MA 3362 Lecture 23 - Integral Domains

Total Page:16

File Type:pdf, Size:1020Kb

MA 3362 Lecture 23 - Integral Domains MA 3362 Lecture 23 - Integral Domains Monday, November 17, 2008. Objectives: Define integral domains and order. Integral Domains We’ve talked around divisors of zero as we’ve played with solving quadratic equations. What we’ve seen is that in a commutative ring, the things we do to solve a quadratic equation by factoring work fine. The only problem is that if a · b = 0, when both a and b are not zero, then extra solutions can creep in. This complicates things immensely. It makes sense, therefore, to have a special category of ring that avoids this problem. Definition 1. Let a be an element of a ring R. If there is another element b ∈ R such that b =6 0 and (1) ab =0, then a is said to be a divisor of zero. Now, 0 is always a divisor of zero. The problems we’ve mentioned arise, when something other than zero is also a divisor of zero. Definition 2. If a commutative ring with unity has no non-zero zero divisors, then it is called an integral domain. In an integral domain, therefore, the factoring technique for solving a quadratic equation works fine, and the solutions from the two factors are the only two solutions. We’re going to go in a different direction with integral domains in the little bit of time we have left. Ordering in an integral domain In high school algebra, we have a natural ordering for our numbers. For example, we know what (2) 3 < 5 means. All of the real numbers are comparable this way. Given any two numbers x, y ∈ R, we can say that exactly one of the following is true (3) x < y (4) x = y (5) or x>y. This is called the trichotomy law. We can’t easily say that for R2 or C. Also keep in mind that we’re in algebra. As a ring, R is a set with two binary operations defined on it. A ring doesn’t have a distance defined on it, for example. Is < an algebraic concept? That is, can we define it in terms of the operations? Note that as far as multiplication on Q+ is concerned, the primes are interchangeable, and so order is not necessarily preserved, even if an operation is. Here’s one way of defining order in a ring (or in our case, an integral domain). 1 MA 3362 Lecture 23 - Integral Domains 2 0.1. Positives and negatives. In Z, for example, we can rewrite the trichotomy law as follows. (6) x < y ⇔ x − y < 0 (difference is negative) (7) x = y ⇔ x − y = 0 (difference is zero) (8) or x > y ⇔ x − y > 0 (difference is positive). This doesn’t seem like much, but at least we’ve done stuff that sounds like negative and positive before, the additive inverses. We can now define what an order is in an integral domain. Definition 3. Let D be an integral domain. D will be called an ordered integral domain, if the there is a subset D+ ⊂ D with the following properties. (1) If a,b ∈ D+, then a + b ∈ D+. (2) If a,b ∈ D+, then ab ∈ D+. (3) For each element a ∈ D, exactly one of the following is true: a ∈ D+, a =0, or −a ∈ D+. In other words, D is ordered, if it can be partitioned into positives, negatives, and zero, and the positives are closed. As above, we will say that x > y, if x − y ∈ D+, etc. We will also use notation like x ≥ y to mean x > y or x = y. Quiz 23 1. Suppose R is not an integral domain. Then there are a,b ∈ R, a =6 0, b =6 0, and ab = 0. Could there be an R+ satisfying the properties above? 2. We can reverse the ordering on R, and that’s pretty much the same, right? Are the positives and negatives interchangeable? 3. In an ordered integral domain D, is D+ a subring? 4. Z3 is an integral domain. Can it be an ordered integral domain? Well-ordered integral domains Our normal rings, Z, Q, and R, are nicely ordered (they’re all ordered integral domains). Consider Q+. Is there a smallest element of Q+? That is, is there some element L ∈ Q+ such that L ≤ q for every q ∈ Q+? Definition 4. Let D be an ordered integral domain, and let S ⊂ D. If there is an element L ∈ S such that L ≤ s for every s ∈ S, then L is said to be a least element of S. Definition 5. Let D be an ordered integral domain. If every subset of D+ has a least element, then D is said to be well-ordered. Let’s play with this. Suppose D is a well-ordered integral domain. Therefore, there is a set of positives D+, and D+ has a least element, which we’ll call u. We know that 2u = u + u ∈ D+, since D+ must be closed. Similarly, u + u + u =3u, 4u, etc. are all elements of D+ . Suppose there is a v such that u<v< 2u. This would mean that v − u ∈ D+ and 2u − v ∈ D+. I claim that 2u − v<u, since (9) u − (2u − v) = u − 2u + v = −u + v = v − u ∈ D+. But u is the least element of D+, and so v cannot exist. Similarly, if nu<v< (n + 1)u, then v − nu ∈ D+, (n + 1)u − v ∈ D+, (10) u − ((n + 1)u − v) = u − nu − u + v = v − nu ∈ D+, MA 3362 Lecture 23 - Integral Domains 3 and (n + 1)u − v is an element in D+ smaller than the least element of D+. Can there be anything in D+ other than u, 2u, 3u, etc.? Let E ⊂ D+ be the set of all elements of D+ that don’t take the form u,2u, etc. The set E must have a least element, which we’ll call v. We know that v>u, so v − u ∈ D+. Also v − (v − u) = u ∈ D+, so v − u < v. Therefore, v − u is a positive element less than v, so it must be of the form nu. But then v = (n + 1)u. Contradiction. See what’s going on? What we have here is the following theorem. Theorem 1. All well-ordered integral domains are isomorphic to Z..
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • The Quotient Field of an Intersection of Integral Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 70, 238-249 (1981) The Quotient Field of an Intersection of Integral Domains ROBERT GILMER* Department of Mathematics, Florida State University, Tallahassee, Florida 32306 AND WILLIAM HEINZER' Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 Communicated by J. DieudonnP Received August 10, 1980 INTRODUCTION If K is a field and 9 = {DA} is a family of integral domains with quotient field K, then it is known that the family 9 may possess the following “bad” properties with respect to intersection: (1) There may exist a finite subset {Di}rzl of 9 such that nl= I Di does not have quotient field K; (2) for some D, in 9 and some subfield E of K, the quotient field of D, n E may not be E. In this paper we examine more closely conditions under which (1) or (2) occurs. In Section 1, we work in the following setting: we fix a subfield F of K and an integral domain J with quotient field F, and consider the family 9 of K-overrings’ of J with quotient field K. We then ask for conditions under which 9 is closed under intersection, or finite intersection, or under which D n E has quotient field E for each D in 9 and each subfield E of K * The first author received support from NSF Grant MCS 7903123 during the writing of this paper. ‘The second author received partial support from NSF Grant MCS 7800798 during the writing of this paper.
    [Show full text]
  • Arxiv:2011.04704V2 [Cs.LO] 22 Mar 2021 Eain,Bttre Te Opttoal Neetn Oessuc Models Interesting Well
    Domain Semirings United Uli Fahrenberg1, Christian Johansen2, Georg Struth3, and Krzysztof Ziemia´nski4 1Ecole´ Polytechnique, Palaiseau, France 2 University of Oslo, Norway 3University of Sheffield, UK 4University of Warsaw, Poland Abstract Domain operations on semirings have been axiomatised in two different ways: by a map from an additively idempotent semiring into a boolean subalgebra of the semiring bounded by the additive and multiplicative unit of the semiring, or by an endofunction on a semiring that induces a distributive lattice bounded by the two units as its image. This note presents classes of semirings where these approaches coincide. Keywords: semirings, quantales, domain operations 1 Introduction Domain semirings and Kleene algebras with domain [DMS06, DS11] yield particularly simple program ver- ification formalisms in the style of dynamic logics, algebras of predicate transformers or boolean algebras with operators (which are all related). There are two kinds of axiomatisation. Both are inspired by properties of the domain operation on binary relations, but target other computationally interesting models such as program traces or paths on digraphs as well. The initial two-sorted axiomatisation [DMS06] models the domain operation as a map d : S → B from an additively idempotent semiring (S, +, ·, 0, 1) into a boolean subalgebra B of S bounded by 0 and 1. This seems natural as domain elements form powerset algebras in the target models mentioned. Yet the domain algebra B cannot be chosen freely: B must be the maximal boolean subalgebra of S bounded by 0 and 1 and equal to the set Sd of fixpoints of d in S. The alternative, one-sorted axiomatisation [DS11] therefore models d as an endofunction on a semiring S that induces a suitable domain algebra on Sd—yet generally only a bounded distributive lattice.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • EXAMPLES of CHAIN DOMAINS 1. Introduction In
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 3, March 1998, Pages 661{667 S 0002-9939(98)04127-6 EXAMPLES OF CHAIN DOMAINS R. MAZUREK AND E. ROSZKOWSKA (Communicated by Ken Goodearl) Abstract. Let γ be a nonzero ordinal such that α + γ = γ for every ordinal α<γ. A chain domain R (i.e. a domain with linearly ordered lattices of left ideals and right ideals) is constructed such that R is isomorphic with all its nonzero factor-rings and γ is the ordinal type of the set of proper ideals of R. The construction provides answers to some open questions. 1. Introduction In [6] Leavitt and van Leeuwen studied the class of rings which are isomorphic with all nonzero factor-rings. They proved that forK every ring R the set of ideals of R is well-ordered and represented by a prime component∈K ordinal γ (i.e. γ>0andα+γ=γfor every ordinal α<γ). In this paper we show that the class contains remarkable examples of rings. Namely, for every prime component ordinalK γ we construct a chain domain R (i.e. a domain whose lattice of left ideals as well as the lattice of right ideals are linearly ordered) such that R and γ is the ordinal type of the set of proper ideals of R. We begin the construction∈K by selecting a semigroup that has properties analogous to those we want R to possess ( 2). The desired ring R is the Jacobson radical of a localization of a semigroup ring§ of the selected semigroup with respect to an Ore set ( 3).
    [Show full text]
  • Free Medial Quandles
    Algebra Univers. 78 (2017) 43–54 DOI 10.1007/s00012-017-0443-2 Published online May 23, 2017 © 2017 The Author(s) Algebra Universalis This article is an open access publication Free medial quandles Premyslˇ Jedlicka,ˇ Agata Pilitowska, and Anna Zamojska-Dzienio Abstract. This paper gives the construction of free medial quandles as well as free n-symmetric medial quandles and free m-reductive medial quandles. 1. Introduction A binary algebra (Q, ) is called a rack if the following conditions hold, for · every x, y, z Q: ∈ x(yz)=(xy)(xz) (we say Q is left distributive), • the equation xu = y has a unique solution u Q (we say Q is a left • ∈ quasigroup). An idempotent rack is called a quandle (we say Q is idempotent if xx = x for every x Q). A quandle Q is medial if, for every x, y, u, v Q, ∈ ∈ (xy)(uv)=(xu)(yv). An important example of a medial quandle is an abelian group A with an operation defined by a b = (1 h)(a)+h(b), where h is an automorphism ∗ ∗ − of A. This construction is called an affine quandle (or sometimes an Alexander quandle) and denoted by Aff(A, h). In the literature [6, 7], the group A is 1 usually considered to be a Z[t, t− ]-module, where t a = h(a), for each a A. · ∈ We shall adopt this point of view here as well and we usually write Aff(A, r) instead, where r is a ring element. Note that in universal algebra terminology, an algebra is said to be affine if it is polynomially equivalent to a module.
    [Show full text]
  • Part IV (§18-24) Rings and Fields
    Part IV (§18-24) Rings and Fields Satya Mandal University of Kansas, Lawrence KS 66045 USA January 22 18 Rings and Fields Groups dealt with only one binary operation. You are used to working with two binary operation, in the usual objects you work with: Z, R. Now we will study with such objects, with two binary operations: additions and multiplication. 18.1 Defintions and Basic Properties Definition 18.1. A Ring hR, +, ·i is a set with two binary operations +, ·, which we call addition and multiplication, defined on R such that 1. hR, +, ·i is an abelian group. The additive identiy is denoted by zero 0. 2. Multiplication is associative. 3. The distributive property is satiesfied as follows: ∀ a,b,c ∈ R a(b + c)= ab + ac and (b + c)a = ba + ca. 1 Further, A ring hR, +, ·i is called a commutative ring, if the multipli- cation is commutative. That means, if ∀ a,b ∈ R ab = ba. Definition 18.2. Let hR, +, ·i be a ring. If R has a multiplicative identity, then we has hR, +, ·i is a ring with unity. The multiplicative unit is denoted by 1. Recall, it means ∀ x ∈ R 1 · x = x · 1= x. Barring some exceptions (if any), we consider rings with unity only. Lemma 18.3. Suppose hR, +, ·i is a ring with unity. Suppse 0=1. then R = {0}. Proof. Suppose x ∈ R. Then, x = x · 1= x · 0= x · (0+0) = x · 0+ x · 0= x · 1+ x · 1= x + x. So, x + x = x and hence x = 0.
    [Show full text]
  • Unique Factorization Monoids and Domains
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 28, Number 2, May 1971 UNIQUE FACTORIZATION MONOIDS AND DOMAINS R. E. JOHNSON Abstract. It is the purpose of this paper to construct unique factorization (uf) monoids and domains. The principal results are: (1) The free product of a well-ordered set of monoids is a uf-monoid iff every monoid in the set is a uf-monoid. (2) If M is an ordered monoid and F is a field, the ring ^[[iW"]] of all formal power series with well-ordered support is a uf-domain iff M is naturally ordered (i.e., whenever b <a and aMp\bM¿¿0, then aMQbM). By a monoid, we shall always mean a cancellative semigroup with identity element. All rings are assumed to have unities, and integral domains and fields are not assumed to be commutative. If R is an integral domain, then the multiplicative monoid of nonzero elements is denoted by i?x. For any ring or monoid A, U(A) will denote its group of units. A monoid M is called a unique factorization monoid (uf-monoid) iff for every mEM — U(M), any two factorizations of m have a common refinement. That is, if m=aia2 ■ ■ ■ ar = bib2 ■ ■ ■ bs, then the a's and 6's can be factored, say ai = ci • • • c,, a2 = a+i ■ ■ ■Cj, ■ ■ ■ , 61 = di ■ ■ ■dk, b2=dk+i ■ ■ • dp, ■ ■ ■ , in such a way that cn=dn for all n. An integral domain R is called a unique factorization domain (uf-domain) iff Rx is a uf-monoid. A monoid M with relation < is said to be ordered by < iff < is a transitive linear ordering such that whenever a<b then ac<bc and ca<cb for all cEM.
    [Show full text]
  • Student Notes
    270 Chapter 5 Rings, Integral Domains, and Fields 270 Chapter 5 Rings, Integral Domains, and Fields 5.2 Integral5.2 DomainsIntegral Domains and Fields and Fields In the precedingIn thesection preceding we definedsection we the defined terms the ring terms with ring unity, with unity, commutative commutative ring, ring,andandzerozero 270 Chapter 5 Rings, Integral Domains, and Fields 5.2divisors. IntegralAll Domains threedivisors. of and theseAll Fields three terms ! of these are usedterms inare defining used in defining an integral an integral domain. domain. Week 13 Definition 5.14DefinitionI Integral 5.14 IDomainIntegral Domain 5.2 LetIntegralD be a ring. Domains Then D is an andintegral Fields domain provided these conditions hold: Let D be a ring. Then D is an integral domain provided these conditions hold: In1. theD ispreceding a commutative section ring. we defined the terms ring with unity, commutative ring, and zero 1. D is a commutativedivisors.2. D hasAll a ring. unity three eof, and thesee 2terms0. are used in defining an integral domain. 2. D has a unity3. De,has and noe zero2 0 divisors.. Definition 5.14 I Integral Domain 3. D has no zero divisors. Note that the requirement e 2 0 means that an integral domain must have at least two Let D be a ring. Then D is an integral domain provided these conditions hold: Remark. elements. Note that the1. requirementD is a commutative e 2 0ring. means that an integral domain must have at least two elements. Example2. D has a1 unityThe e, ring andZe of2 all0. integers is an integral domain, but the ring E of all even in- tegers3.
    [Show full text]
  • On Strategy-Proofness and Semilattice Single-Peakedness Jordi Massó April 2019
    On Strategy-Proofness and Semilattice Single-Peakedness Jordi Massó April 2019 Barcelona GSE Working Paper Series Working Paper nº 1087 On strategy-proofness and semilattice single-peakedness∗ Agust´ın G. Bonifacio† Jordi Mass´o‡ April 11, 2019 Abstract We study social choice rules defined on the domain of semilattice single- peaked preferences. Semilattice single-peakedness has been identified as the necessary condition that a set of preferences must satisfy so that the set can be the domain of a strategy-proof, tops-only, anonymous and unanimous rule. We characterize the class of all such rules on that domain and show that they are deeply related to the supremum of the underlying semilattice structure. Keywords: Strategy-proofness; Unanimity; Anonymity; Tops-onlyness; Single-peakedness. JEL Classification Numbers: D71. 1 Introduction We characterize the class of all strategy-proof and simple rules defined on the domain of semilattice single-peaked preferences. A rule is a systematic procedure to select ∗We thank Salvador Barber`a, Shurojit Chatterji and Bernardo Moreno for helpful comments and suggestions. Bonifacio acknowledges financial support received from the UNSL, through grant 319502, and from the Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET), through grant PIP 112-200801-00655. Mass´oacknowledges financial support received from the Span- ish Ministry of Economy and Competitiveness, through grant ECO2017-83534-P and through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563), and from the Gener- alitat de Catalunya, through grant SGR2017-711. †Instituto de Matem´atica Aplicada San Luis, Universidad Nacional de San Luis and CONICET, San Luis, Argentina; e-mail: [email protected] ‡Departament d’Economia i d’Hist`oria Econ`omica, Universitat Aut`onoma de Barcelona, and Barcelona GSE, Spain; e-mail: [email protected] 1 an alternative as a function of the declared profile of agents’ preferences.
    [Show full text]