BC A12 - the Comprehensive Shortwave Broadcasting Schedule 0000 0100 CHN China Radio Int

Total Page:16

File Type:pdf, Size:1020Kb

BC A12 - the Comprehensive Shortwave Broadcasting Schedule 0000 0100 CHN China Radio Int BC A12 - The comprehensive shortwave broadcasting schedule 0000 0100 CHN China Radio Int. MO MNG 9470u 11875b ========================================================== 0000 0100 CHN China Radio Int. P SAm 9560b 9710ka TIME VERSION 0000 0100 CHN China Radio Int. R Sib 5990h 7405h http://www.eibi.de.vu/ 0000 0100 CHN China Radio Int. S Car 5990/CUB SAm 15120/CUB Valid March 25, 2012 - October 28, 2012 0000 0100 CHN China Radio Int. VN SEA 11770b 13770x 0000 0100 Su-Mo CLA Radio Republica S CUB 5954/CTR-g 0000 0100 E REE DIGITAL S SAm 11815/CTR Free to copy + distribute. 0000 0100 E Radio Exterior España E NAm 6055 Days, if in numbers: 1-Monday etc. 0000 0100 G BBC E FE 17685/THA-n For country, language and target-area codes please refer to readme.txt on my website. SAs 5970/OMA 7395/CYP 9410/THA-n 12095/THA-n 12095/SNG Last update: Oct 22, 2012 0000 0100 MRC Medi 1 A NAf 171n 9575n 9579n 0000 0100 ROU Radio Romania Int. E ENA 9700t 11965t Time(UTC) Days ITU Station Lang. Target Frequencies 0000 0100 USA Radio Free Asia LAO SEA 15545/MRA-t 15690/CLN-i ================================================================================ 0000 0100 USA Radio Marti S CUB 11775g 0000 0100 USA Voice of America M FE 9545/PHL-t 11830/PHL-t 0000 0015 PHL FEBC Manila KHM SEA 9795i 11925/PHL-t 15170/THA-u 0000 0027 PHL Radio Veritas Asia KA SEA 11935p 15385/PHL-t 17765/PHL-t 0000 0027 PHL Radio Veritas Asia SI SAs 11855p 15460p 0000 0100 Tu-Sa USA Voice of America S LAm 5890g 9885g 12000g 0000 0030 Mo-Sa AUS HCJB Australia IN SEA 15400ku 0000 0100 USA Voice of America TB Tib 9480/THA-u 9855/CLN-i 0000 0030 Su AUS HCJB Australia ML SEA 15400ku 0000 0100 135 USA Voice of America TB Tib 7485/KWT 0000 0030 AUS Radio Australia IN INS 9490/UAE 12005/UAE 0000 0100 SaSu USA Voice of America TB Tib 7250/KWT SEA 17750s 0000 0100 Tu,Th USA Voice of America TB Tib 7525/KWT 0000 0030 CHN China National Radio 1 M CHN 4820t 5935t 6050t 7240t 7450t 0000 0100 Su USA WTWW Lebanon, TN NAm 9990L 0000 0030 CUB Radio Habana Cuba CR CAm 5040 0000 0100 USA WYFR Family Radio E SAm 5930/GUF 5980/GUF 0000 0030 CUB Radio Habana Cuba Q SAm 15370 0000 0100 USA WYFR Family Radio F Car 15255o 0000 0030 EQA HCJB Voice of Andes COF SAm 6050c 0000 0100 USA WYFR Family Radio IN INS 11865/TWN-n 0000 0030 G BBC BR SEA 5875/THA-n 9810/SNG 11750/SNG 0000 0100 USA WYFR Family Radio P SAm 11580o 17725o 0000 0030 G FEBA Radio BE SAs 9390/UZB 0000 0100 USA WYFR Family Radio VN SEA 11630/TWN-p 0000 0030 Su G FEBA Radio TEL SAs 9770/CLN-e 0000 0100 USA World Harvest Radio E WNA 9730c 0000 0030 SRB Int.Radio Serbia SR NAm 9685/BIH 0000 0100 VTN Voice of Vietnam VN SEA 7285m 0000 0030 THA Radio Thailand E ENA 15275u 0000 0130 CHN China National Radio 1 M CHN 17890b 0000 0030 USA Adventist World Radio BR SEA 17650/GUM-a 0000 0130 USA Voice of America E ME 1593/KWT 0000 0030 USA Radio Farda FS ME 5940/D-L 0000 0150 GRC Voice of Greece GR NAm 7475a 0000 0030 USA Radio Free Asia VN SEA 7445/CLN-i 13730/MRA-s 0000 0200 CHN China Radio Int. E NAm 6020/ALB 9570/ALB 0000 0030 USA Voice of America BR SEA 1575/THA-b 5955/THA-u SAs 6180ka 7430/CLN-i 9320/PHL-t SEA 15125b 0000 0030 USA Voice of America E AFG 7555/KWT 0000 0200 CHN China Radio Int. M SEA 13580b 0000 0030 VTN Voice of Vietnam 4 DAO VTN 6165x 0000 0200 CHN PBS Xizang TB CHN 7255t 7385t 0000 0045 IND All India Radio GOS TAM CLN 1053t 7270c 9835d 11985k 0000 0200 CLA Radio Republica S CUB 9490/GUF SEA 9910a 11740p 13795b 0000 0200 E REE DIGITAL S NAm 9630/CTR 0000 0045 PHL FEBC Manila SHA SEA 15435b 0000 0200 G BBC E FE 15335/SNG 15755/THA-n 0000 0045 USA WYFR Family Radio E SAm 11650o 0000 0200 ROU Radio Romania Int. RO ENA 9525g 11750g 0000 0100 Tu,Fr AGL RNA N'Gola Yetu LND AGL 7217m 0000 0200 THA Bangkok Meterolog.Radio E,T SEA 6765bv 8743bv 0000 0100 Su AGL RNA N'Gola Yetu LUN AGL 7217m 0000 0200 TUR Voice of Turkey TU As 7260e 0000 0100 We,Sa AGL RNA N'Gola Yetu LUV AGL 7217m 0000 0200 USA Adventist World Radio M FE 12025/GUM-a 17880/GUM-a 0000 0100 Th AGL RNA N'Gola Yetu SGO AGL 7217m 0000 0200 USA WBCQ The Planet E NAm 5110q 0000 0100 Tu-Sa ARG R.Argentina al Exterior P Am 11710g 0000 0200 USA WTWW Lebanon, TN S NAm 12105L 0000 0100 CHN Beibu Bay Radio M FE 5050n 9820n 0000 0200 USA WYFR Family Radio M FE 1503/TWN-f 0000 0100 CHN CNR 1 Jammer M FE 7250 9480 9545 9855 11830 0000 0215 IND AIR Imphal HI SAs 4775im 11925 15170 15385 17765 0000 0230 Su ARG Radio Nacional Argentina S Eu 15345g 0000 0100 CHN China National Radio 1 M CHN 11810L SAm 6060g 0000 0100 CHN China Radio Int. CA SEA 9460k 0000 0300 Mo ARG Radio Nacional Argentina S Eu 15345g 0000 0100 CHN China Radio Int. E Eu 7350ka SAm 6060g FE 13750b 0000 0300 BTN Bhutan BS DZ BTN 6035 SAs 6075ka 7415ka 0000 0300 Tu-Sa CAN Radio Canada Nord-Quebec INU CAN 9625 SEA 11790x 11885x 0000 0300 CHN China Radio Int. M FE 13655x 0000 0100 CHN China Radio Int. HK PHL 15100j 0000 0300 RUS Voice of Russia R ME 801/TJK 1395/ARM SEA 9550k 9610k 11820x 17495b 0000 0300 USA Radio Marti S CUB 7365g 0000 0100 CHN China Radio Int. KH SEA 9765n 0000 0300 USA WYFR Family Radio M FE 1557/TWN-k 0000 0100 CHN China Radio Int. M FE 11780j 11900b 0000 0300 USA World Harvest Radio E ENA 5920c INS 11975k 0000 0400 CHN Voice of Strait AM FE 6115gu SEA 9435k 12035x 0000 0400 EQA HCJB Voice of Andes D CEu 3995/D-we 0000 0400 G CVC Voice Asia HI SAs 6260/UZB 0000 2400 B Radio Itatiaia P B 5970h 0000 0400 irr PRU La Voz de la Selva S PRU 4824iq 0000 2400 B Radio Jornal a Critica P B 5055m 0000 0400 USA WWRB Manchester, TN NAm 5050ma 0000 2400 B Radio Mundial de SP P B 3325gu 0000 0415 IND AIR Guwahati HI SAs 4940w 0000 2400 B Radio Nacional Amazonia P B 6180b 11780b 0000 0415 IND AIR Kohima Vn SAs 4850kh 0000 2400 B Radio Novo Tempo P B 4895cg 0000 0500 CUB Radio Habana Cuba S Am 11760 0000 2400 B Radio Pioneira, Teresina P B 5015te ENA 6060 0000 2400 B Radio Voz Missionária P B 5940cb 11749fp 0000 0500 1.Sa FIN Scandinavian Weekend R. FI Eu 6170v 0000 2400 B Super Rádio Deus é Amor P SAm 6060cu 6070rc 6120sg 9565cu 0000 0500 IRN IRIB Voice of I.R.Iran TK CAs 1449b 11765cu 11805r 0000 0500 RUS Voice of Russia R Cau 657gr 0000 2400 BHR Radio Bahrain A ME 9745 0000 0500 RUS Voice of Russia S CAm 12155/ARM 0000 2400 BHR Radio Bahrain E ME 6010 SAm 12060/ARM 0000 2400 BIO Diego Garcia AFB E SAs 8992 11175 0000 0500 USA WEWN EWTN Catholic R. S CAm 5810b 0000 2400 BLR Belaruskoye Radio 1 BY EEu 279 0000 0506 SuMo CAN Radio Canada Nord-Quebec E CAN 9625 0000 2400 CAN CFRX Toronto, CFRB 1010 E NAm 6070t 0000 0600 CHN CNR 2 China Business R. M CHN 7220q 9720a 11610B 11835x 0000 2400 CAN CFVP Calgary CKMX Ctry E NAm 6030c 11845x 17625B 0000 2400 CAN CHU Ottawa -TS NAm 3330o 7850o 14670o 0000 0600 CHN China National Radio 1 M CHN 11760s 11960b 12045b 15550b 0000 2400 CAN CKZN St John's E ENA 6160j 0000 0600 CHN China National Radio 11 TB CHN 9530as 11685as 0000 2400 CAN CKZU Vancouver E WNA 6160v 0000 0600 CHN China National Radio 5 M CHN 9685B 11935B 0000 2400 CAN Gander Volmet x20,x50 E NAm 3485g 6604g 10051g 13270g 0000 0700 CHN PBS Xizang TB CHN 4905t 4920t 6025t 6110t 6130t 0000 2400 CHL Radio Esperanza, Temuco S SAm 6090 6200t 0000 2400 CHL Radio Parinacota, Putre S SAm 6010 0000 0700 1.Sa FIN Scandinavian Weekend R. FI Eu 11690v 0000 2400 CHN BPC Time Signal -TS FE 68sq 0000 0700 KRE PBS Pyongyang Pansong K FE 3250p 0000 2400 CHN BPM Xian -TS CHN 5000p 10000p 0000 0800 irr ALS DART WE2XRH DIGITAL NAm 7505 0000 2400 CHN Firedrake M CHN 7970 9200 9970 10300 10965 0000 0900 AUS Radio Australia E Oc 15240s 10970 11300 11500 12230 12320 0000 0900 USA WEWN EWTN Catholic R. E Af 11520b 12370 12500 12670 12870 12980 0000 0930 PHL PBS Radiyo Magasin DZRM TAG PHL 9579m 13060 13130 13270 13350 13430 0000 1000 USA WEWN EWTN Catholic R. S SAm 11870b 13500 13530 13820 13850 13920 0000 1100 GUM Guam AFB E Oc 15016 13970 14400 14600 14700 14800 0000 1100 MEX XEQM - Candela FM XEMH S CAm 6105m 14870 14920 14960 14980 15070 0000 1200 EQA HD2IOA Guayaquil -TS EQA 1510g 3810g 15500 15800 15900 15940 15970 0000 1200 USA WWCR 2 Nashville, TN E NAm 5935n 16100 16250 16600 16700 16920 0000 1200 USA WWCR 3 Nashville, TN E NAm 4840n 16980 17100 17170 17250 17370 0000 1200 USA WWRB Manchester, TN NAm 3185ma 17450 17900 18200 0000 1300 USA WTWW Lebanon, TN NAm 5745L 0000 2400 CLM La Voz de tu Conciencia S CLM 6010 0000 1900 KGZ Kyrgyz Radio KG CAs 4010 4795 0000 2400 CLM R.Vida Nueva,2x1490 S CLM 2980 0000 2200 B R.Boa Vontade, P.Alegre P B 11895e 0000 2400 CLM Radio Lider/Melodia S CLM 6140 0000 2400 AGL R Nacional, Canal A P Af 1088m 4950m 0000 2400 CLM Salem Estereo S LAm 14950r 0000 2400 ALS Elmendorf AFB E NAm 8992e 11175e 0000 2400 CRO FJY5 ARQ-E3 192bd/400Hz ANT 11421 0000 2400 irr ALS HAARP Rising Tones WNA 2750g 0000 2400 CUB Cuban Spy Numbers S Am 5800 5883 5898 0000 2400 ARG Various Progs (Feeders) S ATA 8098 11133 13363 15820 0000 2400 CUB Radio Rebelde S Car 5025 0000 2400 ASC Ascension AFB E SAO 8992 11175 0000 2400 CVA Raiway Tests DIGITAL I SEu 26060v 0000 2400 AUS Australia Volmet x00,30 E Oc 6676n 11387n 0000 2400 CZE OK0EPB Pendulum -TS Eu 7039p 0000 2400 AUS NWC US/Australian Navy Oc 19ex 0000 2400 D DCF77 Mainflingen -TS Eu 77mf 0000 2400 AUS VMC Charleville QL E AUS 8176 12365 0000 2400 D DDH47 DWD Pinneberg RTTY E Eu 147pi 0000 2400 AUS VMW Wiluna WA E AUS 8113 12362 0000 2400 D DDH7 DWD Pinneberg RTTY E Eu 7646pi 0000 2400 AZR Lajes AFB E NAO 8992 11175 0000 2400 D DDH8 DWD Pinneberg RTTY E Eu 14467pi 0000 2400 B Marumby-Voz Missionária P B 9665fp 0000 2400 D DDH9 DWD Pinneberg RTTY E Eu 11039pi 0000 2400 B PPE Observatorio Nac.
Recommended publications
  • RZR-P RZQ-P Service Manual
    SiUS281117 Service Manual RZR-P, RZQ-P(9) Series Cooling Only / Heat Pump R-410A 60Hz SiUS281117 RZR-P, RZQ-P(9) Series Cooling Only / Heat Pump R-410A 60Hz ED Reference For items below, please refer to Engineering Data. For except FTQ No. Item ED No. Page Remarks 1 Specification - Cooling Only EDUS281120 p. 7-13 2 Specification - Heat Pump EDUS281120 p. 14-20 3 Option List EDUS281120 p. 100-102 For FTQ No. Item ED No. Page Remarks 1 Specification - Heat Pump EDUS281008 p. 4 2 Option List EDUS281008 p. 60 1. Safety Considerations.............................................................................v 1.1 Safety Considerations for Repair ............................................................. v 1.2 Safety Considerations for Users ..............................................................vi Part 1 General Information........................................................... 1 1. Model Names and Power Supply............................................................2 1.1 Cooling Only ............................................................................................2 1.2 Heat Pump ...............................................................................................2 2. External Appearance ..............................................................................3 2.1 Indoor Units..............................................................................................3 2.2 Remote Controller....................................................................................4 2.3 Outdoor Units...........................................................................................4
    [Show full text]
  • Examensarbete
    EXAMENSARBETE Tidsättning och övervakning Robin Dorand Lars Karlsson Högskoleexamen Datornätverk Luleå tekniska universitet Institutionen för System- och Rymdteknik Robin Dorand & Lars Karlsson 9 juni 2012 Datornätverk LTU Skellefteå Institutionen för System- och Rymdteknik Sammanfattning Detta examensarbete pågick under fem veckor på SSAB i Luleå och behandlar två uppgifter. Den första uppgiften gick ut på att forska om tid för att på bästa sätt kunna tidsätta nätverksutrustning samt övervakningsplattformar på SSAB. Den andra uppgiften gick ut på att undersöka krav samt upplägg för övervakningsplattformen SCOM. För att kunna synkronisera tid används i huvudsak tre protokoll: NTP, SNTP samt PTP. De vanligaste teknikerna för att synkronisera tid är via internet, GPS, radiokommunikation samt manuell tidsättning. Genom att samla in data jämfördes olika scenarion och utrustning konfigurerades. Utifrån undersökningar framkom det att den lämpligaste lösningen var att via NTP protokollet synkronisera utrustningen mot en lokal server. Servern är i sin tur kopplad mot en GPS mottagare. För framtida implementeringar föreslogs ny kraftigare hårdvara med stöd för redundans. SCOM är en modulbaserad övervakning och hanterings- plattform som utvecklats av Microsoft. Med hjälp av SNMP protokollet tillhandahålls hjälpmedel för att kommunicera mellan SCOM och olika nätverksutrustningar. Undersökningen kring övervakningsplattformen SCOM bestod av samtal med personal på SSAB angående önskemål samt synpunkter på utformning. Utifrån informationen togs ett upplägg fram som bestod av diagram för nätverksutrustning samt kartbilder för anläggningens områden. Överblicksbilder samt diagram sammanställdes i SCOM för att skapa ett lättnavigerat och pedagogiskt system för övervakning. Abstract This thesis project lasted during five weeks at SSAB in Luleå and dealt with two tasks. The first task was to research the best possible way to synchronize network equipment and monitoring platforms at SSAB.
    [Show full text]
  • Khz Time(UTC) Days ITU Station Lng Target Remarks 16.4 0000-2400
    kHz Time(UTC) Days ITU Station Lng Target Remarks 16.4 0000-2400 NOR JXN Marine Norway NEu no 18.2 0000-2400 IND VTX Indian Navy SAs v 18.3 0000-2400 F HWU French Navy WEu wu 19.6 0000-2400 G GQD Anthorn WEu an 19.8 0000-2400 AUS NWC US/Australian Navy Oc ex 20.5 0741-0747 BLR RJH69 Molodechno #NOME? EEu mo 20.5 0441-0447 KGZ RJH66 Bishkek #NOME? CAs bk 20.5 1041-1047 KGZ RJH66 Bishkek #NOME? CAs bk 20.5 1131-1141 RUS RJH63 Krasnodar #NOME? EEu kd 20.5 0941-0947 RUS RJH77 Arkhangelsk #NOME? EEu ak 20.5 0541-0547 RUS RJH99 Nizhni Novgorod #NOME? EEu nn 20.9 0000-2400 F HWU French Navy WEu wu 21.4 0000-2400 HWA NPM US Navy Oc L 21.7 0000-2400 F HWU French Navy WEu wu 23 0735-0741 BLR RJH69 Molodechno #NOME? EEu mo 23 0435-0441 KGZ RJH66 Bishkek #NOME? CAs bk 23 1035-1041 KGZ RJH66 Bishkek #NOME? CAs bk 23 1126-1131 RUS RJH63 Krasnodar #NOME? EEu kd 23 0935-0941 RUS RJH77 Arkhangelsk #NOME? EEu ak 23 0535-0541 RUS RJH99 Nizhni Novgorod #NOME? EEu nn 23.4 0000-2400 D DHO38 German Navy Eu rf 23.4 0000-2400 HWA NPM US Navy Oc L 24 0000-2400 USA NAA US Navy Cutler NAO cu 24.8 0000-2400 USA NLK US Navy Jim Creek NAO jc 25 0700-0725 BLR RJH69 Molodechno #NOME? EEu mo 25 0400-0425 KGZ RJH66 Bishkek #NOME? CAs bk 25 1000-1025 KGZ RJH66 Bishkek #NOME? CAs bk 25 1100-1120 RUS RJH63 Krasnodar #NOME? EEu kd 25 0900-0925 RUS RJH77 Arkhangelsk #NOME? EEu ak 25 0500-0525 RUS RJH99 Nizhni Novgorod #NOME? EEu nn 25.1 0725-0730 BLR RJH69 Molodechno #NOME? EEu mo 25.1 0425-0430 KGZ RJH66 Bishkek #NOME? CAs bk 25.1 1025-1030 KGZ RJH66 Bishkek #NOME? CAs bk 25.1
    [Show full text]
  • Transitions in the Bottomonium System
    Annual Reviews www.annualreviews.org/aronline Annu. Rev. Nucl. Part. Sci. 1993.43:333-78 Copyright© 1993 by AnnualReviews lnc. All rights reserved UPSILON SPECTROSCOPY: Transitions in the Bottomonium System D. Besson Departmen~t of Physics, University of Kansas, Lawrence, Kansas 66045 T. Skwarnicki Departmentt of Physics, Southern Methodist University, Dallas, Texas 75275 KEY WORDS: potential models,radiative transitions, hadronic transitions, multiple models CONTENTS 1. INTRODUCTION................................................... 334 1.1 Bound States and Fundamental Forces in Nature ................... 334 1.2 Discovery of the Y System ........................................ 335 1.3 The Quarkonium Model .......................................... 335 1.4 Scope of This Article ............................................. 338 2. STORAGE RINGS AND DETECTORS............................... 338 3. COUPLINGTO LEPTONPAIRS ..................................... 339 3.1 Measurement of Y Masses and Their Leptonic Widths ............... 339 3.2 Measurement of Leptonic Branching Ratios ........................ 341 3.3 Derivation of the Total Widths of the Y Resonances ................. 342 3.4 Comparison with Theoretical Predictions ........................... 342 4. MEASUREMENTSOF RADIATIVE TRANSITIONS .................. 343 4.1 Radiative Transitions from the Y(2S) .............................. 344 4.2 Radiative Transitions from the Y(3S) .............................. 346 5. COMPARISON WITH POTENTIAL MODELS ........................ 348 5.1 Excitation
    [Show full text]
  • United Technologies Pratt&Whitney
    FR-19691-4 VOLUME II 1 DECEMBER 1989 SPACE TRANSPORTATION BOOSTER ENGINE CONFIGURATION STUDY FINAL REPORT (DR4) INCLUDES DESIGN DEFINITION DOCUMENT (DR8) AND ENVIRONMENTAL ANALYSIS (DR10) 31 MARCH 1989 CONTRACT NAS8-36857 MODIFICATION NO.10 Pratt & Whitney Government Engine Business P.O. Box 109800 West Palm Beach, Florida 33410-9600 Prepared for Procurement Office George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, AL 35812 UNITED TECHNOLOGIES PRATT&WHITNEY RI_IQiI/30 Prlnled rn the United Slates of Ame(_ca Pratt & Whitney FR-19691-4 Volume II LiST OF ILLUSTRATIONS (Continued) Figure Page 4.1.1.4-8 STBE Derivative Gas Generator Assembly .................................. 38 4.1.1.5-1 STBE Derivative Gas Generator Regeneratively Cooled Nozzle ........ 40 4.1.1.5-2 STBE Derivative Gas Generator Nozzle Cooling Configuration ........ 41 4.1.1.5-3 STBE Derivative Gas Generator Nozzle Heat Transfer Performance Summary .............................................................................. 42 4.1.i.6-i STBE Derivative Gas Generator Engine Control and Health Monitor System Functional Concept Meets All Requirements With Low-Cost Approach .............................................................................. 44 4.1.1.6-2 Valve Sequence and Thrust Buildup for Engine Start ................... 48 4.1.1.6-3 Valve Schedule and Thrust Transient for Engine Shutdown ........... 49 4.1.1.6-4 Schedule Requirements Feasible With Ganged Valves .................... 50 4.1.1.6-5 Valve Sequencing Accomplished With Timed Logic ....................... 53 4.1.1.7-1 STBE Derivative Gas Generator Engine Assembly -- Side View ..... 55 4.1.1.7-2 STBE Derivative Gas Generator Engine Assembly -- Top View ...... 56 4.1.1.7-3 Internal Ball Strut Ducting Gimbai ..........................................
    [Show full text]
  • STANDARD FREQUENCY and TIME SIGNAL STATIONS on LF and HF Originally Published Between October 1997 and July 1998
    WUN ARCHIVE STANDARD FREQUENCY AND TIME SIGNAL STATIONS ON LF AND HF Originally published between October 1997 and July 1998 Standard frequency and time signal stations on LF and HF, pt.1 Welcome to the first part of a series about Time and Frequency Stations on LF and HF. This month you'll find a frequency list and a general introduction to these stations. During the next few months, we will highlight a bunch of the stations. Special thanks to Klaus Betke for his research, Stan Skalsky, Kevin Carey, Terry Krey, and Dave Mills. Also thanks to the Institute of Meteorology for Time and Space (Russia), BIPM Bureau International des Poids et Mesures (France) and NIST National Institute of Standards and Technology (USA) for their time, help and the huge amount of info. Introduction Exact time intervals are needed for navigation and surveying, in science and engineering. In the past, HF radio signals were often the only way to calibrate a clock onboard a ship or a frequency standard in a laboratory. In the age of GPS satellites and portable atomic clocks, however, time and frequency distribution via HF has become largely obsolete. New applications like network synchronization require an accuracy that cannot be met by HF signals. Moreover, the transmission scheme of most stations and the peculiarity of shortwave propagation make these signals less suitable for automatic, unattended reception. Consequently, many time signal stations have disappeared. In former times, coastal radio stations also transmitted time signals on their CW frequencies. Although numerous of these services to mariners are still listed in, you will hardly find an active one.
    [Show full text]
  • 4000126063/18/NL/MP NAVISP-EL3-001 D7 Outline
    1 4000126063/18/NL/MP NAVISP-EL3-001 D7 Outline Development Plan 28th February 2020 MarRINav – 4000126063/18/NL/MP – 2020-02-28 2 D7 Outline Development Plan v2.0 MarRINav is a project delivered on behalf of the European Space Agency MarRINav – 4000126063/18/NL/MP – 2020-02-28 3 D7 Outline Development Plan v2.0 MarRINav – Maritime Resilience and Integrity in Navigation Work Package 4 Outline Development Plan Version Date Authors Reason for change 1.0 13.12.2019 M Fairbanks Initial version for release 2.0 28.02.2020 M Fairbanks Response to RIDS © NLA International Limited 2020 The copyright in this document is vested in NLA International Limited. This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior permission of NLA International Limited or in accordance with the terms of ESA Contract No. 4000126063/18/NL/MP. MarRINav – 4000126063/18/NL/MP – 2020-02-28 4 D7 Outline Development Plan v2.0 Document Information Client ESA MarRINav – Maritime Resilience and Integrity in Navigation Project Title 4000126063/18/NL/MP NAVISP-EL3-001 Deliverable Number D7 Report Title WP4 Outline Development Plan Report Version V2.0 Report Version Date 28th February 2020 Name: Dr Michael Fairbanks Lead Author(s) Organisation: Taylor Airey Limited George Shaw (GLA) Contributing Author (s) Dr Paul Wright Richard Greaves Project Manager [email protected] NLA International Ltd 1. Client Circulation 2. Project Files File Name 20 02 28 D7 Outline Development Plan v2.0.docx File Location Googledrive/Dropbox MarRINav – 4000126063/18/NL/MP – 2020-02-28 5 D7 Outline Development Plan v2.0 Summary MarRINav Work Package 4 (WP4) has elsewhere described [1] a conceptual architecture to provide resilient Positioning Navigation and Timing (PNT) capability for UK maritime critical national infrastructure (CNI).
    [Show full text]
  • Time on the Move
    EDITORIAL Vol.1 No.5 May 2007 www.nature.com/naturephotonics Time on the move Optical clocks promise new standards in the measurement of time. To ensure accuracy, however, different clocks must be compared, even if they are on opposite sides of the planet. On 1 April 2007, the source of the an advanced technology with a vast radio-frequency signal that has ensured network already available. The difficulty that the United Kingdom has ticked is that the operation wavelengths of to the same clock for the past 80 years most optical clocks are incompatible was moved from central England to with the transparency window of optical a new home on the northwest coast. fibres. What is necessary is to transfer Before railway networks spread across the stability to a wavelength suitable for the country, variations in local time transmission. The system constructed were made largely irrelevant by long and tested by the NIST team consists of a travelling times. However, during the number of phase-stabilized continuous- 1840s and 1850s, as they expanded, the wave lasers, a 750-m closed-ring network train companies carried the time in of erbium fibre and frequency combs London to local stations, and this was to shift the stability of the reference eventually adopted by public clocks. frequency to a second wavelength Legislation formally imposed Greenwich GPS. The stability of atomic clocks scales between 500 nm and 2 μm. The set- Mean Time (GMT) across the UK with oscillator frequency, and this has led up is just a prototype at present, and in 1880.
    [Show full text]
  • Timestamping Smart Ledgers Comparable, Universal, Traceable, Immune
    Timestamping Smart Ledgers Comparable, Universal, Traceable, Immune June 2018 Timestamping Smart Ledgers Comparable, Universal, Traceable, Immune Timestamping Smart Ledgers Comparable, Universal, Traceable, Immune June 2018 Sam Carter Financial Sector Researcher and Quant Developer Distributed Futures 1 /57 © Z/Yen Group, 2018 Timestamping Smart Ledgers Comparable, Universal, Traceable, Immune Foreword What time is it? When did something happen? When is an event expected? How much time separates two events? Which came first? These questions arise in everyday life and in every kind of discipline. For centuries clockmakers have striven to improve ways to measure time and to achieve ever higher degrees of precision, to meet the demand for its closer and closer estimation – and by achieving that improvement have enabled ever more exacting applications of timekeeping, as the measurement of time has become almost unimaginably precise. Over that period changes in technology have also allowed a uniform time to be widely known to an accuracy not just to the hour but to the minute and then to the second and within even smaller tolerances, in public, in our houses and places of work, and carried on our persons. Centralised time synchronises our local time, and sub-microsecond accuracy routinely enables satellite navigation – relying on the connection of ‘when’ with ‘where’ by the speed of light. In recent years, computing has transformed the speed of financial trading, and following this, the recording of trades – and in particular when they took place – has become far more stringently regulated, with timestamping to the microsecond required in some areas. The story of John Harrison and his marine timekeepers is an example of how an eighteenth-century authority, the Board of Longitude, required demonstration that his new technology was sufficiently accurate and fit for purpose, navigation at sea.
    [Show full text]
  • WATER TREATMENT SYSTEM, OPERABLE UNIT ONE DUBLIN TCE SITE BUCKS COUNTY, PENNSYLVANIA Work Assignment No
    FINAL DESIGN DOCUMENTS: WATER TREATMENT SYSTEM, OPERABLE UNIT ONE DUBLIN TCE SITE BUCKS COUNTY, PENNSYLVANIA Work Assignment No. 90-47-3NS3 Contract No. 68-W8-0090 March 1995 Prepared for U.S. Environmental Protection Agency Region III 841 Chestnut Street Philadelphia, Pennsylvania 19107 Prepared by CH2M HILL Reston, Virginia WDCR846/024.WP5 ' n SRGGOQO Preface This report contains the following design documents: • Engineer's Report • Design Plans (bound under separate cover) • Design Specifications WDCR848/023.WP5 flftOOOOO:2 ;,g|ft^^: • • "•'>•',?':"-"'l. • ' ' " ENGINEER'S REPORT Final Water Treatment System Operable Unit One Dublin TCE Site Bucks County Pennsylvania Prepared for the U.S. Environmental Protection Agency Region HI ..V-, -, 841 Chestnut Street % - ; Philadelphia, Pennsylvania 19107 Prepared by OMH'ILL Reston, Virginia March 1995 WDCR846/025.WP5/1 AR000003 This design document has been prepared under the direction of a Registered Professional Engineer. WDCR846/025.WP5/2 1ROOOOOI* CONTENTS Section Page Acronyms and Abbreviations 1.0 Introduction .................................... 1-1 2.0 Site Background ................................. 2-1 3.0 Existing Municipal Water Supply System .................. 3-1 3.1 Overview .................................. 3-1 3.2 Water Supply Wells and Well Houses ................ 3-1 3.2.1 Well Pumps ......................... 3-1 3.2.2 Disinfection Facilities .................... 3-3 3.2.3 Well Houses ......................... 3-3 3.3 Distribution Network: Existing and Proposed ........... 3-3 3.4 Elevated Tank Reservoir ........................ 3-5 4.0 Design Criteria ................................... 4-1 4.1 Overview ................................. 4-1 4.2 Design Codes and Standards ...................... 4-1 4.2.1 Federal Codes ........................ 4-1 4.2.2 Pennsylvania and Bucks County Codes ......... 4-1 4.2.3 Dublin Borough Codes ..................
    [Show full text]
  • Line Positions and Data Formats
    unifit FOR WINDOWSl Line Positions and Data Formats Version 2021 Ronald Hesse Unifit for Windows Data Formats Version 2021 Scientific Software GmbH Henricistr. 31 D-04177 Leipzig Germany 4 Line positions 1 Line positions 5 Content 1 Line positions ................................................................................................................................. 8 2 Auger Parameters ........................................................................................................................ 48 3 Experimental Files ....................................................................................................................... 53 3.1 XPS Data ......................................................................................................................... 53 3.1.1 ESCALAB Eclipse (*.TAP;*.TXT) ................................................................................ 53 3.1.2 ESCALB/K-ALPHA Avantage (*.AVG) ........................................................................ 61 3.1.3 ESCA3 (*.TAP)............................................................................................................... 63 3.1.4 BESSY (*.*) .................................................................................................................... 64 3.1.5 VSI (*.GPH) .................................................................................................................... 65 3.1.6 HHUD (*.DAT) ..............................................................................................................
    [Show full text]
  • UTC Traceable Time for the Financial Sector Using PTP
    UTC Traceable Time for the Financial Sector using PTP Elizabeth Laier English Overview • Introduction to the NPLTime® service Financial sector timing requirements NPL solution • Tests at NPL Loopback system Service monitoring • Trial of NPLTime® Results • Conclusions Clocks & time dissemination at NPL Primary frequency standard Caesium fountain CsF2 Optical clocks Sr, Sr+ and Yb+ Time Scale: The Time from NPL: • 4 active hydrogen masers • MSF 60kHz radio signal • 5 caesium clocks • NTP • GPS common view • NPLTime® Introduction to the NPLTime® service NPLTime® takes advantage of the UK national timescale UTC (NPL) to disseminate a time signal via fibre optic link directly to customers in the city of London IEEE 1588 v2 (PTP) is used to provide end users with resilient and certified timing and synchronisation of systems to a high level of accuracy Time signal is independent of GPS SLA is 1 µs to UTC (NPL) with 99.9% availability Financial sector requirements • Core requirements Common clock Traceable Resilient Secure • Functional requirements Timestamping Synchronisation Latency monitoring Network performance Audit requirements NPLTime® benefits • Risk mitigation • Simplicity of implementation • Maximises confidence in data timing • Maximises benefit realisation of localised PTP infrastructure upgrades • Provides both absolute time and sync across implementations • NPLTime® SLA available everywhere NPL-Telehouse fibre link PTP over 74km dark fibre pair HM2 Primary Primary clock 1 PPS Primary GM PTP PTP TC TC TC Backup GM 1 PPS Secondary clock HM4 Secondary NPLTime® CsDU Caesium Clock Disciplining Unit: PXI chassis + Timing card + Cs clock Holdover solution at Telehouse hub: Failover to Cs clock in the event of fibre failure Records the 1PPS time difference between NPLTime® Primary clock and the Cs clock Calculates and writes a frequency adjustment to the Cs clock to correct the time offset Time output resolution is limited by the PTP time server.
    [Show full text]