COMPUTATIONAL MECHANICS (Abstracts)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
Geophysical Research Abstracts Vol. 13, EGU2011-5107-2, 2011 EGU General Assembly 2011 © Author(s) 2011 NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Richard Elphic (1), Gregory Delory (1,2), Anthony Colaprete (1), Mihaly Horanyi (3), Paul Mahaffy (4), Butler Hine (1), Steven McClard (5), Joan Salute (6), Edwin Grayzeck (6), and Don Boroson (7) (1) NASA Ames Research Center, Moffett Field, CA USA ([email protected]), (2) Space Sciences Laboratory, University of California, Berkeley, CA USA, (3) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO USA, (4) NASA Goddard Space Flight Center, Greenbelt, MD USA, (5) LunarQuest Program Office, NASA Marshall Space Flight Center, Huntsville, AL USA, (6) Planetary Science Division, Science Mission Directorate, NASA, Washington, DC USA, (7) Lincoln Laboratory, Massachusetts Institute of Technology, Lexington MA USA Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent “Scientific Context for Exploration of the Moon” (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. -
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Exploration of the Moon
Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms. -
Global Exploration Roadmap
The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System. -
Exploration Timeline A
HOW DID OUR MOON FORM? MEET A LUNAR GEOLOGIST — Dr. Jeff Taylor, University of Hawaii What do you do? —— How did you get interested in this field? What is the most interesting question about the Moon that scientists are trying to solve? Do you want to go to the Moon? If someone wants to become a scientist, what should they do? EVOLUTION OF OUR MOON TRY THIS — What’s Needed Early Stages: A Magma Ocean — Make an Impact! Students model impact events and develop an understanding of the processes that cause cratering on the lunar surface. Getting Started Big Impacts, Big Basins — What features do they observe? Do they see the large round areas that have smooth dark interiors? Do they see smaller circular features? How might these have formed? What to Do Basin Filling — What do they observe? Can they identify different features of the crater? How do craters help geologists “see into” the inside of a planet? How did impactors traveling at different “velocities” influence the crater size or distribution of ejecta? Do the crater sizes or depths change? Wrapping Up Recent History — Can they identify impact basins, craters, and rays? EXPLORATIONXPLORATION TIMELINEIMELINE HINA MOVES TO THE MOON: Humans have been asking questions about our Moon since we first looked up at it in the sky. A HAWAIIAN STORY ABOUT OUR MOON WhatWhat isis oourur MMoonoon mmadeade oof?f? WWhathat aarere tthehe llightight aandnd ddarkark mmarkings?arkings? DDoesoes tthehe MMoonoon hhaveave ooceansceans aandnd aann aatmosphere?tmosphere? As telescopes became ever more powerful, the Moon’s rugged surface was revealed in increasing detail, but observations from Earth could not answer many scientific questions. -
Mobile Lunar and Planetary Base Architectures
Space 2003 AIAA 2003-6280 23 - 25 September 2003, Long Beach, California Mobile Lunar and Planetary Bases Marc M. Cohen, Arch.D. Advanced Projects Branch, Mail Stop 244-14, NASA-Ames Research Center, Moffett Field, CA 94035-1000 TEL 650 604-0068 FAX 650 604-0673 [email protected] ABSTRACT This paper presents a review of design concepts over three decades for developing mobile lunar and planetary bases. The idea of the mobile base addresses several key challenges for extraterrestrial surface bases. These challenges include moving the landed assets a safe distance away from the landing zone; deploying and assembling the base remotely by automation and robotics; moving the base from one location of scientific or technical interest to another; and providing sufficient redundancy, reliability and safety for crew roving expeditions. The objective of the mobile base is to make the best use of the landed resources by moving them to where they will be most useful to support the crew, carry out exploration and conduct research. This review covers a range of surface mobility concepts that address the mobility issue in a variety of ways. These concepts include the Rockwell Lunar Sortie Vehicle (1971), Cintala’s Lunar Traverse caravan, 1984, First Lunar Outpost (1992), Frassanito’s Lunar Rover Base (1993), Thangavelu’s Nomad Explorer (1993), Kozlov and Shevchenko’s Mobile Lunar Base (1995), and the most recent evolution, John Mankins’ “Habot” (2000-present). The review compares the several mobile base approaches, then focuses on the Habot approach as the most germane to current and future exploration plans. -
Next-Generation Laser Retroreflectors for the Science and Exploration of the Moon, Mars and Beyond
3rd International Workshop on Instrumentation for Planetary Missions (2016) 4074.pdf Next-Generation Laser Retroreflectors for the Science and Exploration of the Moon, Mars and Beyond. S. Dell’Agnello1 for the SCF_Lab Team, D. Currie2, R. Richards3, J. Chandler4 1Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati (INFN-LNF), via E. Fermi, Frascati (Rome), Italy, email [email protected] 2University of Maryland (UMD) at College Park, MD, USA 3Moon Express Inc (MEI), 19-2060 N Akron Rd, Moffett Field, CA 94035 4Harvard-Smithsonian Center for Astrophysics (CfA), MA, USA Introduction. We developed next-generation laser retroreflectors for solar system science and exploration in the framework of the Affiliation membership of INFN to NASA/SSERVI (Solar System Exploration Virtual Institute), INFN National Science Committees n. 5 (devoted to R&D) and n. 2 (devoted to science) [1] and in collaboration with ASI, the Italian Space Agen- cy. Applications cover landing and roving missions to the Moon, Mars (ExoMars 2016 lander, ExoMars 2020 Figure 1: MoonLIGHT (4”), Apollo (1.5”) reflectors Rover and Mars 2020 Rover) to future or proposed missions to Phobos/Deimos (sample return), icy/rocky INFN, UMD and MEI signed a private-public partner- moons of Jupiter/Saturn and asteroids/comets (ESA’s ship, multi-mission agreement to deploy MoonLIGHT AIM). These retroreflectors have been or will be fully on the Moon (1st mission: end 2017/early 2018). The characterized at the SCF_Lab (Satellite/lunar/gnss la- results of an optical performace characterization of ser ranging/altimetry Cube/microsat Characterization MoonLIGHT carried out at the SCF_Lab is in Fig. -
A Lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R
i-SAIRAS2020-Papers (2020) 5051.pdf A lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R. Smith1, S. George1, D. Jonckers1 1STFC RAL Space, R100 Harwell Campus, OX11 0DE, United Kingdom, E-mail: [email protected] ABSTRACT the form of rovers and landers of various size [4]. Due to the costly nature of these missions, and the pressure Current science missions to the surface of other plan- for a guaranteed science return, they have been de- etary bodies tend to be very large with upwards of ten signed to minimise risk by using redundant and high instruments on board. This is due to high reliability re- reliability systems. This further increases mission cost quirements, and the desire to get the maximum science as components and subsystems are expected to be ex- return per mission. Missions to the lunar surface in the tensively qualified. next few years are key in the journey to returning hu- mans to the lunar surface [1]. The introduction of the As an example, the Mars Science Laboratory, nick- Commercial lunar Payload Services (CLPS) delivery named the Curiosity rover, one of the most successful architecture for science instruments and technology interplanetary rovers to date, has 10 main scientific in- demonstrators has lowered the barrier to entry of get- struments, requires a large team of people to control ting science to the surface [2]. Many instruments, and and cost over $2.5 billion to build and fly [5]. Curios- In Situ Surface Utilisation (ISRU) experiments have ity had 4 main science goals, with the instruments and been funded, and are being built with the intention of the design of the rover specifically tailored to those flying on already awarded CLPS missions. -
Celebrate Apollo
National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world. -
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T. Crofton Department of Aerospace & Ocean Engineering TEAM LEAD Allison Quinn STUDENT MEMBERS Ethan LeBoeuf Brian McLemore Peter Bradley Smith Amanda Swanson Michael Valosin III Vidya Vishwanathan FACULTY SUPERVISOR AIAA 2018 Undergraduate Spacecraft Design Dr. Kevin Shinpaugh Competition Submission i AIAA Member Numbers and Signatures Ethan LeBoeuf Brian McLemore Member Number: 918782 Member Number: 908372 Allison Quinn Peter Bradley Smith Member Number: 920552 Member Number: 530342 Amanda Swanson Michael Valosin III Member Number: 920793 Member Number: 908465 Vidya Vishwanathan Dr. Kevin Shinpaugh Member Number: 608701 Member Number: 25807 ii Table of Contents List of Figures ................................................................................................................................................................ v List of Tables ................................................................................................................................................................vi List of Symbols ........................................................................................................................................................... vii I. Team Structure ........................................................................................................................................................... 1 II. Introduction .............................................................................................................................................................. -
Apollo Anniversary: Moon Landing “Inspired World” by John Roach
Lexia® PowerUp Literacy® Comprehension Passages Apollo Anniversary: Moon Landing “Inspired World” By John Roach [1] On July 20, 1969, at 10:56 p.m. ET, Apollo 11 astronaut Neil Armstrong stepped off the “Eagle” onto the surface of the moon and said, “That’s one small step for man, one giant leap for mankind.” Thirty-five years later, Steven Dick, NASA’s chief historian at the space agency’s headquarters in Washington, D.C., said that a thousand years from now, that step may be considered the crowning achievement of the 20th century. “Putting a man on the moon not only inspired the nation, but also the world,” Dick said. “The 1960s were a tumultuous time in the U.S., and the moon landing showed what could be accomplished at a time when much else was going wrong.” [2] Armstrong’s step was the culmination of a goal set forth by President John F. Kennedy on May 25, 1961. In a speech before a joint session of Congress, the President had announced his objective of “landing a man on the moon and returning him safely to Earth” before the end of the decade. The goal set in motion Project Apollo. Armstrong—together with astronauts Michael Collins and Edwin “Buzz” Aldrin, Jr.—lifted off on the Apollo 11 mission on July 16, 1969, from Kennedy Space Center in Florida at 9:32 a.m. ET. [3] About 76 hours later, the spacecraft entered lunar orbit. Armstrong and Aldrin boarded the lunar module, known as the Eagle, for descent to the lunar surface. -
Lunar Science with ARTEMIS: a Journey from the Moon’S Exosphere to Its Core
Lunar Science with ARTEMIS: A Journey from the Moon’s Exosphere to its Core A white paper submitted to the 2011 Planetary Science Decadal Survey Primary author: K.K. Khurana Institute for Geophysics and Planetary Physics (IGPP), University of California Los Angeles (310-825-8240, [email protected]) Co-authors: Affiliation Angelopoulos, V. ESS/IGPP, University of California Los Angeles Carlson, Charles W. SSL/University of California Berkeley, CA Delory, Gregory T. SSL/University of California Berkeley/NASA Ames Research Center Farrell, William M. NASA/GSFC, Greenbelt, MD Grimm, Robert E. Southwest Research Institute, Boulder, CO Garrick-Bethell, Ian Dept. of Earth, Atmospheric & Planetary Sciences, MIT, Cambridge, MA Halekas, Jasper S. SSL/University of California Berkeley, CA Hood, L. L. Lunar and Planetary Laboratory, U. of Arizona, Tucson, AZ Horanyi, M. LASP and Dept. of Physics, Univ. of Colorado, Boulder, CO Lillis, Robert J. SSL/University of California Berkeley, CA Lin, Robert P. SSL/University of California Berkeley, CA Neal, Clive R. Dept. of Civil Engineering & Geological Sciences, U. of Notre Dame, IN Purucker, M. E. Raytheon at Planetary Geodynamics Lab., GSFC, Greenbelt, MD Russell, Chris T. ESS/IGPP, University of California Los Angeles, CA Schubert, Gerry ESS/IGPP, University of California Los Angeles, CA Sibeck, D. G. NASA/GSFC, Greenbelt, MD Travnicek, Pavel IGPP, University of California Los Angeles, CA This white paper describes the planetary science objectives to be achieved by ARTEMIS, a two-spacecraft constellation en route to the Moon, and presents recommendations pertaining to future lunar science. 1 Motivation and Recommendations The inner planets hold critical information regarding the origin of the solar system and habitable environments within it.