Organization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alfred Russel Wallace and the Darwinian Species Concept
Gayana 73(2): Suplemento, 2009 ISSN 0717-652X ALFRED RUSSEL WALLACE AND THE Darwinian SPECIES CONCEPT: HIS paper ON THE swallowtail BUTTERFLIES (PAPILIONIDAE) OF 1865 ALFRED RUSSEL WALLACE Y EL concepto darwiniano DE ESPECIE: SU TRABAJO DE 1865 SOBRE MARIPOSAS papilio (PAPILIONIDAE) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P. -
Developmental, Cellular and Biochemical Basis of Transparency in Clearwing Butterflies Aaron F
© 2021. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2021) 224, jeb237917. doi:10.1242/jeb.237917 RESEARCH ARTICLE Developmental, cellular and biochemical basis of transparency in clearwing butterflies Aaron F. Pomerantz1,2,*, Radwanul H. Siddique3,4, Elizabeth I. Cash5, Yuriko Kishi6,7, Charline Pinna8, Kasia Hammar2, Doris Gomez9, Marianne Elias8 and Nipam H. Patel1,2,6,* ABSTRACT INTRODUCTION The wings of butterflies and moths (Lepidoptera) are typically covered The wings of butterflies and moths (Lepidoptera) have inspired with thousands of flat, overlapping scales that endow the wings with studies across a variety of scientific fields, including evolutionary colorful patterns. Yet, numerous species of Lepidoptera have evolved biology, ecology and biophysics (Beldade and Brakefield, 2002; highly transparent wings, which often possess scales of altered Prum et al., 2006; Gilbert and Singer, 1975). Lepidopteran wings morphology and reduced size, and the presence of membrane are generally covered with rows of flat, partially overlapping surface nanostructures that dramatically reduce reflection. Optical scales that endow the wings with colorful patterns. Adult scales are properties and anti-reflective nanostructures have been characterized chitin-covered projections that serve as the unit of color for the wing. for several ‘clearwing’ Lepidoptera, but the developmental processes Each scale can generate color through pigmentation via molecules underlying wing transparency are unknown. Here, we applied that selectively absorb certain wavelengths of light, structural confocal and electron microscopy to create a developmental time coloration, which results from light interacting with the physical series in the glasswing butterfly, Greta oto, comparing transparent nanoarchitecture of the scale; or a combination of both pigmentary and non-transparent wing regions. -
Developmental, Cellular, and Biochemical
Developmental, cellular, and biochemical basis of transparency in the glasswing butterfly Greta oto Aaron Pomerantz, Radwanul Siddique, Elizabeth Cash, Yuriko Kishi, Charline Pinna, Kasia Hammar, Doris Gomez, Marianne Elias, Nipam Patel To cite this version: Aaron Pomerantz, Radwanul Siddique, Elizabeth Cash, Yuriko Kishi, Charline Pinna, et al.. Devel- opmental, cellular, and biochemical basis of transparency in the glasswing butterfly Greta oto. 2020. hal-03012452 HAL Id: hal-03012452 https://hal.archives-ouvertes.fr/hal-03012452 Preprint submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.183590; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Developmental, cellular, and biochemical basis of transparency in the glasswing butterfly 3 Greta oto 4 5 Authors 6 Aaron F. Pomerantz1,2*, Radwanul H. Siddique3,4, Elizabeth I. Cash5, Yuriko Kishi6,7, 7 Charline Pinna8, Kasia Hammar2, Doris Gomez9, Marianne Elias8, Nipam H. -
Molecular Phylogenetics of the Neotropical Butterfly Subtribe Oleriina
Molecular Phylogenetics and Evolution 55 (2010) 1032–1041 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogenetics of the neotropical butterfly subtribe Oleriina (Nymphalidae: Danainae: Ithomiini) Donna Lisa de-Silva a,*, Julia J. Day a, Marianne Elias b,c, Keith Willmott d, Alaine Whinnett a, James Mallet a a Department of Genetics, Evolution and Environment, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK b Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK c CNRS, UMR 7205, Muséum National d’Histoire Naturelle, 45 Rue Buffon, CP50, 75005 Paris, France d McGuire Center for Lepidoptera, Florida Museum of Natural History, University of Florida, P.O. Box 112710, Gainesville, FL 32611-2710, USA article info abstract Article history: The Oleriina is one of the most speciose subtribes of the neotropical nymphalid butterfly tribe Ithomiini. Received 9 September 2009 They are widely distributed across the Andes and Amazonian lowlands and like other ithomiines they are Revised 22 December 2009 involved in complex mimicry rings. This subtribe is of particular interest because it contains the most Accepted 9 January 2010 diverse ithomiine genus, Oleria, as well as two genera, Megoleria and Hyposcada, that feed on hostplants Available online 15 January 2010 not utilized elsewhere in the tribe. Here we present the first comprehensive species-level phylogeny for the Oleriina, representing 83% of recognised species in the group, and based on 6698 bp from eight mito- Keywords: chondrial (mt) and nuclear (nc) genes. Topologies are largely congruent for ncDNA and the concatenated Lepidoptera dataset and the genera Oleria, Hyposcada and Megoleria are recovered and well-supported, although Speciation Phylogeny strongly discordant genealogy between mtDNA and ncDNA suggest possible introgression among Hypos- Hybridization cada and Megoleria. -
Nymphalidae: Ithomiinae)
STUDIES ON THE ECOLOGY AND EVOLUTION OF NEOTROPICAL ITHOMIINE BUTTERFLIES (NYMPHALIDAE: ITHOMIINAE) by GEORGE WILLIAM BECCALONI A thesis submitted for the degree of Doctor ofPhilosophy ofthe University ofLondon October 1995 Biogeography and Conservation Laboratory Centre for Population Biology Department of Entomology Imperial College The Natural History Museum Silwood Park Cromwell Road Ascot London SW7 5BD Berkshire SL5 7PY 2 To my mother, Benjie & Judy in love and gratitude 3 ABSTRACT Two aspects ofthe ecology ofNeotropical ithomiine butterflies (Nymphalidae: Ithomiinae) are discussed: mimicry (Chapters 2, 3) and species richness (Chapters 4, 5). Chapter 2 defines eight mimicry complexes involving ithomiines and other insects found in eastern Ecuador. These complexes are dominated by ithomiine individuals. Hypotheses to explain polymorphism in Batesian and Mullerian mimics are assessed. In Chapter 3, evidence that sympatric ithomiine-dominated mimicry complexes are segregated by microhabitat is reviewed. Data confirm that sympatric complexes are segregated vertically by flight height. Flight height is shown to be positively correlated with larval host-plant height. Host-plant partitioning between species in a butterfly community results in the formation of microhabitat guilds of species, and evidence suggests that mimicry may evolve between species which share a guild, but not between guilds. Models for the evolution of mimicry complexes in sympatry, and for polymorphism and dual sex-limited mimicry in Mullerian mimics, are discussed in the light of these findings. Chapter 4 investigates relationships between species richness offamilies and subfamilies ofNeotropical butterflies and overall butterfly species richness at local and regional scales. A strong positive correlation is demonstrated between ithomiine richness and the species richness of all other butterflies. -
Alfred Russel Wallace and the Darwinian Species Concept
Gayana 73(2): Suplemento, 2009 ISSN 0717-652X Alfred Russel Wallace and the Darwinian Species Concept: His Paper on the Swallowtail Butterflies (Papilionidae) of 1865 Alfred Russel Wallace y el Concepto Darwiniano de Especie: Su Trabajo de 1865 sobre Mariposas Papilio (Papilionidae) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P. -
High Evolutionary Potential in the Chemical Defenses of an Aposematic Heliconius Butterfly
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905950; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1. GENERAL INFORMATION Article Type: Research Paper Title: High evolutionary potential in the chemical defenses of an aposematic Heliconius butterfly Authors: Mattila, Anniina L. K.1; Jiggins, Chris D.2; Opedal, Øystein H.1,3; Montejo-Kovacevich, Gabriela2; de Castro, Érika2; McMillan, William O.4; Bacquet, Caroline5; Saastamoinen, Marjo1,6 Author affiliations: 1. Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Finland 2. Department of Zoology, University of Cambridge, UK 3. Department of Biology, Lund University, Sweden 4. Smithsonian Tropical Research Institute, Panama 5. Universidad Regional Amazónica de Ikiam, Tena, Ecuador 6. Helsinki Life Science Institute, University of Helsinki, Finland Orcid ID: Anniina L. K. Mattila: 0000-0002-6546-6528 Chris D. Jiggins: 0000-0002-7809-062X Øystein H. Opedal: 0000-0002-7841-6933 Gabriela Montejo-Kovacevich: 0000-0003-3716-9929 Érika de Castro: 0000-0002-4731-3835 William O. McMillan: 0000-0003-2805-2745 Caroline Bacquet: 0000-0002-1954-1806 Marjo Saastamoinen: 0000-0001-7009-2527 Keywords: chemical defense – aposematism – mimicry – Heliconius – cyanogenic glucosides – evolvability 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.905950; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Comparative Ecology and Mimetic Relationships of Ithomiine Butterflies in Eastern Ecuador
COMPARATIVE ECOLOGY AND MIMETIC RELATIONSHIPS OF ITHOMIINE BUTTERFLIES IN EASTERN ECUADOR By BOYCE ALEXANDER DRUMMOND III A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1976 UNIVERSITY OF FLORIDA 3 1262 08666 406 6 For Nancy, as she lays aside her net awhile to take up the caduceus ACKNOWLEDGMENTS It is my pleasure to thank the members of my committee, Drs. Thomas C. Emmel, Archie Carr, Clifford Johnson, and Thomas Walker, for the guidance and encouragement they have provided throughout my graduate career. I have profited greatly from their respective graduate courses and from the exposure to their divergent, but complementary, approaches to biology. I also thank Drs. John Ewel, Dana Griffin, and Jon Reiskind for helpful discussions and much useful information during the writing of this dissertation. For the countless ways in which they have assisted in all phases of the research reported here, I profess my deepest appreciation to Dr. Thomas Emmel, chairman of my committee, and Nancy Drummond, my wife and field assistant. Without the benefit of their help, many of the goals of this project could not have been accomplished. To Dr. Emmel, who first introduced me to tropical ecology and kindled my interest in the biology of the Lepidoptera, I am indebted for the constant personal, academic, and financial support he so graciously proffered. My wife, Nancy, whose great enthusiasm for our year of field work in Ecuador was matched only by her unflagging patience during the tedious year and a half that followed in Gainesville, assisted in the collection of specimens and population samples, handled most of the life-history rearings, and aided in the preparation and analysis of the data. -
A New Subspecies of Oleria Gunilla (Nymphalidae: Danainae) from North Mato Grosso, Brazil André V. L. Freitas* and Luiza M
VOLUME 70, N UMBER 4 295 Journal of the Lepidopterists’ Society 70(4), 2016, 295 –301 A NEW SUBSPECIES OF OLERIA GUNILLA (NYMPHALIDAE: DANAINAE) FROM NORTH MATO GROSSO, BRAZIL ANDRÉ V. L. F REITAS * AND LUIZA M. M AGALDI Departamento de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Caixa Postal 6109, Universidade Estadual de Campinas, Campinas, 13083-970 São Paulo, Brazil; e-mails: [email protected]; [email protected] *Corresponding author AND KEITH R. W ILLMOTT McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA; e-mail: [email protected] ABSTRACT. A new subspecies of ithomiine butterfly, Oleria gunilla lourdes n. ssp. , is described from northern Mato Grosso in central Brazil. The new taxon is confidently assigned to Oleria gunilla on the basis of both morphological and molecular evidence. Its wing pattern, with a broad expanse of orange on the dorsal forewing, is typical of the mimetic color patterns found in Ithomiini in the upper Amazon and Andean foothills of Peru, Colombia and Ecuador, very far from the type locality in northern Mato Grosso, where this taxon has no known co-mimics. Future studies are needed to investigate the mimetic relationships of this taxon with other sympatric butterflies. Additional key words: Amazon, Clearwings, Ithomiini, Mimicry, Oleriina The genus Oleria (Hübner, 1816) is the most species- examined specimens were compiled in a database to rich within the tribe Ithomiini, with 49 known species permit study of related taxa and mimicry patterns. In distributed from Mexico to northern Argentina (De- addition, we also examined the Lamas collection of Silva et al. -
Variation in Cyanogenic Compounds Concentration Within a Heliconius
Arias et al. BMC Evolutionary Biology (2016) 16:272 DOI 10.1186/s12862-016-0843-5 RESEARCHARTICLE Open Access Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? Mónica Arias1* , Aimilia Meichanetzoglou1,2, Marianne Elias1, Neil Rosser3, Donna Lisa de-Silva1, Bastien Nay2 and Violaine Llaurens1 Abstract Background: Aposematic species advertise their unpalatability using warning signals such as striking coloration. Given that predators need to sample aposematic prey to learn that they are unprofitable, prey with similar warning signals share the cost of predator learning. This reduction in predation risk drives evolutionary convergence of warning signals among chemically defended prey (Müllerian mimicry). Whether such warning signal convergence is associated to similar defence levels among co-mimics is still an open question that has rarely been tested in wild populations. We quantified variation in cyanide-based (CN) chemical protection in wild caught individuals of eight aposematic Heliconius butterfly species belonging to four sympatric mimicry rings. We then tested for correlations between chemical protection and ecological species-specific traits. Results: We report significant differences in CN concentrations both within and between sympatric species, even when accounting for the phylogeny, and within and between mimicry rings, even after considering inter-specific variation. We found significant correlations between CN concentration and both hostplant specialization and gregarious behaviour in adults and larvae. However, differences in CN concentrations were not significantly linked to mimicry ring abundance, although the two most toxic species did belong to the rarest mimicry ring. Conclusions: Our results suggest that mimicry can explain the variation in the levels of chemical defence to a certain extent, although other ecological factors are also relevant to the evolution of such variability. -
Introduction and Classification of Mimicry Systems
Chapter 1 INTRODUCTION AND CLASSIFICATION OF MIMICRY SYSTEMS It is hardly an exaggeration to say, that whilst reading and reflecting on the various facts given in this Memoir, we feel to be as near witnesses, as we can ever hope to be, of the creation of a new species on this earth. Charles Darwin (1863) referring to Henry Bates’ 1862 account of mimicry in Brazil COPYRIGHTED MATERIAL Mimicry, Crypsis, Masquerade and other Adaptive Resemblances, First Edition. Donald L. J. Quicke. © 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd. 1 0003114056.INDD 1 7/14/2017 12:48:07 PM 2 Donald L. J. Quicke A BRIEF HISTORY at Oxford University. He describes the results of extensive experiments in which insects were presented to a captive The first clear definition of biological mimicry was that of monkey and its responses observed. The article is over 100 Henry Walter Bates (1825–92), a British naturalist who pages long and in the foreword he notes that a lot of the spent some 11 years collecting and researching in the observations are tabulated rather than given seriatim Amazonas region of Brazil (Bates 1862, 1864, 1981, G. because of the “great increase in the cost of printing”. Woodcock 1969). However, as pointed out by Stearn Nevertheless, such observations are essential first steps in (1981), Bates’ concept of the evolution of mimicry would understanding whether species are models or mimics or quite possibly have gone unnoticed were it not for Darwin’s have unsuspected defences. review of his book in The Natural History Review of 1863. -
Running Head 1 the AGE of BUTTERFLIES REVISITED
bioRxiv preprint doi: https://doi.org/10.1101/259184; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running head 2 THE AGE OF BUTTERFLIES REVISITED (AND TESTED) 3 Title 4 The Trials and Tribulations of Priors and Posteriors in Bayesian Timing of 5 Divergence Analyses: the Age of Butterflies Revisited. 6 7 Authors 8 NICOLAS CHAZOT1*, NIKLAS WAHLBERG1, ANDRÉ VICTOR LUCCI FREITAS2, 9 CHARLES MITTER3, CONRAD LABANDEIRA3,4, JAE-CHEON SOHN5, RANJIT KUMAR 10 SAHOO6, NOEMY SERAPHIM7, RIENK DE JONG8, MARIA HEIKKILÄ9 11 Affiliations 12 1Department of Biology, Lunds Universitet, Sölvegatan 37, 223 62, Lund, Sweden. 13 2Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de 14 Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Caixa postal 6109, 15 Barão Geraldo 13083-970, Campinas, SP, Brazil. 16 3Department of Entomology, University of Maryland, College Park, MD 20742, U.S.A. 17 4Department of Paleobiology, National Museum of Natural History, Smithsonian 18 Institution, Washington, DC 20013, USA; Department of Entomology and BEES 19 Program, University of Maryland, College Park, MD 20741; and Key Lab of Insect 20 Evolution and Environmental Change, School of Life Sciences, Capital Normal 21 University, Beijing 100048, bioRxiv preprint doi: https://doi.org/10.1101/259184; this version posted February 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.