Exosomes Derived from Heat Stroke Cases Carry Mirnas Associated with Infammation and Coagulation Cascade
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Association Between C4, C4A, and C4B Copy Number Variations And
www.nature.com/scientificreports OPEN Association between C4, C4A, and C4B copy number variations and susceptibility to autoimmune Received: 17 June 2016 Accepted: 04 January 2017 diseases: a meta-analysis Published: 16 February 2017 Na Li1, Jun Zhang2, Dan Liao2, Lu Yang2, Yingxiong Wang1 & Shengping Hou2,3 Although several studies have investigated the association between C4, C4A, and C4B gene copy number variations (CNVs) and susceptibility to autoimmune diseases, the results remain inconsistency for those diseases. Thus, in this study, a comprehensive meta-analysis was conducted to assess the role of C4, C4A, and C4B CNVs in autoimmune diseases in different ethnic groups. A total of 16 case-control studies described in 12 articles (8663 cases and 11099 controls) were included in this study. The pooled analyses showed that a low C4 gene copy number (GCN) (<4) was treated as a significant risk factor (odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.19–1.78) for autoimmune diseases compared with a higher GCN (>4). The pooled statistical results revealed that low C4 (<4) and low C4A (<2) GCNs could be risk factors for systemic lupus erythematosus (SLE) in Caucasian populations. Additionally, the correlation between C4B CNVs and all type of autoimmune diseases could not be confirmed by the current meta-analysis (OR = 1.07, 95% CI = 0.93–1.24). These data suggest that deficiency or absence of C4 and C4A CNVs may cause susceptibility to SLE. The complement system, which is involved in both innate and adaptive immunity, is characterized by triggered-enzyme cascades activated by alternative, lectin or classical pathways1. -
Interleukin-10 Family and Tuberculosis: an Old Story Renewed Abualgasim Elgaili Abdalla1, 2, Nzungize Lambert1, Xiangke Duan1, Jianping Xie1
Int. J. Biol. Sci. 2016, Vol. 12 710 Ivyspring International Publisher International Journal of Biological Sciences 2016; 12(6): 710-717. doi: 10.7150/ijbs.13881 Review Interleukin-10 Family and Tuberculosis: An Old Story Renewed Abualgasim Elgaili Abdalla1, 2, Nzungize Lambert1, Xiangke Duan1, Jianping Xie1 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China. 2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan. Corresponding author: Jianping Xie E-mail: [email protected] Tel&Fax: 862368367108. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2015.09.17; Accepted: 2016.01.15; Published: 2016.04.27 Abstract The interleukin-10 (IL-10) family of cytokines consists of six immune mediators, namely IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. IL-10, IL-22, IL-24 and IL-26 are critical for the regulation of host defense against Mycobacterium tuberculosis infections. Specifically, IL-10 and IL-26 can suppress the antimycobacterial immunity and promote the survival of pathogen, while IL-22 and IL-24 can generate protective responses and inhibit the intracellular growth of pathogen. Knowledge about the new players in tuberculosis immunology, namely IL-10 family, can inform novel immunity-based countermeasures and host directed therapies against tuberculosis. -
How Macrophages Deal with Death
REVIEWS CELL DEATH AND IMMUNITY How macrophages deal with death Greg Lemke Abstract | Tissue macrophages rapidly recognize and engulf apoptotic cells. These events require the display of so- called eat-me signals on the apoptotic cell surface, the most fundamental of which is phosphatidylserine (PtdSer). Externalization of this phospholipid is catalysed by scramblase enzymes, several of which are activated by caspase cleavage. PtdSer is detected both by macrophage receptors that bind to this phospholipid directly and by receptors that bind to a soluble bridging protein that is independently bound to PtdSer. Prominent among the latter receptors are the MER and AXL receptor tyrosine kinases. Eat-me signals also trigger macrophages to engulf virus- infected or metabolically traumatized, but still living, cells, and this ‘murder by phagocytosis’ may be a common phenomenon. Finally , the localized presentation of PtdSer and other eat- me signals on delimited cell surface domains may enable the phagocytic pruning of these ‘locally dead’ domains by macrophages, most notably by microglia of the central nervous system. In long- lived organisms, abundant cell types are often process. Efferocytosis is a remarkably efficient business: short- lived. In the human body, for example, the macrophages can engulf apoptotic cells in less than lifespan of many white blood cells — including neutro- 10 minutes, and it is therefore difficult experimentally to phils, eosinophils and platelets — is less than 2 weeks. detect free apoptotic cells in vivo, even in tissues where For normal healthy humans, a direct consequence of large numbers are generated7. Many of the molecules this turnover is the routine generation of more than that macrophages and other phagocytes use to recognize 100 billion dead cells each and every day of life1,2. -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Application Note
APPLICATION NOTE Quantification of functional C5a using iLite® C5a Assay Ready Cells For research and professional use only. Not for use in diagnostic procedures. This application note contains a suggested protocol and performance data. Each individual laboratory must set up their own method and perform relevant validations. Background Complement component 5a (C5a) is a 74 amino acid small protein fragment of complement protein 5 (C5). C5 is cleaved to C5a and C5b by C5 convertase enzymes as a result of complement activation. Factors of the coagulation and fibrinolytic pathway are also able to cleave C5 to C5a. (1) C5a is a highly potent anaphylatoxin and chemoattracting peptide, with the ability to increase blood vessel permeability, stimulate cytokine release from myeloid cells, and expression of adhesion molecules on endothelial cells. (2) Main pro-inflammatory effector functions are induced by C5a binding to a seven-transmembrane G- protein-coupled receptor, C5aR1 (CD88). Rapidly after cleavage of C5 into C5a and C5b, C5a is metabolized by carboxypeptidases which removes the C-terminal arginine and forms C5a-desArg, a less potent ligand of C5aR1. C5a can also bind to a second receptor, C5aR2 (C5L2 or GPR77), however the biological effects associated with C5a binding C5aR2 are less well understood, both anti- inflammatory and pro-inflammatory effects have been described in literature. The C5a receptors are expressed in a wide range of cells and tissues, and the effect of C5a activation is dependent on the location of the C5a receptors. (3, 4) While the complement system is an important part of the innate immune defense against pathogens, research has shown that excessive complement activation including C5a-C5aR interaction plays a central role in several autoimmune and neurodegenerative disorders as well as in acute and chronic inflammatory conditions. -
WO 2016/147053 Al 22 September 2016 (22.09.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/147053 Al 22 September 2016 (22.09.2016) P O P C T (51) International Patent Classification: (71) Applicant: RESVERLOGIX CORP. [CA/CA]; 300, A61K 31/551 (2006.01) A61P 37/02 (2006.01) 4820 Richard Road Sw, Calgary, AB, T3E 6L1 (CA). A61K 31/517 (2006.01) C07D 239/91 (2006.01) (72) Inventors: WASIAK, Sylwia; 431 Whispering Water (21) International Application Number: Trail, Calgary, AB, T3Z 3V1 (CA). KULIKOWSKI, PCT/IB20 16/000443 Ewelina, B.; 31100 Swift Creek Terrace, Calgary, AB, T3Z 0B7 (CA). HALLIDAY, Christopher, R.A.; 403 (22) International Filing Date: 138-18th Avenue SE, Calgary, AB, T2G 5P9 (CA). GIL- 10 March 2016 (10.03.2016) HAM, Dean; 249 Scenic View Close NW, Calgary, AB, (25) Filing Language: English T3L 1Y5 (CA). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 62/132,572 13 March 2015 (13.03.2015) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/264,768 8 December 2015 (08. 12.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, [Continued on nextpage] (54) Title: COMPOSITIONS AND THERAPEUTIC METHODS FOR THE TREATMENT OF COMPLEMENT-ASSOCIATED DISEASES (57) Abstract: The invention comprises methods of modulating the complement cascade in a mammal and for treating and/or preventing diseases and disorders as sociated with the complement pathway by administering a compound of Formula I or Formula II, such as, for example, 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)- 5,7-dimethoxyquinazolin-4(3H)-one or a pharmaceutically acceptable salt thereof. -
The Endocannabinoid 2-Arachidonoylglycerol Negatively Regulates Habituation by Suppressing Excitatory Recurrent Network Activity
3588 • The Journal of Neuroscience, February 20, 2013 • 33(8):3588–3601 Cellular/Molecular The Endocannabinoid 2-Arachidonoylglycerol Negatively Regulates Habituation by Suppressing Excitatory Recurrent Network Activity and Reducing Long-Term Potentiation in the Dentate Gyrus Yuki Sugaya,1 Barbara Cagniard,1 Maya Yamazaki,2 Kenji Sakimura,2 and Masanobu Kano1 1Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan and 2Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan Endocannabinoids are known to mediate retrograde suppression of synaptic transmission, modulate synaptic plasticity, and influence learning and memory. The 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase ␣ (DGL␣) is regarded as the major endo- cannabinoid that causes retrograde synaptic suppression. To determine how 2-AG signaling influences learning and memory, we sub- jected DGL␣ knock-out mice to two learning tasks. We tested the mice using habituation and odor-guided transverse patterning tasks that are known to involve the dentate gyrus and the CA1, respectively, of the hippocampus. We found that DGL␣ knock-out mice showed significantly faster habituation to an odor and a new environment than wild-type littermates with normal performance in the transverse patterning task. In freely moving animals, long-term potentiation (LTP) induced by theta burst stimulation was significantly larger at perforantpath–granulecellsynapsesinthedentategyrusofDGL␣knock-outmice.Importantly,priorinductionofsynapticpotentiation -
Complement Component 4 Genes Contribute Sex-Specific Vulnerability in Diverse Illnesses
bioRxiv preprint doi: https://doi.org/10.1101/761718; this version posted September 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Complement component 4 genes contribute sex-specific vulnerability in diverse illnesses Nolan Kamitaki1,2, Aswin Sekar1,2, Robert E. Handsaker1,2, Heather de Rivera1,2, Katherine Tooley1,2, David L. Morris3, Kimberly E. Taylor4, Christopher W. Whelan1,2, Philip Tombleson3, Loes M. Olde Loohuis5,6, Schizophrenia Working Group of the Psychiatric Genomics Consortium7, Michael Boehnke8, Robert P. Kimberly9, Kenneth M. Kaufman10, John B. Harley10, Carl D. Langefeld11, Christine E. Seidman1,12,13, Michele T. Pato14, Carlos N. Pato14, Roel A. Ophoff5,6, Robert R. Graham15, Lindsey A. Criswell4, Timothy J. Vyse3, Steven A. McCarroll1,2 1 Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA 2 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 3 Department of Medical and Molecular Genetics, King’s College London, London WC2R 2LS, UK 4 Rosalind Russell / Ephraim P Engleman Rheumatology Research Center, Division of Rheumatology, UCSF School of Medicine, San Francisco, California 94143, USA 5 Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA 6 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095, USA 7 A full list of collaborators is in Supplementary Information. -
Impact of Liver-Derived Complement Component C5 on Atherosclerosis in Apoe-Deficient Mice
Impact of Liver-derived Complement Component C5 on Atherosclerosis in ApoE-deficient Mice Zhe Ma München 2019 Aus dem Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten Kliniker Ludwig-Maximilians-Universität München Direktor: Univ.-Prof. Dr. med. Christian Weber Impact of Liver-derived Complement Component C5 on Atherosclerosis in ApoE-deficient Mice Dissertation zum Erwerb des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Zhe Ma aus Henan, China 2019 Mit Genehmigung der Medizinischen Fakultät der Universität München Betreuerin: Univ.-Prof. Dr. rer. nat. Sabine Steffens Zweitgutachter: PD Dr. rer. nat. Andreas Herbst Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 23. 07. 2020 Dean’s Office Faculty of Medicine Affidavit Ma, Zhe Surname, first name Hermann-Lingg Str. 18 Street 80336, Munich Zip code, town Germany Country I hereby declare, that the submitted thesis entitled Impact of Liver-derived Complement Component C5 on Atherosclerosis in ApoE-deficient Mice is my own work. I have only used the sources indicated and have not made unauthorised use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given. I further declare that the submitted thesis or parts thereof have not been presented as part of an examination degree to any other university. Munich, 07 04 2020 Zhe Ma Place, date Signature doctoral candidate Affidavit September 2018 Impact of Liver-derived -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
(12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann Et Al
US 2014O127257A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann et al. (43) Pub. Date: May 8, 2014 (54) DERMATOLOGICALLY EFFECTIVE YEAST Publication Classification EXTRACT (51) Int. Cl. (75) Inventors: Yvonne Schiemann, Essen (DE); Mike A61E36/064 (2006.01) Farwick, Essen (DE); Thomas Haas, CI2P I/02 (2006.01) Muenster (DE); Mirja Wessel, Bochum A61E36/06 (2006.01) (DE) (52) U.S. Cl. CPC ............... A61K 36/064 (2013.01); A61K 36/06 (73) Assignee: EVONIK DEGUSSA GMBH, Essen (2013.01); CI2P I/02 (2013.01) (DE) USPC ...................................... 424/195.16; 435/171 (21) Appl. No.: 14/128,244 (22) PCT Fled: Jun. 14, 2012 (57) ABSTRACT (86) PCT NO.: PCT/EP2012/061263 The invention relates to a method for producing a dermato S371 (c)(1), logically active yeast extract, comprising the following steps: (2), (4) Date: Dec. 20, 2013 providing a preculture of the yeast cells, culturing the cells for (30) Foreign Application Priority Data at least fifteen minutes at a pH of 1.8-4, harvesting the cells and lysing the cells, and a yeast extract produced thereby and Jun. 29, 2011 (EP) .................................. 11171953.0 products comprising said yeast extract. Patent Application Publication May 8, 2014 Sheet 1 of 3 US 2014/O127257 A1 -0-Yarrowia------------ lipolytica -- Pichia CBS 1991 - A - Saccharomyces Cerevisiae Fig. 1 US 2014/O127257 A1 May 8, 2014 DERMATOLOGICALLY EFFECTIVE YEAST skin. Against the background of consumers’ uncertainty with EXTRACT respect to genetic engineering techniques, there is a particular demand for corresponding agents that can be regarded, 0001. -
S42003-021-02488-1.Pdf
ARTICLE https://doi.org/10.1038/s42003-021-02488-1 OPEN In situ imaging reveals disparity between prostaglandin localization and abundance of prostaglandin synthases ✉ Kyle D. Duncan 1,5, Xiaofei Sun 2,3,5, Erin S. Baker 4, Sudhansu K. Dey 2,3 & Ingela Lanekoff 1 Prostaglandins are important lipids involved in mediating many physiological processes, such as allergic responses, inflammation, and pregnancy. However, technical limitations of in-situ prostaglandin detection in tissue have led researchers to infer prostaglandin tissue dis- tributions from localization of regulatory synthases, such as COX1 and COX2. Herein, we apply a novel mass spectrometry imaging method for direct in situ tissue localization of 1234567890():,; prostaglandins, and combine it with techniques for protein expression and RNA localization. We report that prostaglandin D2, its precursors, and downstream synthases co-localize with the highest expression of COX1, and not COX2. Further, we study tissue with a conditional deletion of transformation-related protein 53 where pregnancy success is low and confirm that PG levels are altered, although localization is conserved. Our studies reveal that the abundance of COX and prostaglandin D2 synthases in cellular regions does not mirror the regional abundance of prostaglandins. Thus, we deduce that prostaglandins tissue localization and abundance may not be inferred by COX or prostaglandin synthases in uterine tissue, and must be resolved by an in situ prostaglandin imaging. 1 Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden. 2 Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 3 College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA.