The Scalesia Genus As an in Situ Model for Evolutionary Theory

Total Page:16

File Type:pdf, Size:1020Kb

The Scalesia Genus As an in Situ Model for Evolutionary Theory The Scalesia Genus as an In Situ Model for Evolutionary Theory Title Image. A young Scalesia pedunculata plant at the Darwin Research Station on Santa Cruz (Birnbaum, 2018). Foster Birnbaum Evolution and Conservation in the Galapagos Professor Bill Durham 10/12/2018 Foster Birnbaum Evolution and Conservation in the Galapagos 10/12/2018 Abstract The towering Scalesia plants once formed the Galapagos’ most verdant environments: on the tops of otherwise arid islands rose lush Scalesia forests. These forests were even more unique given that Scalesia trees are, in fact, daisies. In total, fifteen Scalesia daisies grow throughout the archipelago, four of which are highland trees; the rest are arid- or transitional-zone shrubs. Recognizing the Scalesia genus’s high species count, researchers consider it a paragon of adaptive radiation (Stöcklin 2009: pp.33-48). This paper further uses the Scalesia genus to explore tenets of evolution. To do so, this paper examines three hypotheses: (1) geographic distance affects the distribution of variation in the bush Scalesia affinis; (2) different quantities of pollinators explain why only some Scalesia species have ray florets; and (3) severe El Niño events exert a selective pressure on the tree Scalesia pedunculata to grow and die in generational cohorts. Genetic data on seven S. affinis populations support the first hypothesis; experimental data on how ray florets affect reproductive success support the second hypothesis; and observational data on S. pedunculata groves demonstrate the insufficiency of the third hypothesis. In addition, this paper discusses how S. pedunculata’s generational lifecycle affects efforts to conserve the species. Introduction The Galapagos are most well-known as the birthplace of not a living organism but an idea: Darwin’s theory of speciation by natural selection, also known as Darwinian evolution. Recognizing the ongoing potential for the flora and fauna of the Galapagos to advance evolutionary principles, this paper proposes the Scalesia genus, an endemic genus in the 1 Foster Birnbaum Evolution and Conservation in the Galapagos 10/12/2018 Asteraceae (daisy) family, as a model for Darwinian conceptions of variation and natural selection. Genetic analysis of chloroplast DNA restriction sites suggests that Scalesia’s closest relative is the Pappobolus genus of the Andes Mountains, and the number of differences in the sites suggests that the genera diverged around 2 million to 6 million years ago (Schilling et al. 2004: pp.248-254). Since its arrival in the Galapagos, Scalesia has grown to include fifteen species. Eleven are shrubs that survive in the arid zone, and four are trees—two of which (S. pedunculata and S. cordata) stand over 10 meters—that grow in higher-elevation, moist environments. Regarding the distribution of the fifteen species, older, larger islands harbor more species (e.g., Santa Cruz and San Cristóbal have six and four, respectively, each including S. pedunculata) than do younger, smaller islands (e.g., Wolf and Pinta have one species of shrub each). Further, “all the species are nearly completely allopatric in distribution, with a wide distance between their individual ranges in the archipelago,” and few hybrid forms have been observed (Itow 1995: pp.17-30). In addition to differing in size, Scalesia species display marked differences in leaf appearance, as shown in Figure 1. These differences are at least somewhat related to habitat conditions (Stöcklin 2009: pp.33-48). The distribution of and variation in Scalesia species make the genus an excellent candidate for evolutionary study. 2 Foster Birnbaum Evolution and Conservation in the Galapagos 10/12/2018 A: Scalesia cordata; B,C: Scalesia microcephala var. cordifolia; D: Scalesia microcephala var. microcephala; E: Scalesia pedunculata; F–H: Scalesia aspera; I: Scalesia villosa; J: Scalesia stewartii; K–M: Scalesia atractyloides var. atractyloides; N–P: Scalesia divisa; R: Scalesia divisa; S,T,V: Scalesia baurii ssp. hopkinsii; U: Scalesia baurii ssp. baurii; W: Scalesia affinis ssp. gummifera; X: intermediate between Scalesia baurii and Scalesia crockeri; Y: Scalesia crockeri; Z: Scalesia affinis ssp. brachyloba; AA–CC: Scalesia helleri; Figure 1. Leaf variations among Scalesia species DD: Scalesia retroflexa. (Stöcklin 2009: pp.33-48). Accordingly, this paper will analyze two Scalesia species, S. affinis and S. pedunculata. Table 1 summarizes several characteristics of each species. Characteristic S. affinis S. pedunculata Height shrub – grows up to 3 m tall tree – grows about 12 m tall (Figure 2B) (Figure 2C) Zone(s) of Residence arid and transitional highland – forms dense forests Islands of Residence Fernandina, Isabela, Santa San Cristóbal, Santiago, Santa Cruz, and Floreana Cruz, and Floreana (Figure 2A) (Figure 2A) Leaf Type pubescent (i.e., hairy) and pubescent and alternate alternate Ray Florets1 present (Figure 2D) absent Seed Dispersal Mechanism possibly land iguanas probably tree finches2 3 Foster Birnbaum Evolution and Conservation in the Galapagos 10/12/2018 Lifecycle seeds germination after about germination and growth occurs 20 days; subsequent growth quickly: plants grow 7 m, half occurs quickly their adult height, in their first two years Table 1. Characteristics of S. affinis and S. pedunculata. (Blaschke and Sanders 2009: pp.177-191; Durham 2016; Itow 1995: pp.17-30; Nielsen et al. 2002: pp.139-153; Traveset et al. 2016: pp.207-213) Figure 2. A. Range of S. affinis (green) and of S. penduculata (blue) (Blaschke and Sanders 2009: pp.177-191). B. A juvenile S. affinis plant. C. A juvenile S. pedunculata plant. D. The head of an S. affinis flower with white ray florets. (Birnbaum, 2018) In explaining how these species support Darwinian evolution, this paper attempts the following: 4 Foster Birnbaum Evolution and Conservation in the Galapagos 10/12/2018 1. to describe the variation in S. affinis populations—the only species for which data are available—on different islands; 2. to investigate why S. affinis flowers have ray florets while those of S. pedunculata do not; and 3. to explain the evolutionary history of the S. pedunculata lifecycle, characterized by the growth and eventual mass die-off of one generational cohort and the resulting growth of a new cohort. Hypotheses 1. The variation in S. affinis is based on geography (i.e., organisms that live closer together are more similar than those that live farther apart); 2. S. affinis developed ray florets while S. pedunculata did not because fewer pollinators are present in the arid and transitional zones than in the highlands; and 3. S. pedunculata’s generational lifecycle resulted from periodic, major climate changes (i.e., El Niño Southern Oscillation events). In addition, this paper addresses how the S. pedunculata lifecycle affects efforts to conserve the species, ranked vulnerable by the International Union for Conservation of Nature (Tye and Loving 1998). Thus, this paper will encourage further exploration of the Scalesia genus as a model for in situ evolutionary study and will provide advice on how to best protect S. pedunculata, a critical member of many island ecosystems. Part 1: Intraspecies Variation in S. affinis Variation forms the backbone of Darwin’s theory of evolution in On the Origin of Species. While the Galapagos mockingbirds catalyzed his doubts concerning the immutability of 5 Foster Birnbaum Evolution and Conservation in the Galapagos 10/12/2018 species, his observations of domesticated animals—especially pigeons—led to his conclusion that variation exists not only between species but also within species. This concept, in turn, helped him show the arbitrariness of labelling any group of organisms that share similar features as an absolute, distinct species; further, he advanced the idea that any organisms considered as separate species are merely morphologically distinct variations of a common ancestor. In this way, one “species” with two isolated sub-populations can, given enough time, become two “species”: i.e., a “species” can originate. As L.R. Nielsen’s 2004 genetic research demonstrates, S. affinis displays the intra-species variation that Darwin discusses in On the Origin of Species. Nielsen (2004: pp.434-442) analyzed the DNA of seven S. affinis populations—four from Isabella, two from Floreana, and one from Santa Cruz—using biparental and maternal markers. (Biparental markers are located in autosomal chromosomes, meaning they are affected by both parents’ genetic makeup; maternal markers are located in maternally inherited mitochondrial DNA.) The biparental data show the overall variation in S. affinis. Of the 286 biparental markers, only 129 (45%) were monomorphic (i.e., their DNA sequence was identical in greater than 98% of all individuals) (Nielsen 2004: pp.434-442). By contrast, a similar biparental analysis of Helianthus annuus, the common sunflower and another Asteraceae species, found 72% monomorphism (Gedil et al. 2000: pp.213-221). (The increased variation in S. affinis compared to its more widespread relative may be due to the Galapagos’ remoteness: evidence suggests that isolation increases the survival of mutant forms of an organism (Nielsen 2004: pp.434-442).) Genetic analysis of S. affinis thus reveals significant intraspecies variation. Further, the biparental markers reveal that the variation in S. affinis populations corresponds to their geographic proximity to each other, supporting the paper’s first hypothesis 6 Foster Birnbaum Evolution and Conservation in the Galapagos
Recommended publications
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Filogeografia Genètica De Poblacions I Citogenètica Molecular Del Gènere Cheirolophus (Asteraceae, Cardueae)
    Filogeografia genètica de poblacions i citogenètica molecular del gènere Cheirolophus (Asteraceae, Cardueae) Daniel Vitales Serrano ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • (Scalesia Pedunculata Hook. F.) Y CALANDRINIA (Calandrinia Galapagosa H
    1 PROPAGACIÓN DE LAS ESPECIES FORESTALES LECHOSO (Scalesia pedunculata Hook. F.) Y CALANDRINIA (Calandrinia galapagosa H. St.) EN EL VIVERO CERRO COLORADO DEL CANTÓN SAN CRISTÓBAL, PROVINCIA DE GALÁPAGOS. ELIZABETH FLOREANA VALENCIA MIDERO TESIS PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE INGENIERO FORESTAL ESCUELA SUPERIOR POLITECNICA DE CHIMBORAZO FACULTAD DE RECURSOS NATURALES ESCUELA DE INGENIERIA FORESTAL RIOBAMBA – ECUADOR 2014 2 HOJA DE CERTIFICACIÓN EL TRIBUNAL DE TESIS CERTIFICA QUE: El trabajo de investigación titulado: PROPAGACIÓN DE LAS ESPECIES FORESTALES LECHOSO (Scalesia pedunculata Hook. F.) Y CALANDRINIA (Calandrinia galapagosa H. St.) EN EL VIVERO CERRO COLORADO DEL CANTÓN SAN CRISTÓBAL, PROVINCIA DE GALÁPAGOS. De responsabilidad del Srta. Egda. ELIZABEH FLOREANA VALENCIA MIDERO, ha sido prolijamente revisado, quedando autorizada su presentación. TRIBUNAL DE TESIS: Ing. Forestal. ERIKA KABEZAS. ___________________ DIRECTOR Ing. Agr. EDUARDO CEVALLOS. ___________________ MIEMBRO ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE RECURSOS NATURALES ESCUELA DE INGENIERÍA FORESTAL Riobamba, Abril del 2015 3 DEDICATORIA Dedico este trabajo a mi preciosa madre, apoyo importante en mi vida, a quien le debo lo que soy; a mis hermanos que animaron y me brindaron su apoyo, es por ello que doy gracias a Dios por permitirme tenerlos conmigo. Floreana 4 AGRADECIMIENTOS Mi agradecimiento constante al DIVINO NIÑO JESÚS por concederme el agrado de compartir con ustedes esta victoria, y por permitirme reconocer a quienes hicieron posible la culminación de mi carrera profesional. A la Escuela Superior Politécnica de Chimborazo, Facultad de Recursos Naturales, Escuela de Ingeniería Forestal, a mis maestros y amigos por la formación profesional que me han proporcionado. A los ingenieros Erika Cabezas y Eduardo Cevallos, directora y miembro de la presente tesis, por la orientación para realizar este trabajo.
    [Show full text]
  • Interpretation of Patterns of Genetic Variation in Endemic Plant Species of Oceanic Islands
    bs_bs_banner Botanical Journal of the Linnean Society, 2014, 174, 276–288. REVIEW ARTICLE Interpretation of patterns of genetic variation in endemic plant species of oceanic islands TOD F. STUESSY1*, KOJI TAKAYAMA1†, PATRICIO LÓPEZ-SEPÚLVEDA1‡ and DANIEL J. CRAWFORD2 1Department of Systematic and Evolutionary Botany, Biodiversity Center, University of Vienna, Rennweg 14, A-1030 Vienna, Austria 2Department of Ecology & Evolutionary Biology and the Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA Received 28 January 2013; revised 18 April 2013; accepted for publication 7 July 2013 Oceanic islands offer special opportunities for understanding the patterns and processes of evolution. The availability of molecular markers in recent decades has enhanced these opportunities, facilitating the use of population genetics to reveal divergence and speciation in island systems. A common pattern seen in taxa on oceanic islands is a decreased level of genetic variation within and among populations, and the founder effect has often been invoked to explain this observation. Founder effects have a major impact on immigrant populations, but, over millions of years, the original genetic signature will normally be erased as a result of mutation, recombination, drift and selection. Therefore, the types and degrees of genetic modifications that occur must often be caused by other factors, which should be considered when explaining the patterns of genetic variation. The age of the island is extremely important because oceanic islands subside on their submarine plates over time. Erosion caused by wind, rain and wave action combine to grind down soft volcanic substrates. These geomorphological events can have a dramatic impact on population number and size, and hence levels of genetic diversity.
    [Show full text]
  • Galapagos Verde 2050: an Opportunity to Restore Degraded Ecosystems and Promote Sustainable Agriculture in the Archipelago
    GALAPAGOS REPORT 2013-2014 BIODIVERSITY AND ECOSYSTEM RESTORATION GALAPAGOS VERDE 2050: AN OPPORTUNITY TO RESTORE DEGRADED ECOSYSTEMS AND PROMOTE SUSTAINABLE AGRICULTURE IN THE ARCHIPELAGO PATRICIA JARAMILLO, SWEN LORENZ, GABRIELA ORTIZ, PABLO CUEVA, ESTALIN JIMÉNEZ, JAIME ORTIZ, DANNY RUEDA, MAX FREIRE, JAMES GIBBS AND WASHINGTON TAPIA How to cite this article: Jaramillo P, S Lorenz, G Ortiz, P Cueva, E Jiménez, J Ortiz, D Rueda, M Freire, J Gibbs and W Tapia. 2015. Galapagos Verde 2050: An opportunity to restore degraded ecosystems and promote sustainable agriculture in the Archipelago. Pp. 133-143. In: Galapagos Report 2013-2014. GNPD, GCREG, CDF and GC. Puerto Ayora, Galapagos, Ecuador. Sources must be cited in all cases. Sections of the publication may be translated and reproduced without permission as long as the source is cited. The authors of each article are responsible for the contents and opinions expressed. The Galapagos National Park Directorate has its headquarters in Puerto Ayora, Santa Cruz Island, Galapagos and is the Ecuadorian governmental institution responsible for the administration and management of the protected areas of Galapagos. The Governing Council of Galapagos has its headquarters in Puerto Baquerizo Moreno, San Cristóbal Island, and is the Ecuadorian governmental institution responsible for planning and the administration of the province. The Charles Darwin Foundation, an international non-profit organization registered in Belgium, operates the Charles Darwin Research Station in Puerto Ayora, Santa Cruz
    [Show full text]
  • (Compositae) Endemic to the Galapagos Islands!
    Pacific Science (1995), vol. 49, no. 1: 17-30 © 1995 by University of Hawai'i Press. All rights reserved Phytogeography and Ecology of Scalesia (Compositae) Endemic to the Galapagos Islands! 2 SYUZO ITow ABSTRACT: Scalesia (Compositae), a genus endemic to the Galapagos Is­ lands, consists of 12 shrubby species distributed in the lowland dry zone and three tree species found in the mid-elevation moist zone. They are completely allopatric in distribution. All the species have herbaceous traits: fast growth, soft wood, large pith at the center of trunk, and flowering within 1 yr after germination (in greenhouse). The tree species Scalesia pedunculataHook. f. is shade-intolerant and heliophilous, and predominates as a monoculture in the moist zone of the four larger high-elevation islands. In ecological succession, it functions as pioneer, successor, and climax canopy plant. Even at climax or maturity of this monodominant forest, the canopy is not accompanied by young generations beneath owing to its shade-intolerance. The canopy popula­ tion of postmature forest dies back nearly synchronously. A new generation then develops to build new forest. The progression from germination to ma­ turity, and further to senescence and die back, is a self-cyclic succession, with­ out change of dominant species. Over much of its range, S. pedunculata is en­ dangered by the effects of past agricultural exploitation or heavy browsing by free-ranging goats, pigs, and donkeys; however, the population on the north side of Isla Santa Cruz has been preserved in good condition in the Galapagos National Park. THE GALAPAGOS ISLANDS are located on the a mew species.
    [Show full text]
  • Asteraceae: Astereae), an Endemic Shrub of the Galapagos Islands Nicole Genet Andrus Florida International University
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 7-24-2002 The origin, phylogenetics and natural history of darwiniothamnus (Asteraceae: Astereae), an endemic shrub of the Galapagos Islands Nicole Genet Andrus Florida International University DOI: 10.25148/etd.FI14032319 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biology Commons Recommended Citation Andrus, Nicole Genet, "The origin, phylogenetics and natural history of darwiniothamnus (Asteraceae: Astereae), an endemic shrub of the Galapagos Islands" (2002). FIU Electronic Theses and Dissertations. 1290. https://digitalcommons.fiu.edu/etd/1290 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida THE ORIGIN, PHYLOGENETICS AND NATURAL HISTORY OF DARWINIOTHAMNUS (ASTERACEAE: ASTEREAE), AN ENDEMIC SHRUB OF THE GALAPAGOS ISLANDS A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in BIOLOGY by Nicole Genet Andrus 2002 To: Dean Arthur W. Herriott College of Arts and Sciences This thesis, written by Nicole Genet Andrus, and entitled The Origin, Phylogenetics and Natural History of Darwiniothamnus (Asteraceae: Astereae), an Endemic Shrub of the Galapagos Islands, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this thesis and recommend that it be approved. Alan Tye Susan Koptur Carl Lewis Javiefr acisco-Ortega, Major Professor Date of Defense: July 24, 2002 The thesis of Nicole Genet Andrus is approved.
    [Show full text]
  • PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Manejo De
    PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Manejo de Cedrela odorata en Galápagos y su influencia en el ensamblaje de comunidades de plantas nativas y no nativas en los primeros estadios de sucesión Tesis previa a la obtención del título de Magíster en Biología de la Conservación NORMA ISABEL DOMÍNGUEZ GAIBOR Quito, 2016 1 PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Certifico que la tesis de Maestría en Biología de la Conservación de la candidata Norma Isabel Domínguez Gaibor ha sido concluida de conformidad con las normas establecidas; por lo tanto, puede ser presentada para la calificación correspondiente. Verónica Crespo, Ph.D. Directora de Tesis Quito, 29 de junio del 2016 2 DEDICATORIA Esta tesis la dedico a mis padres, quienes han sabido formarme con buenos sentimientos y valores, encaminándome por el sendero del saber, y han sido ejemplo de constancia, dedicación y esfuerzo, constituyéndose así en el pilar fundamental de mi vida. A mis hermanas que con su apoyo me han fortalecido en los momentos de flaqueza, brindándome ánimo y soporte para cumplir con las metas propuestas. A mi novio por su comprensión, amor y apoyo incondicional. 3 AGRADECIMIENTOS A los docentes del programa de Maestría en Biología de la Conservación de la Pontificia Universidad Católica del Ecuador (PUCE). Al Comité de Tesis conformado por: Verónica Crespo, Tjitte De Vries y Rafael Cárdenas docentes de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador, quienes a través de su gran desempeño como catedráticos e investigadores aportaron de manera profesional a concluir con éxito esta investigación.
    [Show full text]
  • Pollen Morphology of the Galapagos Endemic Genus Scalesia (Asteraceae)
    Pollen morphology of the Galapagos endemic genus Scalesia (Asteraceae) Item Type article Authors Jaramillo, Patricia; Trigo, M.M. Download date 02/10/2021 16:28:58 Link to Item http://hdl.handle.net/1834/35969 26 Research Articles Galapagos Research 64 POLLEN MORPHOLOGY OF THE GALAPAGOS ENDEMIC GENUS SCALESIA (ASTERACEAE) By: P. Jaramillo1 & M.M. Trigo2 1Department of Botany, Charles Darwin Research Station, Isla Santa Cruz, Galapagos, Ecuador. <[email protected]> 2Department of Plant Biology, University of Malaga, P.O. Box 59, E-29080 Malaga, Spain. <[email protected]> SUMMARY Pollen grains from herbarium specimens of 22 taxa of the genus Scalesia Arn. (Asteraceae, Heliantheae) were examined by scanning electron and light microscopy. Scalesia present trizonocolporate, isopolar, radiosymmetric pollen grains, which are medium sized, oblate-spheroidal to prolate-spheroidal, circular in polar view and from circular to slightly elliptic in equatorial view. The exine is thick (c. 5–7 µm), with long, acute, conical echinae to 10 µm as supratectal elements. RESUMEN Morfología del polen de Scalesia (Asteraceae), género endémico de Galápagos. Se examinaron granos de polen tomados de muestras de herbario de 22 taxa pertenecientes al género Scalesia Arn. (Asteraceae, Heliantheae), con el microcopio óptico y el microscopio electrónico de barrido. Scalesia presenta granos de polen trizonocolporados, isopolares y radiosimétricos. Son de tamaño medio, de oblado-esferoidales a prolado-esferoidales, de contorno circular en vista polar y de circular a ligeramente elípticos en vista ecuatorial. La exina es gruesa (c. 5–7 µm), presentando espinas cónicas y agudas de hasta 10 µm de largo como elementos supratectales. INTRODUCTION following the method of Erdtman (1960) and Kearns & Inouye (1993), mounted in glycerine jelly for light Galapagos is a large and complex archipelago of volcanic microscopy (LM).
    [Show full text]
  • Sentinel Plants to Prevent Biological Invasions Anna-Maria Vettraino, H.M
    Sentinel Plants to Prevent Biological Invasions Anna-Maria Vettraino, H.M. Li, Rene Eschen, Alain Roques, Annie Yart, Marc Kenis, Andrea Vannini To cite this version: Anna-Maria Vettraino, H.M. Li, Rene Eschen, Alain Roques, Annie Yart, et al.. Sentinel Plants to Prevent Biological Invasions. 8. International Conference on Biological Invasions from understanding to action ”NEOBIOTA 2014”, Nov 2014, Antalya, Turkey. 279 p. hal-02741498 HAL Id: hal-02741498 https://hal.inrae.fr/hal-02741498 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NEOBIOTA from2 understanding 14 to action th International Conference on Biological Invasions 8 from understanding to action Proceedings Edited by Ahmet ULUDAĞ Ayşe YAZLIK Khawar JABRAN Süleyman TÜRKSEVEN Uwe STARFINGER Antalya-TURKEY, 03-08 November 2014 th International Conference on Biological Invasions 8 from understanding to action Proceedings Edited by Ahmet ULUDAĞ Ayşe YAZLIK Khawar JABRAN Süleyman TÜRKSEVEN Uwe STARFINGER Designed by Aytekin AKTAŞ Batı Akdeniz Agricultural Research Institute
    [Show full text]
  • Population Genetics and Phylogeny of the Malesian Palm Genus Johannesteijsmannia H.E.Moore (Palmae)
    POPULATION GENETICS AND PHYLOGENY OF THE MALESIAN PALM GENUS JOHANNESTEIJSMANNIA H.E.MOORE (PALMAE) LOOK SU LEE THE NATIONAL UNIVERSITY OF SINGAPORE 2007 POPULATION GENETICS AND PHYLOGENY OF THE MALESIAN PALM GENUS JOHANNESTEIJSMANNIA H.E.MOORE (PALMAE) LOOK SU LEE (B.Sc.(Hons.) UKM) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES THE NATIONAL UNIVERSITY OF SINGAPORE 2007 Acknowledgements I thank The National University of Singapore for the Graduate Research Scholarship. The ASEAN Regional Centre for Biodiversity Conservation (ARCBC) is acknowledged for funding the research for my field trips, laboratory work and travel. I am grateful to the Herbarium, Royal Botanic Gardens, Kew, London for financial support during my internship. First and foremost, I would like to express my most sincere gratitude to my supervisor Assoc Prof Hugh Tan for being an excellent supervisor throughout this Ph.D project. I thank you for your encouragement, great patience, understanding and support. I would like to express my deepest gratitude to my co-supervisor Assoc Prof Prakash Kumar. I thank you for your great patience, support and guidance. Many thanks also for sharing with me time management skill and how to work efficiently. My special thanks go to my co-supervisors, Drs John Dransfield and Saw Leng Guan. I thank you for your time, effort and fruitful discussions we have had. I would like to express my deepest gratitude to my co-supervisor, Dr William Baker. I thank you for your encouragement, time, effort and faith in my abilities. You were always approachable whenever I had problem with my data analyses.
    [Show full text]