Review CYP2D in the Brain

Total Page:16

File Type:pdf, Size:1020Kb

Review CYP2D in the Brain p337 p.1 [100%] Drug Metab. Pharmacokin. 18 (6): 337–349 (2003). Review CYP2D in the Brain Yoshihiko FUNAE, Wataru KISHIMOTO,ToshioCHO, Toshiro NIWA, and Toyoko HIROI Department of Chemical Biology, Osaka City University, Medical School, Osaka, Japan Summary: CYP2D1, 2D2, 2D3, and 2D4 are major CYP2D isoforms expressed in the rat. In humans, only CYP2D6 is expressed. In rat brain, the mRNA for CYP2D4 is most abundant in cerebellum, striatum, pons and medulla oblongata. In human brain, CYP2D6 mRNA expression was detected in all regions with highest levels observed in cerebellum. CYP2D isoforms are involved in the metabolism of not only xenobiotics such as antidepressants, b-adrenergic blockers, antiarrhysthmics, and antihypertensives, but also endogenous compounds such as trace amine and neurosteroids. Among 11 isoforms of human recombinant P450s, only CYP2D6 exhibit- ed an ability to e‹ciently convert tyramine which exists in the brain, to dopamine. CYP2D4 and CYP2D6 which are the predominant CYP2D isoforms in the rat and human brain, respectively, possess 21-hydroxylation activity for both progesterone and allopregnanolone. CYP2D4, not P450c21, works as a steroid 21-hydroxylase in the brain. These results suggested that CYP2D in the brain may be involved in the metabolism of neuronal amines and steroids and in the regulation of the central nervous system. Key words: CYP2D; CYP2D4; CYP2D6; brain; dopamine formation; steroid 21-hydroxylation system or on the heart. It is thus of immense interest Introduction whether CYP2D6 is not only localized in the liver,8) but Six genes, named CYP2D1 through CYP2D5 and also found at high levels in these two target tissues, the CYP2D18,werefoundintherat.1–3) CYP2D1 catalyzes brain9,10) and heart.11) a debrisoquine 4-hydroxylase and exhibits a closest The polymorphic hydroxylation of debrisoquine was enzymatic relationship to human CYP2D6. CYP2D7P ˆrst described in the 1970s.12) Since then, the clinical and CYP2D8P are human pseudogenes. No cDNA has pharmacological as well as molecular biological fea- been cloned that corresponds to these genes, and their tures13) of this polymorphism have been studied. Several expression has never been demonstrated. groups of important drugs, such as tricyclic antidepres- The levels and substrate speciˆcity of P450s from sants and neuroleptics,14) are metabolized in the liver by humans were systematically characterized.4,5) Antibod- CYP2D6, and this has important clinical implications ies raised against puriˆed P450 which were expressed for the usage of such drugs. In healthy volunteers, a in Saccharomyces cerevisiae were used to measure the signiˆcant diŠerence in personality between extensive levels of hepatic P450s. The level of CYP3A4 was (EM) and poor metabolizers (PM) of debrisoquine highest in human hepatic microsomes, comprising living in Sweden was reported.15) That study compared 30¿40z of total P450. CYP2C9 comprised 10¿20z PM and EM of debrisoquine using the Karolinska of the total. The level of CYP2D6 was 14z.4) It Scales of Personality inventory.15) This indicated that has been estimated that CYP2D6 is responsible for debrisoquine hydroxylase also metabolizes endogenous 20¿30z of the oxidation of all pharmaceutics substrate(s) important for central nervous system used by humans.6,7) Of particular note are tricyclic function.16) Poor metabolizers were more anxiety- antidepressants, selective serotonin reuptake inhibitors, prone and less successfully socialized than extensive 5-hydroxytryptamine receptor antagonists, anti- metabolizers of debrisoquine.17) This and a previous psychotics, opiates, and amphetamines, together with study among subjects in Sweden suggest that there may b-adrenoreceptor antagonists and antidysrhythmic be a relationship between personality and activity of drugs,7,8) all agents that act either in the central nervous CYP2D6. This polymorphic enzyme may have an Received; September 22, 2003, Accepted; October 24, 2003 To whom correspondence should be addressed: Yoshihiko FUNAE, Department of Chemical Biology, Osaka City University, Medical School, Osaka, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan. Tel. +81-6-6645-3915, Fax. +81-6-6645-3917, E-mail: funae@med.osaka-cu.ac.jp 337 p337 p.2 [100%] 338 Yoshihiko FUNAE, et al. Table 1. Sequence identities (z) of rat and human CYP2D Table 2. Active site residues of human and rat CYP2D isoforms29) isoforms. Both the overall sequence identity (upper triangle) and that of the active site residues listed in Table 2 (lower triangle) is given. CYP b Residue SRS a number 2D1 2D2 2D3 2D4 2D5 2D6 1 103ProLeuGluProProPro 105 Pro Pro Pro His Pro Pro 106 Ile Ile Ile Phe Ile Ile CYP2D1 CYP2D2 CYP2D3 CYP2D4 CYP2D5 CYP2D18 CYP2D6 112 Val Tyr Tyr Phe Val Phe CYP2D1 73 79 72 95 72 71 120 Ile Val Val Val Val Phe CYP2D2 45 78 73 73 73 71 121 Leu Leu Leu Leu Phe Leu CYP2D3 59 59 75 79 75 72 2 213 Leu Phe Met Leu Leu Leu CYP2D4 50 41 45 73 99 77 216 Val Asp Gln Glu Val Glu CYP2D582415550 73 71 217 Ser Thr Thr Ser Ser Ser CYP2D18 50 41 45 100 50 77 3 243 Gly Lys Gly Gly Gly Phe CYP2D6594155595059 244 Gln Leu Gln Lys Gln Gln 4 301AspAspAspAspAspAsp 304 Thr Met Gly Met Thr Ser 305AlaAlaAlaAlaAlaAla endogenous neuroactive substrate or product, such as a 308 Val Val Val Val Val Val biogenic neurotransmitter amine. There is now substan- 309ThrThrThrThrThrThr 5 369IleIleIleIleIleIle tial evidence that CYP2D6 is present and functions also 370 Ala Val Val Leu Ala Val 18–20) in the human brain, although its activity is lower 374 Leu Ile Leu Val Leu Val than in the liver. 375ProProProProProThr In this review, we describe the genetic and catalytic 6 483 Phe Leu Phe Ala Ile Phe properties of rat and human CYP2D isoforms. 483 Pro Pro Leu Leu Ser Leu CYP2D4 and 2D6, which are expressed in the brain, a Residue numbering is that of CYP2D6. catalyze endogenous substrates such as amines and b SRS: substrate recognition sites. steroids. The pharmacological and physiological sig- niˆcance of the presence of CYP2D in the brain is described. CYP2D6 and rat CYP2D1-4, as deduced from rigid docking studies are shown in Table 2. The analogous Isoforms of the CYP2D family in rat and human residues in CYP2D5 and 2D18 have also been included. Six gene homologues of CYP2D6 have been isolated CYP2D4 and 2D18 were found to diŠer in the identity from the rat,1,2,21–23) namely, CYP2D1, 2D2, 2D3, 2D4, of only four residues, none of which were located in the 2D5, and 2D18. Human CYP2D6 is one of the most CYP2D active site. When the active site residues of the important phase I enzymes involved in the metabolism human and rat CYP2D isoforms listed in Table 2 are of therapeutic drugs. Another feature that has sig- examined, it is striking how few residues in the models niˆcantly contributed to the attention CYP2D6 has are completely conserved. Only ˆve of the 22 residues obtained concerns its polymorphic nature.24,25) To date are invariant in all human and rat CYP2D isozymes, of more than 70 diŠerent alleles have been identiˆed.26) which four are located in the I helix (SRS 4). The eŠects of these polymorphic genes range from a Correspondingly, sequence identities between CYP2D complete loss of functional protein to an increase in isoforms were much lower for the active site residues enzyme activity. DiŠerences in substrate speciˆcity may than for the overall sequences (Table 1) except between also arise. As a result, drug treatment in polymorphic CYP2D4 and 2D18. The most notable diŠerences in individuals may cause adverse eŠects or a lack of drug active site residues of the homology models between e‹cacy.27) human and rat isoforms involved residues 120 and 216. Immunoblotting studies have demonstrated hepatic As described above, residue 120 constitutes a phenylala- expression of CYP2D1, 2D2, 2D4, and 2D5, but not nine in CYP2D6 and provides p-stacking interactions CYP2D3, in various rat strains.28) CYP2D18 is believed with ligands. In all rat isoforms, residue 120 is nonaro- to be the rat brain variant of CYP2D4.23) The rat and matic and therefore only capable of contributing to human CYP2D isoforms share high sequence identity ligand binding a‹nities by van der Waals interactions. (À70z)29) (Table 1). Nevertheless, signiˆcant diŠer- Rigid docking studies with CYP2D6 identiˆed Glu216 ences in binding and regioselectivity of metabolism have as a key ligand-binding residue forming hydrogen bonds been observed between these CYP2D isoforms.28–32) For with several substrates. In the cases of CYP2D1W5and example, R-mianserin was N-oxidated by only CYP2D1 2D3, a valine and glutamine, respectively, are located at while 8-hydroxylation was oxidated by all isoforms this position. These isoforms are unable to form a salt investigated.30) The active site residues of human bridge with the basic nitrogen of ligands. p337 p.3 [100%] CYP2D in the Brain 339 Although it is known that rat CYP2D2, similar to human CYP2D6, is capable of metabolizing debriso- quine, bufuralol, and other substrates,1,33,34) the catalytic characteristics of most rat CYP2D enzymes remain to be elucidated. Therefore, we expressed four rat P450 isoforms (CYP2D1, 2D2, 2D3, and 2D4) placed in the CYP2D subfamily in yeast and compared their biochemical properties and substrate speciˆcity simul- taneously.32) We cloned four cDNAs belonging to the CYP2D subfamily to express these enzymes in yeast cells and to compare their catalytic activities simultane- ously. Three are believed to be alleles of CYP2D1, 2D2, and2D3,respectively,basedonhighnucleotide sequence similarity, while CYP2D4 had sequences of both CYP2D4 and CYP2D18. Expression plasmids carrying CYP2D cDNAs were transformed into Saccharomyces cerevisiae. Typical P450 CO-diŠerence Fig. 1. mRNA expression of rat CYP2D isoforms in tissues.
Recommended publications
  • Guideline for CYP2D6 and Tamoxifen Therapy
    CPIC GUIDELINES Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy Matthew P. Goetz1, Katrin Sangkuhl2, Henk-Jan Guchelaar3, Matthias Schwab4,5,6, Michael Province7, Michelle Whirl-Carrillo2, W. Fraser Symmans8, Howard L. McLeod9, Mark J. Ratain10, Hitoshi Zembutsu11, Andrea Gaedigk12, Ron H. van Schaik13,14, James N. Ingle1, Kelly E. Caudle15 and Teri E. Klein2 Tamoxifen is biotransformed by CYP2D6 to 4-hydroxytamoxifen gene/CYP2D6; CYP2D6 Allele Definition Table in Ref. 1). and 4-hydroxy N-desmethyl tamoxifen (endoxifen), both with CYP2D6 alleles have been extensively studied in multiple geo- greater antiestrogenic potency than the parent drug. Patients with graphically, racially, and ethnically diverse groups and significant certain CYP2D6 genetic polymorphisms and patients who receive differences in allele frequencies have been observed (CYP2D6 strong CYP2D6 inhibitors exhibit lower endoxifen concentrations Frequency Table1). The most commonly reported alleles are cate- and a higher risk of disease recurrence in some studies of tamoxi- gorized into functional groups as follows: normal function (e.g., fen adjuvant therapy of early breast cancer. We summarize CYP2D6*1 and *2), decreased function (e.g., CYP2D6*9, *10, evidence from the literature and provide therapeutic recommenda- 2,3 tions for tamoxifen based on CYP2D6 genotype. *17, and *41), and no function (e.g., CYP2D6*3, *4, *5, *6). Because CYP2D6 is subject to gene deletions, duplications, or The purpose of this guideline is to provide clinicians information multiplications, many clinical laboratories also report copy num- that will allow the interpretation of clinical CYP2D6 genotype ber variations. CYP2D6*5 represents a gene deletion (no func- tests so that the results can be used to guide prescribing of tamoxi- fen.
    [Show full text]
  • The Role of Vitamin D in Autoimmune Hepatitis
    Elmer ress Review J Clin Med Res • 2013;5(6):407-415 The Role of Vitamin D in Autoimmune Hepatitis Khanh vinh quoc Luonga, b, Lan Thi Hoang Nguyena disease is classified into 2 distinct types according to the na- Abstract ture of autoantibodies [1, 2]. Type 1 AIH is characterized by anti-nuclear antibodies and/or smooth muscle antibodies Autoimmune hepatitis is an inflammation of the liver characterized in serum of northern European and American adults. Type 2 by the presence of peri-portal hepatitis, hypergammaglobulinemia, AIH is characterized by antibodies to the liver-kidney mi- and the serum autoantibodies. The disease is classified into 2 dis- crosome type 1 (anti-LKM1) and primarily affects children tinct types according to the nature of auto-antibodies. Disturbances between the ages of 2 and 14 years. Disturbances of the cal- of the calcium-parathyroid hormone-vitamin D axis are frequently cium-parathyroid hormone-vitamin D axis are frequently as- associated with chronic liver disease. Patients with AIH have a high sociated with chronic liver disease [3]. Vitamin D deficiency prevalence of vitamin D deficiency. Genetic studies have provided the opportunity to determine which proteins link vitamin D to AIH is common in non-cholestatic liver disease and correlates pathology, namely, the major histocompatibility complex class II with disease severity [4]. AIH patients have low of vitamin D molecules, vitamin D receptors, toll-like receptors, cytotoxic T levels compared with control group [5]. Many studies have lymphocyte antigen-4, cytochrome P450 CYP2D6, regulatory T shown a significant effect of calcitriol on liver cell physiol- cells (Tregs) and the forkhead/winged helix transcription factor 3.
    [Show full text]
  • Investigation of Histone Lysine-Specific Demethylase 5D
    FULL LENGTH Iranian Biomedical Journal 20(2): 117-121 April 2016 Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach Zohreh Jangravi1, 2, Mohammad Najafi1,3 and Mohammd Shabani*1 1Dept. of Biochemistry, Iran University of Medical Sciences, Tehran, Iran; 2Dept. of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; 3Dept. of Biochemistry, Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran Received 2 September 2014; revised 3 December 2014; accepted 7 December 2014 ABSTRACT Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active gene. In this light, the aim of this study was to investigate isoform/transcript-specific expression profiles of KDM5D in three prostate cancer cell lines, Du-145, LNCaP, and PC3. Methods: Real-time PCR analysis was performed to determine the expression levels of different KDM5D transcripts in the prostate cell lines. A gene regulatory network was established to analyze the gene expression profile. Results: Significantly different expression levels of both isoforms were found among the three cell lines. Interestingly, isoform I was expressed in three cell lines while isoform III did only in DU-145. The expression levels of both isoforms were higher in DU-145 when compared to other cell lines (P<0.0001).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao Et Al
    USOO9498481 B2 (12) United States Patent (10) Patent No.: US 9,498,481 B2 Rao et al. (45) Date of Patent: *Nov. 22, 2016 (54) CYCLOPROPYL MODULATORS OF P2Y12 WO WO95/26325 10, 1995 RECEPTOR WO WO99/O5142 2, 1999 WO WOOO/34283 6, 2000 WO WO O1/92262 12/2001 (71) Applicant: Apharaceuticals. Inc., La WO WO O1/922.63 12/2001 olla, CA (US) WO WO 2011/O17108 2, 2011 (72) Inventors: Tadimeti Rao, San Diego, CA (US); Chengzhi Zhang, San Diego, CA (US) OTHER PUBLICATIONS Drugs of the Future 32(10), 845-853 (2007).* (73) Assignee: Auspex Pharmaceuticals, Inc., LaJolla, Tantry et al. in Expert Opin. Invest. Drugs (2007) 16(2):225-229.* CA (US) Wallentin et al. in the New England Journal of Medicine, 361 (11), 1045-1057 (2009).* (*) Notice: Subject to any disclaimer, the term of this Husted et al. in The European Heart Journal 27, 1038-1047 (2006).* patent is extended or adjusted under 35 Auspex in www.businesswire.com/news/home/20081023005201/ U.S.C. 154(b) by Od en/Auspex-Pharmaceuticals-Announces-Positive-Results-Clinical M YW- (b) by ayS. Study (published: Oct. 23, 2008).* This patent is Subject to a terminal dis- Concert In www.concertpharma. com/news/ claimer ConcertPresentsPreclinicalResultsNAMS.htm (published: Sep. 25. 2008).* Concert2 in Expert Rev. Anti Infect. Ther. 6(6), 782 (2008).* (21) Appl. No.: 14/977,056 Springthorpe et al. in Bioorganic & Medicinal Chemistry Letters 17. 6013-6018 (2007).* (22) Filed: Dec. 21, 2015 Leis et al. in Current Organic Chemistry 2, 131-144 (1998).* Angiolillo et al., Pharmacology of emerging novel platelet inhibi (65) Prior Publication Data tors, American Heart Journal, 2008, 156(2) Supp.
    [Show full text]
  • Lanosterol 14Α-Demethylase (CYP51)
    463 Lanosterol 14-demethylase (CYP51), NADPH–cytochrome P450 reductase and squalene synthase in spermatogenesis: late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol G Majdicˇ, M Parvinen1, A Bellamine2, H J Harwood Jr3, WWKu3, M R Waterman2 and D Rozman4 Veterinary Faculty, Clinic of Reproduction, Cesta v Mestni log 47a, 1000 Ljubljana, Slovenia 1Institute of Biomedicine, Department of Anatomy, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland 2Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232–0146, USA 3Pfizer Central Research, Department of Metabolic Diseases, Box No. 0438, Eastern Point Road, Groton, Connecticut 06340, USA 4Institute of Biochemistry, Medical Center for Molecular Biology, Medical Faculty University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia (Requests for offprints should be addressed to D Rozman; Email: [email protected]) (G Majdicˇ is now at Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75235–8857, USA) Abstract Lanosterol 14-demethylase (CYP51) is a cytochrome detected in step 3–19 spermatids, with large amounts in P450 enzyme involved primarily in cholesterol biosynthe- the cytoplasm/residual bodies of step 19 spermatids, where sis. CYP51 in the presence of NADPH–cytochrome P450 P450 reductase was also observed. Squalene synthase was reductase converts lanosterol to follicular fluid meiosis immunodetected in step 2–15 spermatids of the rat, activating sterol (FF-MAS), an intermediate of cholesterol indicating that squalene synthase and CYP51 proteins are biosynthesis which accumulates in gonads and has an not equally expressed in same stages of spermatogenesis. additional function as oocyte meiosis-activating substance.
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • 2D6 Substrates 2D6 Inhibitors 2D6 Inducers
    Physician Guidelines: Drugs Metabolized by Cytochrome P450’s 1 2D6 Substrates Acetaminophen Captopril Dextroamphetamine Fluphenazine Methoxyphenamine Paroxetine Tacrine Ajmaline Carteolol Dextromethorphan Fluvoxamine Metoclopramide Perhexiline Tamoxifen Alprenolol Carvedilol Diazinon Galantamine Metoprolol Perphenazine Tamsulosin Amiflamine Cevimeline Dihydrocodeine Guanoxan Mexiletine Phenacetin Thioridazine Amitriptyline Chloropromazine Diltiazem Haloperidol Mianserin Phenformin Timolol Amphetamine Chlorpheniramine Diprafenone Hydrocodone Minaprine Procainamide Tolterodine Amprenavir Chlorpyrifos Dolasetron Ibogaine Mirtazapine Promethazine Tradodone Aprindine Cinnarizine Donepezil Iloperidone Nefazodone Propafenone Tramadol Aripiprazole Citalopram Doxepin Imipramine Nifedipine Propranolol Trimipramine Atomoxetine Clomipramine Encainide Indoramin Nisoldipine Quanoxan Tropisetron Benztropine Clozapine Ethylmorphine Lidocaine Norcodeine Quetiapine Venlafaxine Bisoprolol Codeine Ezlopitant Loratidine Nortriptyline Ranitidine Verapamil Brofaramine Debrisoquine Flecainide Maprotline olanzapine Remoxipride Zotepine Bufuralol Delavirdine Flunarizine Mequitazine Ondansetron Risperidone Zuclopenthixol Bunitrolol Desipramine Fluoxetine Methadone Oxycodone Sertraline Butylamphetamine Dexfenfluramine Fluperlapine Methamphetamine Parathion Sparteine 2D6 Inhibitors Ajmaline Chlorpromazine Diphenhydramine Indinavir Mibefradil Pimozide Terfenadine Amiodarone Cimetidine Doxorubicin Lasoprazole Moclobemide Quinidine Thioridazine Amitriptyline Cisapride
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity of Amphetamine and Methamphetamine
    Published 2005 Wiley-Liss, Inc.w Birth Defects Research (Part B) 74:471–584 (2005) NTP-CERHR Expert Panel Report on the Reproductive and Developmental Toxicity Of Amphetamine and Methamphetamine Mari Golub,1 Lucio Costa,2 Kevin Crofton,3 Deborah Frank,4 Peter Fried,5 Beth Gladen6 Rogene Henderson,7 Erica Liebelt,8 Shari Lusskin,9 Sue Marty,10 Andrew Rowland11 John Scialli12 and Mary Vore13 1California Environment Protection Agency, Sacramento, California 2University of Washington, Seattle, Washington 3U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 4Boston Medical Center, Boston, Massachusetts 5Carleton University, Ottawa, Ontario 6National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 7Lovelace Respiratory Research Institute, Albuquerque, New Mexico 8University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 9New York University School of Medicine, New York, New York 10The Dow Chemical Company, Midland, Michigan 11University of New Mexico, Albuquerque, New Mexico 12Phoenix, Arizona 13University of Kentucky, Lexington, Kentucky PREFACE studies indexed before December 31, 2004. References were also identified from databases such as REPRO- The National Toxicology Program (NTP) and the TOXs, HSDB, IRIS, and DART and from report National Institute of Environmental Health Sciences bibliographies. (NIEHS) established the NTP Center for the Evaluation This evaluation resulted from the efforts of a 13- of Risks to Human Reproduction (CERHR) in June 1998. member panel of government and non-government The purpose of the Center is to provide timely, unbiased, scientists that culminated in a public expert panel scientifically sound evaluations of human and experi- meeting held January 10–12, 2005. This report is a mental evidence for adverse effects on reproduction and product of the Expert Panel and is intended to (1) development caused by agents to which humans may be interpret the strength of scientific evidence that exposed.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Sterol Homeostasis Requires Regulated Degradation of Squalene
    RESEARCH ARTICLE elife.elifesciences.org Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4 Ombretta Foresti1,2, Annamaria Ruggiano1,2, Hans K Hannibal-Bach3, Christer S Ejsing3, Pedro Carvalho1,2* 1Cell and Developmental Biology Programme, Center for Genomic Regulation (CRG), Barcelona, Spain; 2Universitat Pompeu Fabra, Barcelona, Spain; 3Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark Abstract Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: 10.7554/eLife.00953.001 *For correspondence: pedro. [email protected] Introduction Sterols, such as cholesterol in animals or ergosterol in yeast, are essential components of cellular Competing interests: The authors membranes and their concentration to a large extent determines many of the membrane properties, declare that no competing interests exist.
    [Show full text]