(Compositae) Endemic to the Galapagos Islands!

Total Page:16

File Type:pdf, Size:1020Kb

(Compositae) Endemic to the Galapagos Islands! Pacific Science (1995), vol. 49, no. 1: 17-30 © 1995 by University of Hawai'i Press. All rights reserved Phytogeography and Ecology of Scalesia (Compositae) Endemic to the Galapagos Islands! 2 SYUZO ITow ABSTRACT: Scalesia (Compositae), a genus endemic to the Galapagos Is­ lands, consists of 12 shrubby species distributed in the lowland dry zone and three tree species found in the mid-elevation moist zone. They are completely allopatric in distribution. All the species have herbaceous traits: fast growth, soft wood, large pith at the center of trunk, and flowering within 1 yr after germination (in greenhouse). The tree species Scalesia pedunculataHook. f. is shade-intolerant and heliophilous, and predominates as a monoculture in the moist zone of the four larger high-elevation islands. In ecological succession, it functions as pioneer, successor, and climax canopy plant. Even at climax or maturity of this monodominant forest, the canopy is not accompanied by young generations beneath owing to its shade-intolerance. The canopy popula­ tion of postmature forest dies back nearly synchronously. A new generation then develops to build new forest. The progression from germination to ma­ turity, and further to senescence and die back, is a self-cyclic succession, with­ out change of dominant species. Over much of its range, S. pedunculata is en­ dangered by the effects of past agricultural exploitation or heavy browsing by free-ranging goats, pigs, and donkeys; however, the population on the north side of Isla Santa Cruz has been preserved in good condition in the Galapagos National Park. THE GALAPAGOS ISLANDS are located on the a mew species. Eliasson (1974, 1975) pub­ equator in the eastern Pacific, about 1000 km lished a comprehensive treatment of the west of the South American coast. The ar­ genus, and recent nomenclature follows his chipelago is well known as a showcase of or­ systematic arrangement, though Cronquist ganic evolution. The flora shows a high en­ (in Wiggins and Porter 1971) treated the demism rate of 51 % in flowering plants same taxa in a different way. Recently, Ha­ (porter 1979). It contains seven endemic mann and Wium-Andersen (1986) described genera, of which Scalesia (Compositae) is a new species. one of the most important taxa, with 15 spe­ My experience with and concern about the cies and two subspecies, the largest number genus began in 1964, when I joined the In­ of species among the endemic genera. All ternational Galapagos Expedition, organized species are woody; 12 are shrubs, 1-2 m high, jointly by the University ofCalifornia, Berke­ distributed in dry woodlands, and three are ley, and the California Academy of Scien­ trees, 3 to > 10m high, found in the mid­ ces. Since then, I visited the islands in 1970, elevation moist zone. The Scalesia species are 1978, 1981, 1986, 1987, and 1991. My major important members of the Galapagos vege­ concern was the vegetation ecology of the tation. archipelago, in particular the distribution Taxonomically, Stewart (1911) treated the and ecology of Scalesia species in the field. 17 species and subspecies in his monograph Parts of my studies on the vegetation and of the Galapagos flora. Howell (1941) added Scalesia have appeared previously (Itow 1965,1971, 1988, 1990, 1992, Itow and Weber 1974, Itowand Mueller-Dombois 1988). 1 Manuscript accepted 27 April 1994. 2 Plant Ecology Laboratory, Faculty of Liberal Arts, In this paper, I focus on the distribution Nagasaki University, Nagasaki 852, Japan. and ecology of Scalesia, describing pre- 17 18 PACIFIC SCIENCE, Volume 49, January 1995 viously unpublished data and observations west coast of San Cristobal and ca. 1600 rom and citing literature to supplement my earlier at 300 m altitude, and ca. 250 rom for the articles and to draw a comprehensive picture west coast of Floreana and ca. 800 rom at of the genus. Taxonomic treatment follows 300 m altitude. Judging from those records Eliasson (1974) and Hamann and Wium­ and vegetation zones of those islands, rainfall Andersen (1986). pattern must be similar to that on Santa Cruz. The rainfall pattern must be similar for the southern side of Volcan Azul and Volcan Sierra Negra of Isabela because of the sim­ ENvmONMENTALSETTING ilarity of their vegetation zones. Physical Environment The southeast trade winds unload mois­ ture on the southerly located high-elevation The Galapagos Islands are of volcanic islands, especially on their windward sides. origin, created over the Galapagos Hot Spot Therefore, northerly located leeward islands in the Nazca Plate (Hey 1977). Because the and volcanoes receive lesser amounts of rain plate moves toward the southeast, easterly and are drier than the southerly located is­ located islands are volcanologically older lands. Low-elevation islands are always dry, than westerly located ones, and the oldest regardless of their location, because the trade lava is 3-5 million years old (Bailey 1976, winds are intercepted only slightly by the low Cox 1983). The highest peak is Volcan Wolf, topography. the northwesternmost volcano of the archi­ pelago, 1707 m above sea level. Volcanic Vegetation Zonation ejecta in the archipelago are basaltic lava, scoria, pumice, and ash, either old or new, There are basically four vegetation zones. and these are the principal substrates that They range from the dry zone, through the support plant life. transition and moist zones, to the highland The rainfall pattern is another important zone (Stewart 1911, 1915, Bowman 1961, factor affecting the plant life. Because the ar­ How 1965, 1971, 1990, 1992, Wiggins and chipelago lies in the southeast trade wind Porter 1971, How and Weber 1974, van der zone, the climate and weather are strongly Werff 1978, 1979, 1980, Hamann 1979, influenced by the moisture-bearing trade 1981). The dry zone on an island is much winds and the topography of the islands. In wider on the leeward north side (Fosberg general, southeasterly located islands, partic­ 1967, How 1971, 1992) and on northerly ularly their windward sides, receive much located islands than the other zones (Stewart more rainfall than northwesterly located is­ 1911, 1915), reflecting the above-mentioned lands and their leeward sides. A good wind­ rainfall pattern. ward/leeward example can be seen on Isla In the dry zone, Bursera graveolens Santa Cruz, which is a centrally located is­ (HBK.) Trian. & Planch. is most prevalent land rising to an elevation of 864 m above over the archipelago. There are many white­ sea level. The rainfall on this island ranges barked trees such as Acacia species, Cordia from 372 rom at the south coast, through species, Croton scouleri Hook. f., Piscidia 1070 rom at 200 m altitude, to 1845 mm at carthagensis Jacq., Prosopis juliflora (Sw.) 620 m altitude on the southern side; low-ele­ DC, and Tournefortia species. Giant cacti, vation Isla Baltra, located next to the north Opuntia and Jasminocereus, are prominent coast of Santa Cruz, receives only 76 rom on some islands (Islas Santa Fe and Plaza (How 1992). [see Figure 8], the southern sides ofIsla Santa For the southerly located high-elevation Cruz, and Volcan Sierra Negra of Isabela). islands, San Cristobal (715 m above sea level) Shrubby species of Scalesia are found among and Floreana (640 m), records of annual those plants in the dry zone. Transition-zone rainfall (Charles Darwin Research Station, vegetation is truly transitional between xero­ unpublished data) give ca. 400 rom for the phytic and mesophytic. Major substrates in Phytogeography and Ecology of Scalesia-ITow 19 the dry and transition zones are volcanic treeless vegetation prevails. (For details on ejecta, almost unweathered because of low Santa Cruz, see How 1990 and 1992.) rainfall. In the moist zone, the ejecta are well weathered, and the soils are deep and fertile. BIOGEOGRAPHY OF Scalesia SPECIES Abundant growth of terrestrial ferns and epiphytic bryophytes and ferns indicates that There are 15 species, four subspecies, and the atmospheric moisture and precipitation two varieties in the genus Scalesia (Table 1). regimes are high enough to support lush Based on my botanical explorations in seven plant life here. Prominent in the moist zone visits to all islands and volcanoes (except re­ are trees of Scalesia, Psidium galapageium mote northernmost Islas Darwin and Wolf, Hook. f., and Zanthoxylumfagara (L.) Sarg., and Volcan Wolf of Isabela) and of all spe­ and shrubs of Acnistus ellipticus Hook. f., cies but one (80 atractyloides Amott), to­ Psychotria rufipes Hook. f., and Tournefortia gether with previous studies (Wiggins and rufo-sericea Hook. f. In the highland zone, Porter 1971, Elliason 1974, 1975, Hamann TABLE I DISTRIBUTION OF Scalesia SPECIES ON INDIVIDUAL ISLANDS AND VOLCANOES OF THE GALAPAGOS ISLAND AND VOLCANO' TAXA Tree taxa pedunculata x X X X cordata XX microcephala var. microcephala XXX var. cordifolia X Shrub taxa incisa X divisa X gordilloi X villosa X affinis subsp. affinis X subsp. brachyloba X subsp. gummifera X X X X X X helleri subsp. helleri X subsp. santacruziana X retrojlexa X crockeri XX aspera X X stewartii X X atractyloides var. atractyloides X var. darwinii X baurii subsp. baurii X subsp. hopkinsii XX Nwnber of taxa 4 3 6 4 2 2 2 2 2 2 1 • SC, San Cristobal; FL, Floreana; SF, Santa Fe; SZ, Santa Cruz; BL, Baltra (off NE coast of SZ); ED, Eden (off NW coast of SZ); ST, Santiago; BA, Bartolome (off E coast of ST); PZ, Pinzon; FE, Fernandina; PT, Pinta; WL, Wolf. Volcanoes of Isabela: az, Azul; ng, Sierra Negra; aI, Alcedo; dw, Darwin; wf, Wolf. 20 PACIFIC SCIENCE, Volume 49, January 1995 and Wium-Andersen 1986), all the species Figures I and 2 show the distribution of are nearly completely allopatric in distribu­ Scalesia species on individual islands. Islas tion, with a wide distance between their indi­ Santa Cruz and San Cristobal, which are vidual ranges in the archipelago (Figure 1).
Recommended publications
  • Ecuador & the Galapagos Islands
    Ecuador & The Galapagos Islands Naturetrek Tour Report 14 - 30 January 2008 Report compiled by Lelis Navarrete Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 0NG England T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & The Galapagos Islands Tour Leader: Lelis Navarrete Participants: Richard Ball Ann Ball Avril Wells Elizabeth Savage Anthony Bourne Margaret Williams Richard Ratcliffe Helen Lewis John Lewis Mary Brunning Alan Brunning Aileen Alderton Bridget Howard Terry Bate Clive Bate Day 1 Monday 14th January Only Ann and Richard were in the Mercure Hotel waiting for the group but unfortunately the British Airways plane had some problems with the brakes and the captain decided that they would change planes before starting from Heathrow airport, as a result the connection with American Airline flight was missed in Miami, the group had to stay overnight in the Marriott Hotel in Miami to get the flights from the following day. Day 2 Tuesday 15th January Terry and Clive arrived around 8:30 to Mercure Hotel and the rest arrived close to mid-night. Day 3 Wednesday 16th January A very early start to catch our flight to Galapagos Islands, the weather conditions had us leaving half an hour than the scheduled time but we arrive in Baltra airport slightly before 11:00 AM, then transfer to the “Cachalote” and sail to Itabaca Channel for a short stop to get supplies, later on we sailed to Islas Plazas arriving into South Plaza near 3:30 PM for our first land visit; slightly after 10:00 PM we sailed to San Cristobal Island.
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Psidium" Redirects Here
    Guava 1 Guava This article is about the fruit. For other uses, see Guava (disambiguation). "Psidium" redirects here. For the thoroughbred racehorse, see Psidium (horse). Guava Apple Guava (Psidium guajava) Scientific classification Kingdom: Plantae (unranked): Angiosperms (unranked): Eudicots (unranked): Rosids Order: Myrtales Family: Myrtaceae Subfamily: Myrtoideae Tribe: Myrteae Genus: Psidium L. Species About 100, see text Synonyms • Calyptropsidium O.Berg • Corynemyrtus (Kiaersk.) Mattos • Cuiavus Trew • Episyzygium Suess. & A.Ludw. • Guajava Mill. • Guayaba Noronha • Mitropsidium Burret Guavas (singular guava, /ˈɡwɑː.və/) are plants in the Myrtle family (Myrtaceae) genus Psidium, which contains about 100 species of tropical shrubs and small trees. They are native to Mexico, Central America, and northern South America. Guavas are now cultivated and naturalized throughout the tropics and subtropics in Africa, South Asia, Southeast Asia, the Caribbean, subtropical regions of North America, Hawaii, New Zealand, Australia and Spain. Guava 2 Types The most frequently eaten species, and the one often simply referred to as "the guava", is the Apple Guava (Psidium guajava).Wikipedia:Citation needed. Guavas are typical Myrtoideae, with tough dark leaves that are opposite, simple, elliptic to ovate and 5–15 centimetres (2.0–5.9 in) long. The flowers are white, with five petals and numerous stamens. The genera Accara and Feijoa (= Acca, Pineapple Guava) were formerly included in Psidium.Wikipedia:Citation needed Apple Guava (Psidium guajava) flower Common names The term "guava" appears to derive from Arawak guayabo "guava tree", via the Spanish guayaba. It has been adapted in many European and Asian languages, having a similar form. Another term for guavas is pera, derived from pear.
    [Show full text]
  • Chromosome Numbers in Compositae, XII: Heliantheae
    SMITHSONIAN CONTRIBUTIONS TO BOTANY 0 NCTMBER 52 Chromosome Numbers in Compositae, XII: Heliantheae Harold Robinson, A. Michael Powell, Robert M. King, andJames F. Weedin SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Robinson, Harold, A. Michael Powell, Robert M. King, and James F. Weedin. Chromosome Numbers in Compositae, XII: Heliantheae. Smithsonian Contri- butions to Botany, number 52, 28 pages, 3 tables, 1981.-Chromosome reports are provided for 145 populations, including first reports for 33 species and three genera, Garcilassa, Riencourtia, and Helianthopsis. Chromosome numbers are arranged according to Robinson’s recently broadened concept of the Heliantheae, with citations for 212 of the ca. 265 genera and 32 of the 35 subtribes. Diverse elements, including the Ambrosieae, typical Heliantheae, most Helenieae, the Tegeteae, and genera such as Arnica from the Senecioneae, are seen to share a specialized cytological history involving polyploid ancestry. The authors disagree with one another regarding the point at which such polyploidy occurred and on whether subtribes lacking higher numbers, such as the Galinsoginae, share the polyploid ancestry. Numerous examples of aneuploid decrease, secondary polyploidy, and some secondary aneuploid decreases are cited. The Marshalliinae are considered remote from other subtribes and close to the Inuleae. Evidence from related tribes favors an ultimate base of X = 10 for the Heliantheae and at least the subfamily As teroideae. OFFICIALPUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution’s annual report, Smithsonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Main entry under title: Chromosome numbers in Compositae, XII.
    [Show full text]
  • Filogeografia Genètica De Poblacions I Citogenètica Molecular Del Gènere Cheirolophus (Asteraceae, Cardueae)
    Filogeografia genètica de poblacions i citogenètica molecular del gènere Cheirolophus (Asteraceae, Cardueae) Daniel Vitales Serrano ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • (Scalesia Pedunculata Hook. F.) Y CALANDRINIA (Calandrinia Galapagosa H
    1 PROPAGACIÓN DE LAS ESPECIES FORESTALES LECHOSO (Scalesia pedunculata Hook. F.) Y CALANDRINIA (Calandrinia galapagosa H. St.) EN EL VIVERO CERRO COLORADO DEL CANTÓN SAN CRISTÓBAL, PROVINCIA DE GALÁPAGOS. ELIZABETH FLOREANA VALENCIA MIDERO TESIS PRESENTADA COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE INGENIERO FORESTAL ESCUELA SUPERIOR POLITECNICA DE CHIMBORAZO FACULTAD DE RECURSOS NATURALES ESCUELA DE INGENIERIA FORESTAL RIOBAMBA – ECUADOR 2014 2 HOJA DE CERTIFICACIÓN EL TRIBUNAL DE TESIS CERTIFICA QUE: El trabajo de investigación titulado: PROPAGACIÓN DE LAS ESPECIES FORESTALES LECHOSO (Scalesia pedunculata Hook. F.) Y CALANDRINIA (Calandrinia galapagosa H. St.) EN EL VIVERO CERRO COLORADO DEL CANTÓN SAN CRISTÓBAL, PROVINCIA DE GALÁPAGOS. De responsabilidad del Srta. Egda. ELIZABEH FLOREANA VALENCIA MIDERO, ha sido prolijamente revisado, quedando autorizada su presentación. TRIBUNAL DE TESIS: Ing. Forestal. ERIKA KABEZAS. ___________________ DIRECTOR Ing. Agr. EDUARDO CEVALLOS. ___________________ MIEMBRO ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE RECURSOS NATURALES ESCUELA DE INGENIERÍA FORESTAL Riobamba, Abril del 2015 3 DEDICATORIA Dedico este trabajo a mi preciosa madre, apoyo importante en mi vida, a quien le debo lo que soy; a mis hermanos que animaron y me brindaron su apoyo, es por ello que doy gracias a Dios por permitirme tenerlos conmigo. Floreana 4 AGRADECIMIENTOS Mi agradecimiento constante al DIVINO NIÑO JESÚS por concederme el agrado de compartir con ustedes esta victoria, y por permitirme reconocer a quienes hicieron posible la culminación de mi carrera profesional. A la Escuela Superior Politécnica de Chimborazo, Facultad de Recursos Naturales, Escuela de Ingeniería Forestal, a mis maestros y amigos por la formación profesional que me han proporcionado. A los ingenieros Erika Cabezas y Eduardo Cevallos, directora y miembro de la presente tesis, por la orientación para realizar este trabajo.
    [Show full text]
  • Ecological Functions of Neotropical Amphibians and Reptiles: a Review
    Univ. Sci. 2015, Vol. 20 (2): 229-245 doi: 10.11144/Javeriana.SC20-2.efna Freely available on line REVIEW ARTICLE Ecological functions of neotropical amphibians and reptiles: a review Cortés-Gomez AM1, Ruiz-Agudelo CA2 , Valencia-Aguilar A3, Ladle RJ4 Abstract Amphibians and reptiles (herps) are the most abundant and diverse vertebrate taxa in tropical ecosystems. Nevertheless, little is known about their role in maintaining and regulating ecosystem functions and, by extension, their potential value for supporting ecosystem services. Here, we review research on the ecological functions of Neotropical herps, in different sources (the bibliographic databases, book chapters, etc.). A total of 167 Neotropical herpetology studies published over the last four decades (1970 to 2014) were reviewed, providing information on more than 100 species that contribute to at least five categories of ecological functions: i) nutrient cycling; ii) bioturbation; iii) pollination; iv) seed dispersal, and; v) energy flow through ecosystems. We emphasize the need to expand the knowledge about ecological functions in Neotropical ecosystems and the mechanisms behind these, through the study of functional traits and analysis of ecological processes. Many of these functions provide key ecosystem services, such as biological pest control, seed dispersal and water quality. By knowing and understanding the functions that perform the herps in ecosystems, management plans for cultural landscapes, restoration or recovery projects of landscapes that involve aquatic and terrestrial systems, development of comprehensive plans and detailed conservation of species and ecosystems may be structured in a more appropriate way. Besides information gaps identified in this review, this contribution explores these issues in terms of better understanding of key questions in the study of ecosystem services and biodiversity and, also, of how these services are generated.
    [Show full text]
  • Complete Plastome Sequences of Two Psidium Species from the Galápagos Islands [Version 1; Peer Review: 2 Approved]
    F1000Research 2018, 7:1361 Last updated: 22 AUG 2021 DATA NOTE Complete plastome sequences of two Psidium species from the Galápagos Islands [version 1; peer review: 2 approved] Bryan Reatini1, Maria de Lourdes Torres2, Hugo Valdebenito2, Todd Vision 1 1Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514, USA 2Universidad San Francisco de Quito, Quito, Ecuador v1 First published: 30 Aug 2018, 7:1361 Open Peer Review https://doi.org/10.12688/f1000research.15653.1 Latest published: 30 Aug 2018, 7:1361 https://doi.org/10.12688/f1000research.15653.1 Reviewer Status Invited Reviewers Abstract We report the complete plastome sequences of an endemic and an 1 2 unidentified species from the genus Psidium in the Galápagos Islands ( P. galapageium and Psidium sp. respectively). version 1 30 Aug 2018 report report Keywords plastome, Psidium, Galapagos, guayabillo 1. Michael O. Dillon, The Field Museum, Chicago, USA 2. Carolyn Proença , University of Brasília (UnB), Brasília, Brazil Any reports and responses or comments on the article can be found at the end of the article. Corresponding author: Bryan Reatini ([email protected]) Author roles: Reatini B: Conceptualization, Data Curation, Funding Acquisition, Investigation, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Torres MdL: Conceptualization, Project Administration, Supervision, Writing – Review & Editing; Valdebenito H: Conceptualization, Investigation, Project Administration, Supervision, Writing – Review & Editing; Vision T: Conceptualization, Funding Acquisition, Methodology, Project Administration, Supervision, Writing – Review & Editing Competing interests: No competing interests were disclosed. Grant information: This work was supported by a Louise Coker Fellowship from the University of North Carolina at Chapel Hill (UNC).
    [Show full text]
  • Interpretation of Patterns of Genetic Variation in Endemic Plant Species of Oceanic Islands
    bs_bs_banner Botanical Journal of the Linnean Society, 2014, 174, 276–288. REVIEW ARTICLE Interpretation of patterns of genetic variation in endemic plant species of oceanic islands TOD F. STUESSY1*, KOJI TAKAYAMA1†, PATRICIO LÓPEZ-SEPÚLVEDA1‡ and DANIEL J. CRAWFORD2 1Department of Systematic and Evolutionary Botany, Biodiversity Center, University of Vienna, Rennweg 14, A-1030 Vienna, Austria 2Department of Ecology & Evolutionary Biology and the Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA Received 28 January 2013; revised 18 April 2013; accepted for publication 7 July 2013 Oceanic islands offer special opportunities for understanding the patterns and processes of evolution. The availability of molecular markers in recent decades has enhanced these opportunities, facilitating the use of population genetics to reveal divergence and speciation in island systems. A common pattern seen in taxa on oceanic islands is a decreased level of genetic variation within and among populations, and the founder effect has often been invoked to explain this observation. Founder effects have a major impact on immigrant populations, but, over millions of years, the original genetic signature will normally be erased as a result of mutation, recombination, drift and selection. Therefore, the types and degrees of genetic modifications that occur must often be caused by other factors, which should be considered when explaining the patterns of genetic variation. The age of the island is extremely important because oceanic islands subside on their submarine plates over time. Erosion caused by wind, rain and wave action combine to grind down soft volcanic substrates. These geomorphological events can have a dramatic impact on population number and size, and hence levels of genetic diversity.
    [Show full text]
  • Galapagos Verde 2050: an Opportunity to Restore Degraded Ecosystems and Promote Sustainable Agriculture in the Archipelago
    GALAPAGOS REPORT 2013-2014 BIODIVERSITY AND ECOSYSTEM RESTORATION GALAPAGOS VERDE 2050: AN OPPORTUNITY TO RESTORE DEGRADED ECOSYSTEMS AND PROMOTE SUSTAINABLE AGRICULTURE IN THE ARCHIPELAGO PATRICIA JARAMILLO, SWEN LORENZ, GABRIELA ORTIZ, PABLO CUEVA, ESTALIN JIMÉNEZ, JAIME ORTIZ, DANNY RUEDA, MAX FREIRE, JAMES GIBBS AND WASHINGTON TAPIA How to cite this article: Jaramillo P, S Lorenz, G Ortiz, P Cueva, E Jiménez, J Ortiz, D Rueda, M Freire, J Gibbs and W Tapia. 2015. Galapagos Verde 2050: An opportunity to restore degraded ecosystems and promote sustainable agriculture in the Archipelago. Pp. 133-143. In: Galapagos Report 2013-2014. GNPD, GCREG, CDF and GC. Puerto Ayora, Galapagos, Ecuador. Sources must be cited in all cases. Sections of the publication may be translated and reproduced without permission as long as the source is cited. The authors of each article are responsible for the contents and opinions expressed. The Galapagos National Park Directorate has its headquarters in Puerto Ayora, Santa Cruz Island, Galapagos and is the Ecuadorian governmental institution responsible for the administration and management of the protected areas of Galapagos. The Governing Council of Galapagos has its headquarters in Puerto Baquerizo Moreno, San Cristóbal Island, and is the Ecuadorian governmental institution responsible for planning and the administration of the province. The Charles Darwin Foundation, an international non-profit organization registered in Belgium, operates the Charles Darwin Research Station in Puerto Ayora, Santa Cruz
    [Show full text]
  • Asteraceae: Astereae), an Endemic Shrub of the Galapagos Islands Nicole Genet Andrus Florida International University
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 7-24-2002 The origin, phylogenetics and natural history of darwiniothamnus (Asteraceae: Astereae), an endemic shrub of the Galapagos Islands Nicole Genet Andrus Florida International University DOI: 10.25148/etd.FI14032319 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biology Commons Recommended Citation Andrus, Nicole Genet, "The origin, phylogenetics and natural history of darwiniothamnus (Asteraceae: Astereae), an endemic shrub of the Galapagos Islands" (2002). FIU Electronic Theses and Dissertations. 1290. https://digitalcommons.fiu.edu/etd/1290 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida THE ORIGIN, PHYLOGENETICS AND NATURAL HISTORY OF DARWINIOTHAMNUS (ASTERACEAE: ASTEREAE), AN ENDEMIC SHRUB OF THE GALAPAGOS ISLANDS A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in BIOLOGY by Nicole Genet Andrus 2002 To: Dean Arthur W. Herriott College of Arts and Sciences This thesis, written by Nicole Genet Andrus, and entitled The Origin, Phylogenetics and Natural History of Darwiniothamnus (Asteraceae: Astereae), an Endemic Shrub of the Galapagos Islands, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this thesis and recommend that it be approved. Alan Tye Susan Koptur Carl Lewis Javiefr acisco-Ortega, Major Professor Date of Defense: July 24, 2002 The thesis of Nicole Genet Andrus is approved.
    [Show full text]
  • PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Manejo De
    PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Manejo de Cedrela odorata en Galápagos y su influencia en el ensamblaje de comunidades de plantas nativas y no nativas en los primeros estadios de sucesión Tesis previa a la obtención del título de Magíster en Biología de la Conservación NORMA ISABEL DOMÍNGUEZ GAIBOR Quito, 2016 1 PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Certifico que la tesis de Maestría en Biología de la Conservación de la candidata Norma Isabel Domínguez Gaibor ha sido concluida de conformidad con las normas establecidas; por lo tanto, puede ser presentada para la calificación correspondiente. Verónica Crespo, Ph.D. Directora de Tesis Quito, 29 de junio del 2016 2 DEDICATORIA Esta tesis la dedico a mis padres, quienes han sabido formarme con buenos sentimientos y valores, encaminándome por el sendero del saber, y han sido ejemplo de constancia, dedicación y esfuerzo, constituyéndose así en el pilar fundamental de mi vida. A mis hermanas que con su apoyo me han fortalecido en los momentos de flaqueza, brindándome ánimo y soporte para cumplir con las metas propuestas. A mi novio por su comprensión, amor y apoyo incondicional. 3 AGRADECIMIENTOS A los docentes del programa de Maestría en Biología de la Conservación de la Pontificia Universidad Católica del Ecuador (PUCE). Al Comité de Tesis conformado por: Verónica Crespo, Tjitte De Vries y Rafael Cárdenas docentes de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador, quienes a través de su gran desempeño como catedráticos e investigadores aportaron de manera profesional a concluir con éxito esta investigación.
    [Show full text]