A Psychrophilic Crenarchaeon Inhabits a Marine Sponge: Cenarchaeum Symbiosum Gen

Total Page:16

File Type:pdf, Size:1020Kb

A Psychrophilic Crenarchaeon Inhabits a Marine Sponge: Cenarchaeum Symbiosum Gen Proc. Natl. Acad. Sci. USA Vol. 93, pp. 6241-6246, June 1996 Evolution A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. (Archaea/Crenarchaeota/evolution/symbiosis/Porifera) CHRISTINA M. PRESTON*, KE YING Wu*, TADEUSZ F. MOLINSKIt, AND EDWARD F. DELONG*t *Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106; and tDepartment of Chemistry, University of California, Davis, Davis, CA 95616 Communicated by Carl R. Woese, University of Illinois, Urbana, IL, February 2, 1996 ABSTRACT Archaea, one of the three major domains of growth on reduced sulfur compounds or hydrogen, represent extant life, was thought to comprise predominantly microor- three of the major catabolic themes (6). Limited capacity for ganisms that inhabit extreme environments, inhospitable to phototrophic energy generation, nitrogen fixation, and deni- most Eucarya and Bacteria. However, molecular phylogenetic trification has also been demonstrated in various archaeal surveys of native microbial assemblages are beginning to groups. Of the two major branches of Archaea, cultivated indicate that the evolutionary and physiological diversity of Crenarchaeota, comprised predominantly of anaerobic ther- Archaea is far greater than previously supposed. We report mophiles metabolizing elemental sulfur, have appeared the here the discovery and preliminary characterization of a most limited phenotypically (7). marine archaeon that inhabits the tissues ofa temperate water Recent molecular phylogenetic surveys of bacterial and ar- sponge. The association was specific, with a single crenar- chaeal diversity in cold oxygenated ocean waters (8-11) and chaeal phylotype inhabiting a single sponge host species. To terrestrial soils (12) have suggested the existence of additional our knowledge, this partnership represents the first described crenarchaeal phylotypes. Unfortunately, these unusual archaea symbiosis involving Crenarchaeota. The symbiotic archaeon have to date resisted laboratory cultivation, and so their pheno- grows well at temperatures of 10°C, over 60°C below the typic and physiological properties remain unknown. A low- growth temperature optimum of any cultivated species of growth temperature range for marine planktonic archaea has Crenarchaeota. Archaea have been generally characterized as been inferred from circumstantial evidence-e.g., their ecologi- microorganisms that inhabit relatively circumscribed niches, cal distribution and the relatively low percent G+C content of largely high-temperature anaerobic environments. In con- their ribosomal RNA genes (8-11). Nevertheless, it has not been trast, data from molecular phylogenetic surveys, including conclusively demonstrated that these microorganisms actually this report, suggest that some crenarchaeotes have diversified grow in cold habitats and do not instead emanate from alloch- considerably and are found in a wide variety of lifestyles and thonous sources (e.g., hydrothermal environments). habitats. We present here the identification and initial de- We recently surveyed microbial populations associated with scription of Cenarchaeum symbiosum gen. nov., sp. nov., a marine sponges by these new molecular methods (13). In the symbiotic archaeon closely related to other nonthermophilic course of that study, we detected significant amounts of archaeal crenarchaeotes that inhabit diverse marine and terrestrial nucleic acids associated with the tissues of a single marine sponge environments. species. We present here the identification and initial description of the sponge-associated archaeon and discuss the general im- Phylogenetic comparisons of universal, highly conserved mac- plications of our observations for archaeal biology. romolecular features of diverse biota have resulted in funda- mental conceptual changes in evolutionary biology. In partic- ular, the recent elucidation of evolutionary relationships METHODS among disparate life forms has revealed that prokaryotes Field Collection, Sponge Maintenance, and Identification. (defined as microorganisms lacking a membrane-bound nu- Sponges were collected at depths of 10-20 m by SCUBA diving cleus) consist of two evolutionarily distinct lineages (1-4). at two different sites located just offshore of Santa Barbara, Current data suggest that contemporary life on Earth has CA. The encrusting sponges were removed along with a small diverged into three major phylogenetic lineages (1-5), desig- amount of their rock substrate, placed in collection bags, and nated domains (5), two ofwhich are prokaryotic (Bacteria and transported to aquaria within 2 hr. Captive specimens were Archaea) and one of which is eukaryotic (Eucarya). Archaea, maintained in flowing seawater tanks. Criteria used in sponge the most recently recognized of the domains, contains culti- specimen identification included gross morphology, color, vated members that span a fairly limited range of phenotypes, oscule arrangement, encrusting shape and thickness, and the represented by extreme halophiles, sulfur-metabolizing ther- size and shape of siliceous spicules, which included both oxea mophiles, thermophilic sulfate-reducers, and methanogens and style types. No microscleres or ectosomal skeleton were (6). Although the number of new species of cultivated Archaea present, and the choanosomal skeleton was halichondroid-like has increased dramatically in recent years (7), the variety of (Mary Kay Harper and Welton Lee, personal communication). phenotypic motifs found within the Archaea has not. Virtually The sponge harboring the archaeal symbionts represents a all new archaeal isolates can still be categorized into one of the single species and was most similar toAxinella mexicana, based four commonly encountered phenotypes listed above. on the morphological criteria listed above and by comparison In contrast to those of Bacteria, the major physiological to type specimens (Welton Lee, personal communication). motifs of known and cultivated Archaea have appeared lim- Because of small differences in size and skeletal ited. Methanogenesis, aerobic or anaerobic heterotrophic ox- spicule idation of sugars and peptides, and chemolithoautotrophic Abbreviations: ssu, small subunit; DAPI, 4',6-diamidino-2-phenylindole. Data deposition: The sequence reported in this paper has been The publication costs of this article were defrayed in part by page charge deposited in the GenBank data base (accession no. U51469). payment. This article must therefore be hereby marked "advertisement" in 4To whom reprint requests should be addressed. e-mail: delong@ accordance with 18 U.S.C. §1734 solely to indicate this fact. marbtech.lscf.ucsb.edu. 6241 Downloaded by guest on September 26, 2021 6242 Evolution: Preston et al. Proc. Natl. Acad. Sci. USA 93 (1996) arrangement, however, this sponge may represent a new the purified double-stranded plasmid was directly sequenced. species and will therefore be referred to as "Axinella sp." Maximum likelihood analysis (19) was performed on a total of throughout this report. 1189 nucleotide positions, with the software FASTDNAML, Nucleic Acid Extraction and Hybridization. A vertical cross version 1.0 (20) using empirical base frequency, global branch section of sponge (0.5 g) was mechanically dissociated in swapping, and bootstrapping options. 0.22-gm filtered, autoclaved seawater using a tissue homoge- Whole Cell Hybridization. A vertical cross section of a nizer. Cell lysis was accomplished by incubating the dissociated captive sponge was fixed for 7 hr at 4°C in 3.7% formaldehyde cells in 1 mg of lysozyme per ml for 30 min at 37°C followed diluted in 0.22 ,um-filtered, autoclaved seawater. The section by an incubation for 30 min at 55°C with 0.5 mg of proteinase was subsequently rinsed in sterile seawater and macerated with K per ml and 1% SDS. The tubes were finally placed in a a tissue grinder. Spicules and large aggregates of sponge tissue boiling water bath for 60 sec to complete lysis. The protein were removed by low-speed centrifugation before spotting fraction was removed with two extractions with phenol:chlo- onto gelatin-subbed slides. To reduce background, the slides roform:isoamyl alcohol (50:49:1), pH 8.0, followed by a chlo- were treated with acetic anhydride (21). Slides were dehy- roform:isoamyl alcohol (24:1) extraction. Nucleic acids were drated in an ethanol series (50%, 75%, and 95%, 2 min each) ethanol-precipitated and resuspended in TE buffer (10 mM and air-dried (22). Hybridization conditions were as described Tris-HCl/1 mM Na2-EDTA, pH 8.0). Approximately 5 ,tg of (23, 24) but without the addition of bovine serum albumin. A DNA was purified by CsCl equilibrium density gradient ultra- mixture of four marine crenarchaeal-specific fluor-labeled centrifugation on a Beckman Optima tabletop ultracentrifuge oligonucleotide probes (5 ng/gl each) was added, and hybrid- using a TLA100 rotor (9). izations were incubated at 40°C overnight in a moist chamber For RNA extractions, vertical cross sections of tissue (150 mg) to prevent evaporation. After hybridizaton, slides were washed were removed, and total rRNA was extracted in hot phe- in lx SET (150 mM NaCl/20 mM Tris-HCl, pH 7.8/1 mM nol:CHCl3, pH 5.1 as described (14), with the following modifi- Na2-EDTA) at 45°C for 10 min, stained with 10 ,tg of cations. The sponge section was immersed in 0.7 ml of 50 mM 4',6-diamidino-2-phenylindole (DAPI) per ml for 5 min at sodium acetate buffer (pH 5.1), 0.7 ml of phenol
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Stability of Temperate Coral Astrangia Poculata Microbiome Is Reflected Across Different Sequencing Methodologies
    AIMS Microbiology, 5(1): 62–76. DOI: 10.3934/microbiol.2019.1.62 Received: 28 November 2018 Accepted: 21 February 2019 Published: 01 March 2019 http://www.aimspress.com/journal/microbiology Research article Stability of temperate coral Astrangia poculata microbiome is reflected across different sequencing methodologies Dawn B. Goldsmith1, Zoe A. Pratte2, Christina A. Kellogg1,*, Sara E. Snader3 and Koty H. Sharp4 1 St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, FL 33701, USA 2 School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA 3 Cherokee Nation Technologies, contracted to U.S. Geological Survey, St. Petersburg, FL 33701, USA 4 Department of Biology, Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809, USA * Correspondence: Email: [email protected]; Tel: +7275028128. Abstract: The microbiome of the temperate coral Astrangia poculata was first described in 2017 using next-generation Illumina sequencing to examine the coral’s bacterial and archaeal associates across seasons and among hosts of differing symbiotic status. To assess the impact of methodology on the detectable diversity of the coral’s microbiome, we obtained near full-length Sanger sequences from clone libraries constructed from a subset of the same A. poculata samples. Eight samples were analyzed: two sets of paired symbiotic (brown) and aposymbiotic (white) colonies collected in the fall (September) and two sets collected in the spring (April). Analysis of the Sanger sequences revealed that the microbiome of A. poculata exhibited a high level of richness; 806 OTUs were identified among 1390 bacterial sequences. While the Illumina study revealed that A.
    [Show full text]
  • Functional Equivalence and Evolutionary Convergence In
    Functional equivalence and evolutionary convergence PNAS PLUS in complex communities of microbial sponge symbionts Lu Fana,b, David Reynoldsa,b, Michael Liua,b, Manuel Starkc,d, Staffan Kjelleberga,b,e, Nicole S. Websterf, and Torsten Thomasa,b,1 aSchool of Biotechnology and Biomolecular Sciences and bCentre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales 2052, Australia; cInstitute of Molecular Life Sciences and dSwiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland; eSingapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Republic of Singapore; and fAustralian Institute of Marine Science, Townsville, Queensland 4810, Australia Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved May 21, 2012 (received for review February 24, 2012) Microorganisms often form symbiotic relationships with eukar- ties (11, 12). Symbionts also can be transmitted vertically through yotes, and the complexity of these relationships can range from reproductive cells and larvae, as has been demonstrated in those with one single dominant symbiont to associations with sponges (13, 14), insects (15), ascidians (16), bivalves (17), and hundreds of symbiont species. Microbial symbionts occupying various other animals (18). Vertical transmission generally leads equivalent niches in different eukaryotic hosts may share func- to microbial communities with limited variation in taxonomy and tional aspects, and convergent genome evolution has been function among host individuals. reported for simple symbiont systems in insects. However, for Niches with similar selections may exist in phylogenetically complex symbiont communities, it is largely unknown how prev- divergent hosts that lead comparable lifestyles or have similar alent functional equivalence is and whether equivalent functions physiological properties.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Orthologs of the Small RPB8 Subunit of the Eukaryotic RNA Polymerases
    Biology Direct BioMed Central Discovery notes Open Access Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota" Eugene V Koonin*1, Kira S Makarova1 and James G Elkins2 Address: 1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA and 2Microbial Ecology and Physiology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Email: Eugene V Koonin* - [email protected]; Kira S Makarova - [email protected]; James G Elkins - [email protected] * Corresponding author Published: 14 December 2007 Received: 13 December 2007 Accepted: 14 December 2007 Biology Direct 2007, 2:38 doi:10.1186/1745-6150-2-38 This article is available from: http://www.biology-direct.com/content/2/1/38 © 2007 Koonin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract : Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.
    [Show full text]
  • Oceans of Archaea Abundant Oceanic Crenarchaeota Appear to Derive from Thermophilic Ancestors That Invaded Low-Temperature Marine Environments
    Oceans of Archaea Abundant oceanic Crenarchaeota appear to derive from thermophilic ancestors that invaded low-temperature marine environments Edward F. DeLong arth’s microbiota is remarkably per- karyotes), Archaea, and Bacteria. Although al- vasive, thriving at extremely high ternative taxonomic schemes have been recently temperature, low and high pH, high proposed, whole-genome and other analyses E salinity, and low water availability. tend to support Woese’s three-domain concept. One lineage of microbial life in par- Well-known and cultivated archaea generally ticular, the Archaea, is especially adept at ex- fall into several major phenotypic groupings: ploiting environmental extremes. Despite their these include extreme halophiles, methanogens, success in these challenging habitats, the Ar- and extreme thermophiles and thermoacido- chaea may now also be viewed as a philes. Early on, extremely halo- cosmopolitan lot. These microbes philic archaea (haloarchaea) were exist in a wide variety of terres- first noticed as bright-red colonies trial, freshwater, and marine habi- Archaea exist in growing on salted fish or hides. tats, sometimes in very high abun- a wide variety For many years, halophilic isolates dance. The oceanic Marine Group of terrestrial, from salterns, salt deposits, and I Crenarchaeota, for example, ri- freshwater, and landlocked seas provided excellent val total bacterial biomass in wa- marine habitats, model systems for studying adap- ters below 100 m. These wide- tations to high salinity. It was only spread Archaea appear to derive sometimes in much later, however, that it was from thermophilic ancestors that very high realized that these salt-loving invaded diverse low-temperature abundance “bacteria” are actually members environments.
    [Show full text]
  • Novel Insights Into the Thaumarchaeota in the Deepest Oceans: Their Metabolism and Potential Adaptation Mechanisms
    Zhong et al. Microbiome (2020) 8:78 https://doi.org/10.1186/s40168-020-00849-2 RESEARCH Open Access Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms Haohui Zhong1,2, Laura Lehtovirta-Morley3, Jiwen Liu1,2, Yanfen Zheng1, Heyu Lin1, Delei Song1, Jonathan D. Todd3, Jiwei Tian4 and Xiao-Hua Zhang1,2,5* Abstract Background: Marine Group I (MGI) Thaumarchaeota, which play key roles in the global biogeochemical cycling of nitrogen and carbon (ammonia oxidizers), thrive in the aphotic deep sea with massive populations. Recent studies have revealed that MGI Thaumarchaeota were present in the deepest part of oceans—the hadal zone (depth > 6000 m, consisting almost entirely of trenches), with the predominant phylotype being distinct from that in the “shallower” deep sea. However, little is known about the metabolism and distribution of these ammonia oxidizers in the hadal water. Results: In this study, metagenomic data were obtained from 0–10,500 m deep seawater samples from the Mariana Trench. The distribution patterns of Thaumarchaeota derived from metagenomics and 16S rRNA gene sequencing were in line with that reported in previous studies: abundance of Thaumarchaeota peaked in bathypelagic zone (depth 1000–4000 m) and the predominant clade shifted in the hadal zone. Several metagenome-assembled thaumarchaeotal genomes were recovered, including a near-complete one representing the dominant hadal phylotype of MGI. Using comparative genomics, we predict that unexpected genes involved in bioenergetics, including two distinct ATP synthase genes (predicted to be coupled with H+ and Na+ respectively), and genes horizontally transferred from other extremophiles, such as those encoding putative di-myo-inositol-phosphate (DIP) synthases, might significantly contribute to the success of this hadal clade under the extreme condition.
    [Show full text]
  • And Thermo-Adaptation in Hyperthermophilic Archaea: Identification of Compatible Solutes, Accumulation Profiles, and Biosynthetic Routes in Archaeoglobus Spp
    Universidade Nova de Lisboa Osmo- andInstituto thermo de Tecnologia-adaptation Química e Biológica in hyperthermophilic Archaea: Subtitle Subtitle Luís Pedro Gafeira Gonçalves Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. OH OH OH CDP c c c - CMP O O - PPi O3P P CTP O O O OH OH OH OH OH OH O- C C C O P O O P i Dissertation presented to obtain the Ph.D degree in BiochemistryO O- Instituto de Tecnologia Química e Biológica | Universidade Nova de LisboaP OH O O OH OH OH Oeiras, Luís Pedro Gafeira Gonçalves January, 2008 2008 Universidade Nova de Lisboa Instituto de Tecnologia Química e Biológica Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. This dissertation was presented to obtain a Ph. D. degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. By Luís Pedro Gafeira Gonçalves Supervised by Prof. Dr. Helena Santos Oeiras, January, 2008 Apoio financeiro da Fundação para a Ciência e Tecnologia (POCI 2010 – Formação Avançada para a Ciência – Medida IV.3) e FSE no âmbito do Quadro Comunitário de apoio, Bolsa de Doutoramento com a referência SFRH / BD / 5076 / 2001. ii ACKNOWNLEDGMENTS The work presented in this thesis, would not have been possible without the help, in terms of time and knowledge, of many people, to whom I am extremely grateful. Firstly and mostly, I need to thank my supervisor, Prof. Helena Santos, for her way of thinking science, her knowledge, her rigorous criticism, and her commitment to science.
    [Show full text]
  • Community Composition and Seasonal Changes of Archaea in Coarse and Fine Air Particulate Matter
    1 Community composition and seasonal changes of Archaea in 2 coarse and fine air particulate matter 3 Jörn Wehking1,2, Daniel A. Pickersgill1,2, Robert M. Bowers3,4, David Teschner1,2, Ulrich Pöschl2, 4 Janine Fröhlich-Nowoisky 2, Viviane R. Després1,2 5 6 1Institute of molecular Physiology, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 7 D-55128 Mainz, Germany 8 2Max Planck Institute for Chemistry, P.O. Box 3060, D-55020 Mainz, Germany 9 3DOE Joint Genome Institute, Walnut Creek, CA, USA 10 4University of Colorado, Boulder, CO, USA. 11 Correspondence to: 12 Viviane R. Després ([email protected]) 13 Jörn Wehking ([email protected]) 14 Abstract. Archaea are ubiquitous in terrestrial and marine environments and play an important 15 role in biogeochemical cycles. Although air acts as the primary medium for their dispersal among 16 different habitats, their diversity and abundance is not well characterized. The main reasons for 17 this lack of insight is that Archaea are difficult to culture, seem to be low in number in the 18 atmosphere, and have so far been difficult to detect even with molecular genetic approaches. 19 However, to better understand the transport, residence time, and living conditions of 20 microorganisms in the atmosphere as well as their effects on the atmosphere and vice versa, it is 21 essential to study all groups of bioaerosols. Here we present an in-depth analysis of airborne 22 Archaea based on Illumina sequencing of 16S rRNA genes from atmospheric coarse and fine 23 particulate matter samples and show seasonal dynamics and discuss anthropogenic influences on 24 the diversity, composition, and abundance of airborne Archaea.
    [Show full text]
  • The Phylogenetic Composition and Structure of Soil Microbial Communities Shifts in Response to Elevated Carbon Dioxide
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Minnesota Digital Conservancy The ISME Journal (2012) 6, 259–272 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide Zhili He1, Yvette Piceno2, Ye Deng1, Meiying Xu1,3, Zhenmei Lu1,4, Todd DeSantis2, Gary Andersen2, Sarah E Hobbie5, Peter B Reich6 and Jizhong Zhou1,2 1Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK, USA; 2Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 3Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China; 4College of Life Sciences, Zhejiang University, Hangzhou, China; 5Department of Ecology, Evolution, and Behavior, St Paul, MN, USA and 6Department of Forest Resources, University of Minnesota, St Paul, MN, USA One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2.
    [Show full text]