Invasive Species Challenge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of Single and Multispecies Detection Methods for the Surveillance and Monitoring of Marine Pests in New Zealand
Aquatic Invasions (2012) Volume 7, Issue 1: 125–128 doi: 10.3391/ai.2012.7.1.013 (Open Access) © 2012 The Author(s). Journal compilation © 2012 REABIC Proceedings of the 17th International Conference on Aquatic Invasive Species (29 August–2 September 2010, San Diego, USA) Short Communication Development of single and multispecies detection methods for the surveillance and monitoring of marine pests in New Zealand Doug Mountfort, Kirsty F. Smith, Marek Kirs, Jeannie Kuhajek, Janet E. Adamson and Susanna A. Wood* Cawthron Institute, Private Bag 2, Nelson, New Zealand E-mail: [email protected] (DM), [email protected] (KFS), [email protected] (MK), [email protected] (JK), [email protected] (JEA), [email protected] (SAW) *Corresponding author Received: 20 December 2010 / Accepted: 6 August 2011 / Published online: 31 August 2011 Editor’s note: This special issue of Aquatic Invasions includes papers from the 17th International Conference on Aquatic Invasive Species held in San Diego, California, USA, on August 29 to September 2, 2010. This conference has provided a venue for the exchange of information on various aspects of aquatic invasive species since its inception in 1990. The conference continues to provide an opportunity for dialog between academia, industry and environmental regulators within North America and from abroad. Abstract New Zealand’s current surveillance programme for marine pests does not include methods for identification of organisms in the water column, therefore dispersive forms go undetected. Molecular methods provide an opportunity to detect dispersive forms thereby contributing to a more robust surveillance programme. -
Relative Foraging Value to Lesser Scaup Ducks of Native and Exotic Clams from San Francisco Bay Samantha E
Southern Illinois University Carbondale OpenSIUC Publications Department of Zoology 8-2004 Relative Foraging Value to Lesser Scaup Ducks of Native and Exotic Clams from San Francisco Bay Samantha E. Richman James R. Lovvorn Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/zool_pubs © 2004 by the Ecological Society of America Published in Ecology, Vol. 14, No. 4 (August 2004) at doi: 10.1890/03-5032 Recommended Citation Richman, Samantha E. and Lovvorn, James R. "Relative Foraging Value to Lesser Scaup Ducks of Native and Exotic Clams from San Francisco Bay." (Aug 2004). This Article is brought to you for free and open access by the Department of Zoology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Ecological Applications, 14(4), 2004, pp. 1217±1231 q 2004 by the Ecological Society of America RELATIVE FORAGING VALUE TO LESSER SCAUP DUCKS OF NATIVE AND EXOTIC CLAMS FROM SAN FRANCISCO BAY SAMANTHA E. RICHMAN AND JAMES R. LOVVORN1 Department of Zoology, University of Wyoming, Laramie, Wyoming 82071 USA Abstract. Invasions of exotic invertebrates have greatly altered many aquatic com- munities, but impacts on the foraging energetics of predators seldom have been assessed. In San Francisco Bay, California (USA), a major community change occurred with intro- duction of the Asian clam (Potamocorbula amurensis) in 1986. This species now greatly outnumbers the previous clam prey of a variety of sharks, rays, sturgeon, ¯at®sh, and crabs, as well as several diving duck species for which the bay is the most important wintering area on the U.S. -
Management Plan
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center National Invasive Species Council materials for 2001 Management Plan Follow this and additional works at: https://digitalcommons.unl.edu/natlinvasive Part of the Environmental Indicators and Impact Assessment Commons "Management Plan" (2001). National Invasive Species Council materials. 3. https://digitalcommons.unl.edu/natlinvasive/3 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in National Invasive Species Council materials by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MEETING THE INVASIVE SPECIES CHALLENGE Management Plan National Invasive Species Council 2001 Hard-Copy Publication October 2001 The Federal Government is an Equal Opportunity Provider and Employer Suggested Citation: National Invasive Species Council. 2001. Meeting the Invasive Species Challenge: National Invasive Species Management Plan. 80 pp. MEETING THE INVASIVE SPECIES CHALLENGE Management Plan National Invasive Species Council 2001 ■ i National Invasive Species Council Hon. Gale Norton Hon. Ann M. Veneman Hon. Donald L. Evans Co-chair Co-chair Co-chair Secretary of the Interior Secretary of Agriculture Secretary of Commerce Hon. Colin L. Powell Hon. Norman Y. Mineta Hon. Donald H. Rumsfeld Secretary of State Secretary of Transportation Secretary of Defense Hon. Paul H. O’Neill Hon. Tommy G. Thompson Secretary of the Treasury Secretary of Health and Human Services Hon. Christine T. Whitman Hon. Donald L. Pressley Administrator Administrator Environmental Protection Agency U.S. Agency for International Development Council Staff Lori Williams Chris Dionigi Jamie K. -
Biology and Feeding Potential of Galerucella Placida Baly (Coleoptera: Chrysomelidae), a Weed Biocontrol Agent for Polygonum Hydropiper Linn
Journal of Biological Control, 30(1): 15-18, 2016 Research Article Biology and feeding potential of Galerucella placida Baly (Coleoptera: Chrysomelidae), a weed biocontrol agent for Polygonum hydropiper Linn. D. DEY*, M. K. GUPTA and N. KARAM1 Department of Entomology, College of Agriculture, Central Agricultural University, Imphal-795004, India. 1Directorate of Research, Central Agricultural University, Imphal-795004, India. Corresponding author Email: [email protected] ABSTRACT: Galerucella placida Baly is a small leaf beetle belonging to the family Chrysomelidae. which feeds on aquatic weed Polygonum hydropiper Linn. The insect was reported from various regions of India during 1910-1936. Investigation on some biological parameters of G. placida and feeding of the P. hydropiper by G. placida was conducted in laboratory. The results indicated the fecundity of G. placida was 710-1210 eggs per female. Eggs were markedly bright yellow, pyriform basally rounded and oval at tip. It measured 0.67 mm in length and 0.46 mm in width. Average incubation period was 3.80 days. Larvae of G. placida underwent three moults. The first instar larva was yellow in colour and measured 1.26 mm in length and 0.40 mm in width. The second instar was yellowish in colour but after an hour of feeding, the colour of the grub changes to blackish brown from yellow. It measured 2.64 mm in length and 0.77 mm in width. The third instar measured 5.59 mm in length and 1.96 mm in width. The average total larval duration of G. placida was 13.30 days. The fully developed pupa looked black in colour and measured 4.58 mm in length and 2.37 mm in width. -
Are All Flea Beetles the Same?
E-1274 Are All Phyllotreata cruciferae Flea Beetles Crucifer Flea Beetle Versus the Same? Leafy Spurge Flea Beetles Denise L. Olson Assistant Professor, Entomology Dept. Janet J. Knodel Extension Crop Protection Specialist, NCREC, NDSU Aphthona lacertosa “FLEA BEETLE” is a common name describing many species of beetles that use their enlarged hind legs to jump quickly when disturbed. The adults feed on the leaves of their host plants. Heavily fed-on leaves have a shot-hole appearance. The larvae (wormlike immature stage) usually feed on the roots of the same host plants as adults. Common flea beetles that occur in North Dakota include the Flea beetles crucifer flea beetle (Phyllotreata cruciferae) and the leafy spurge have enlarged flea beetles (Aphthona species). The crucifer flea beetle is a hind legs that non-native insect pest that accidentally was introduced into they use to jump North America during the 1920s. Phyllotreata cruciferae now quickly when can be found across southern Canada and the northern Great disturbed. Plains states of the United States. The leafy spurge flea beetles are non-native biological control agents and were introduced for spurge control beginning in the mid-1980s. These biological control agents have been released in the south-central prov- inces of Canada and in the Upper Great Plains and Midwest Crucifer flea beetle is states of the United States. Although P. cruciferae and Aphthona an exotic insect pest. species are both known as flea beetles and do look similar, they differ in their description, life cycle and preference of host plants. Leafy spurge flea beetle species are introduced biological control North Dakota State University, Fargo, North Dakota 58105 agents. -
A Checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the World
INSECTA MUNDI, Vol. 15, No.3, September, 2001 151 A checklist of the Limnichidae and the Lutrochidae (Coleoptera) of the world P. J. Spangler, C. L. Staines, P.M. Spangler, and S.L. Staines Department of Entomology National Museum of Natural History Smithsonian Institution Washington, DC 20560 Abstract. A checklist of the world species of Limnichidae (35 genera, 345 species) and Lutrochidae (1 genus, 11 species) is presented. The author, year of publication and page number, synonyms, distribution by country, and a terminal bibliography are given for each genus and species. Biological information is also reviewed. Introduction scribed the species and adult behavior of Lutrochus arizonicus Brown and Murvosh. Hilsenhoff and The Limnichidae Erichson (1847) and Lutro Schmude (1992) reported that adults of L. laticeps chidae Kasap and Crowson (1975) are small semi Casey (1893) were found in small to large, warm, aquatic beetles; adults of both families most fre calcareous streams; that adults oviposit on sub quently live in riparian habitats. Both families merged wood or on travertine rocks; and larvae were previously assigned to the superfamily Dry were aquatic and were collected on the travertine opoidea (Crowson, 1978); however, they are now rocks. placed in the Byrrhoidea (Lawrence and Newton, Previous world catalogs that included the lim 1995). From 1975 through 1993, D. P. Wooldridge nichids and lutrochids are by Zaitzev (1910) and published numerous limnichid descriptions and von Dalla Torre (1911) who recorded 11 genera and revisions but much systematic work remains to be 75 species. Blackwelder (1944) published a check done for the Limnichidae, especially in the tropical list of the Coleoptera of Mexico, Central America, regions of the Eastern Hemisphere. -
CDA Leafy Spurge Brochure
Frequently Asked Questions About the Palisade Insectary Mission Statement How do I get Aphthona beetles? You can call the Colorado Department of We are striving to develop new, effective Agriculture Insectary in Palisade at (970) ways to control non-native species of plants 464-7916 or toll free at (866) 324-2963 and and insects that have invaded Colorado. get on the request list. We are doing this through the use of biological controls which are natural, non- When are the insects available? toxic, and environmentally friendly. We collect and distribute adult beetles in June and July. The Leafy Spurge Program In Palisade How long will it take for them to control my leafy spurge? The Insectary has been working on leafy Biological Control You can usually see some damage at the spurge bio-control since 1988. Root feeding point of release the following year, but it flea beetles are readily available for release of typically takes three to ten years to get in early summer. Three other insect species widespread control. have been released and populations are growing with the potential for future Leafy Spurge What else do the beetles feed on? distribution. All of the leafy spurge feeding The beetles will feed on leafy spurge and insects are maintained in field colonies. cypress spurge. They were held in Additional research is underway to explore quarantine and tested to ensure they would the potential use of soilborne plant not feed on other plants before they were pathogens as biocontrol agents. imported and released in North America What makes the best release site? A warm dry location with moderate leafy spurge growth is best. -
The Effect of Aphthona Whitfieldi (Coleoptera: Chrysomelidae) Populations’ Density on the Growth of Jatropha Curcas in Burkina Faso
Advances in Entomology, 2017, 5, 127-137 http://www.scirp.org/journal/ae ISSN Online: 2331-2017 ISSN Print: 2331-1991 The Effect of Aphthona whitfieldi (Coleoptera: Chrysomelidae) Populations’ Density on the Growth of Jatropha curcas in Burkina Faso Alizèta Sawadogo1,2, Souleymane Nacro1,3 1Fasobiocarburant, Léo, Burkina Faso 2Crops department, IDR, Nazi Boni University of Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso 3INERA, CREAF of Kamboinsé, Ouagadougou, Burkina Faso How to cite this paper: Sawadogo, A. and Abstract Nacro, S. (2017) The Effect of Aphthona whitfieldi (Coleoptera: Chrysomelidae) Aphthona whitfieldi Bryant (Coleoptera: Chrysomelidae) is a major insect Populations’ Density on the Growth of pest of Jatropha curcas L. in Burkina Faso. This study aimed at evaluating the Jatropha curcas in Burkina Faso. Advances effect of the insect pest populations’ density on the growth of the plant. To in Entomology, 5, 127-137. achieve this purpose, 90-day aged single plants were caged in a randomized https://doi.org/10.4236/ae.2017.54013 complete block design experiment with 5 treatments and 5 replicates. The Received: August 8, 2017 treatments consisted of increasing numbers of adults of A. whitfieldi used to Accepted: October 16, 2017 infest the caged plants: T0 (0 adult = check), T1 (100 adults), T2 (200 adults), Published: October 19, 2017 T3 (300 adults), T4 (400 adults). All caged plants were infested 21 days after transplantation and the evaluation started 14 days later one on every 2-week Copyright © 2017 by authors and Scientific Research Publishing Inc. basis from September 18, 2014 to February 19, 2015. The growth parameters This work is licensed under the Creative of the plant were assessed. -
Corbula Amurensis
Pest Risk Assessment for Asian Brackish Water Clams in Oregon IDENTITY Name: Corbula amurensis (formerly Potamocorbula amurenis) Taxonomic Position: phylum Molluska; class Bivalvia; order Myodia; family Cobiculidae Common Names: Amur River clam, Asian clam (not to be confused with Corbicula fluminea also known as the Asian clam), overbite clam, brackish-water Corbula RISK RATING SUMMARY Relative Risk Rating: HIGH Numerical Score: 6 (on a 1-9 scale) Uncertainty: HIGH* The high level of uncertainty attributed to this risk assessment is due to several factors. The format the risk assessment follows was originally developed for forest pest species and, as such, fails to taken into consideration characteristics of invasive species that may be unique to aquatic organisms, especially marine ones. Secondly, while Corbula amurensis is considered a species of considerable concern, it is only present in one location outside of its native range. There may be a unique confluence of events needed for a successful establishment of this species. Some suggestions indicate that a scouring event of the extensive mudflats in the north portion of San Francisco Bay opened up opportunity for colonization (Cohen 2005) while others suggest that large brackish water dominated estuaries (NEMESIS) may be a key requirement for establishment. This would seem to indicate that, perhaps, there are environmental factors necessary for successful inoculation/establishment that have not taken into consideration by this risk assessment. RECOMMENDATION Corbula amurensis has been listed by the Invasive Species Specialist Group of the World Conservation Union (IUCN) as one of the '100 Worst Invasive Species' in the world. Ballast water, with its ability to inoculate a water body with numerous larvae at a time represents the pathway of primary concern for introduction, followed by hull fouling. -
Barcoding Chrysomelidae: a Resource for Taxonomy and Biodiversity Conservation in the Mediterranean Region
A peer-reviewed open-access journal ZooKeys 597:Barcoding 27–38 (2016) Chrysomelidae: a resource for taxonomy and biodiversity conservation... 27 doi: 10.3897/zookeys.597.7241 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region Giulia Magoga1,*, Davide Sassi2, Mauro Daccordi3, Carlo Leonardi4, Mostafa Mirzaei5, Renato Regalin6, Giuseppe Lozzia7, Matteo Montagna7,* 1 Via Ronche di Sopra 21, 31046 Oderzo, Italy 2 Centro di Entomologia Alpina–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 3 Museo Civico di Storia Naturale di Verona, lungadige Porta Vittoria 9, 37129 Verona, Italy 4 Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano, Italy 5 Department of Plant Protection, College of Agriculture and Natural Resources–University of Tehran, Karaj, Iran 6 Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy 7 Dipartimento di Scienze Agrarie e Ambientali–Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Corresponding authors: Matteo Montagna ([email protected]) Academic editor: J. Santiago-Blay | Received 20 November 2015 | Accepted 30 January 2016 | Published 9 June 2016 http://zoobank.org/4D7CCA18-26C4-47B0-9239-42C5F75E5F42 Citation: Magoga G, Sassi D, Daccordi M, Leonardi C, Mirzaei M, Regalin R, Lozzia G, Montagna M (2016) Barcoding Chrysomelidae: a resource for taxonomy and biodiversity conservation in the Mediterranean Region. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 27–38. doi: 10.3897/ zookeys.597.7241 Abstract The Mediterranean Region is one of the world’s biodiversity hot-spots, which is also characterized by high level of endemism. -
Purple Loosestrife Lythrum Salicaria L
Weed of the Week Purple Loosestrife Lythrum salicaria L. Native Origin: Eurasia- Great Britain, central and southern Europe, central Russia, Japan, Manchuria China, Southeast Asia, and northern India Description: Purple loosestrife is an erect perennial herb in the loosestrife family (Lythraceae), growing to a height of 3-10 feet. Mature plants can have 1 to 50 4-sided stems that are green to purple and often branching making the plant bushy and woody in appearance. Opposite or whorled leaves are lance-shaped, stalk-less, and heart-shaped or rounded at the base. Plants are usually covered by a downy pubescence. Flowers are magenta-colored with five to seven petals and bloom from June to September. Seeds are borne in capsules that burst at maturity in late July or August. Single stems can produce an estimated two to three million seeds per year from a single rootstock. The root system consists of a large, woody taproot with fibrous rhizomes. Rhizomes spread rapidly to form dense mats that aid in plant production. Habitat: Purple loosestrife is capable of invading wetlands such as freshwater wet meadows, tidal and non-tidal marshes, river and stream banks, pond edges, reservoirs, and ditches. Distribution: This species is reported from states shaded on Plants Database map. It is reported invasive in CT, DC, DE, ID, IN, KY, MA, MD, ME, MI, MN, MO, NC, NE, NH, NJ, NY, OH, OR, PA, RI, TN, UT, VA, VT, WA, and WI. Ecological Impacts: It spreads through the vast number of seeds dispersed by wind and water, and vegetatively through underground stems at a rate of about one foot per year. -
Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.