and bial population of many vegetables in the field consists of includes Gram-negative motile aerobic rods that are wide- species of the genus Pseudomonas, especially the fluores- spread throughout nature and characterised by elevated cent forms.
    [Show full text]
  • Marta Dora Phd Thesis
    MOLECULAR MONITORING OF MEAT SPOILING PSEUDOMONAS SPECIES AND ANALYSIS OF STAPHYLOCOCCAL ENTEROTOXIN EXPRESSION AND FORMATION Dóra Márta Doctoral Thesis Corvinus University of Budapest Faculty of Food Science Department of Microbiology and Biotechnology Budapest, 2011 ii According to the Doctoral Council of Life Sciences of Corvinus University of Budapest on 29 th November 2011, the following committee was designated for defence. Committee: Chair: Tibor Deák, D.Sc. Members: Péter Biacs, D.Sc. László Abrankó, Ph.D. Judit Tornai-Lehoczki, Ph.D. Judit Beczner, C.Sc. Opponents: Adrienn Micsinai, Ph.D. László Varga, Ph.D. Secretary: László Abrankó, Ph.D. iii “I am among those who think that science has great beauty. A scientist in his laboratory is not only a technichian: he is also a child placed before natural phenomena which impress him like a fairy tale.” Marie Curie (1867-1934) iv CONTENTS LIST OF ABBREVIATION............................................................................................................vii 1. INTRODUCTION..........................................................................................................................1 2. LITERATURE REVIEW..............................................................................................................3 2.1. Characterization of red meat.....................................................................................................3 2.1.1. Microbiological aspects of food spoilage especially on pork............................................4 2.2. Food
    [Show full text]
  • Aquatic Microbial Ecology 80:15
    The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.
    [Show full text]