Discrete Geometric Path Analysis in Computational

Total Page:16

File Type:pdf, Size:1020Kb

Discrete Geometric Path Analysis in Computational DISCRETE GEOMETRIC PATH ANALYSIS IN COMPUTATIONAL GEOMETRY by Amin Gheibi A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science CARLETON UNIVERSITY Ottawa, Ontario 2015 © Copyright by Amin Gheibi, 2015 To my parents and my wife ii Abstract The geometric shortest path problem is one of the fundamental problems in Computational Geometry and related fields. In the first part of this thesis, we study the weighted region problem (WRP), which is to compute a geometric shortest path on a weighted partitioning of a plane. Recent results show that WRP is not solvable in any algebraic computation model over rational numbers. Thus, scientists have focused on approximate solutions. We first study the WRP when the input partitioning of space is an arrangement of lines. We provide a technique that makes it possible to apply the existing approximation algorithms for triangulations to arrangements of lines. Then, we formulate two qualitative criteria for weighted short paths. We show how to produce a path that is quantitatively close-to-optimal and qualitatively satisfactory. The results of our experiments carried out on triangular irregular networks (TINs) show that the proposed algorithm could save, on average, 51% in query time and 69% in memory usage, in comparison with the existing method. In the second part of the thesis, we study some variants of the Fr´echet distance. The Fr´echet distance is a well-studied and commonly used measure to capture the similarity of polygonal curves. All of the problems that we studied here can be reduced to a geometric shortest path problem in configuration space. Firstly, we study a robust variant of the Fr´echet distance since the standard Fr´echet distance exhibits a high sensitivity to the presence of outliers. Secondly, we propose a new measure to capture similarity between polygonal curves, called the minimum backward Fr´echetdistance (MBFD). More specifically, for a given threshold ", we are searching for a pair of walks for two entities on the two input polygonal curves such that the union of the portions of required backward movements is minimized and the distance between the two entities, at any time during the walk, is less than or equal to ". Thirdly, we generalize MBFD to capture scenarios when the cost of backtracking on the input polygonal curves is not homogeneous. More specifically, each edge of input polygonal curves has an associated non-negative weight. The cost of backtracking on an edge is the Euclidean length of backward movement on that edge multiplied by the corresponding edge weight. Lastly, for a given graph H, a polygonal curve T , and a threshold ", we propose a geometric algorithm that computes a path, P , in H, and a parameterization of T , that minimize the sum of the length of walks on T and P whereby the distance between the entities moving along P and T is at most ", at any time during the walks. iv Acknowledgements Prima facie, I am grateful to the God for well-being that were necessary to complete this thesis. I wish to express my sincere thanks to Prof. J¨org-R¨udigerSack, my supervisor, for all of his admirable guidance and support. His advice on both research as well as on my career have been priceless. I am also grateful to Prof. Anil Maheshwari, who advised me, through my academic endeavor at Carleton University. The door of his office has always been open to me and his constructive comments have improved the quality of my research significantly. I would like to thank Prof. Carola Wenk for suggesting the map matching topic in this thesis. Also, when I was not able to travel to ACM SIGSPATIAL conference, to present our paper (due to visa issue), she kindly accepted to present our paper. Her comments and suggestions improved this thesis tremendously. I would like to thank Prof. Vida Duj- movi´cfor tremendous comments that have improved my thesis. I am also grateful to Prof. Michiel Smid, for constructive comments and suggestions. He was my first instructor on computational geometry, at Carleton University, who inspired me. I would like to thank Dr. Patrick Boily at School of Mathematics and Statistics, Carleton University, to discuss the statistical analysis. Also, I thank Dr. Andre Pugin, Natural Resources of Canada, Prof. Dariush Motazedian and Prof. Claire Samson, Department of Earth Sciences, Carleton University, for the discussions that lead to the new qualitative measures. I am grateful to Prof. Yusu Wang for communication which contains clarifications to Theorem 4.2 in [124]. I take this opportunity to express gratitude to all of the School faculty members and staff for their help and support. I would like to thank my friends, Dr. Christian Scheffer, Dr. Hamid Zarrabi-zadeh, Dr. Kaveh Shahbaz and Dr. Masoud Omran who helped me a lot with constructive discussions. I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lent their hand in this venture. A special thanks to my parents, brothers, and family. Words cannot express how grateful I am to my mother and father for all of the sacrifices that they have made. At last, but not least, I would like to express appreciation to my beloved wife who made my cold nights in Ottawa, warm and delightful. v Table of Contents Abstract iv Acknowledgements v Chapter 1 Introduction 1 1.1 Introduction and Motivation . .1 1.1.1 Geometric Shortest Path Problem . .3 1.1.2 Fr´echet Distance . .7 1.2 Thesis Outline and Contributions . 10 1.3 Shortest Path Literature Review . 15 1.3.1 Shortest Path in Polygons . 15 1.3.2 Minimum Link Path . 20 1.3.3 Manhattan Shortest Path . 21 1.3.4 Weighted Region Problem (WRP) . 22 1.3.5 Shortest Path in 3D . 25 1.4 Fr´echet Distance Literature Review . 27 1.4.1 Hausdorff Distance . 27 1.4.2 Fr´echet Distance . 28 1.4.3 Coupling Distance . 31 1.4.4 Lower Bound . 32 Chapter 2 Weighted Region Problem in Arrangement of Lines 34 2.1 Preliminaries . 36 2.2 Geometric Properties . 37 vi 2.3 The Construction Algorithm . 44 2.4 Minimality of the SP-Hull . 48 2.5 Conclusion . 49 Chapter 3 Path Refinement in Weighted Regions 50 3.1 Introduction . 50 3.2 Preliminaries and Definitions . 54 3.3 Algorithms . 56 3.3.1 Refinement Algorithm for Triangulations . 57 3.3.2 Refinement Algorithm for Parallel Lines . 71 3.3.3 Refinement Algorithm for Arrangements of Lines . 73 3.4 Experimental Results . 74 3.4.1 Motivation . 74 3.4.2 Experimental Setup . 75 3.4.3 Results . 79 3.4.4 Conclusions of Experiments . 93 3.5 Conclusions . 94 Chapter 4 Similarity of Polygonal Curves in the Presence of Outliers 95 4.1 Introduction . 95 4.1.1 Preliminaries . 97 4.1.2 Problem Definition . 99 4.1.3 Counterexample . 100 4.1.4 New Results . 101 4.2 An Approximation Algorithm . 102 4.3 Improvement . 112 vii 4.3.1 An Auxiliary Lemma ..............................112 4.3.2 Construction of G∗ ...............................115 4.3.3 Improved Algorithms for the MinEx and MaxIn Problems........116 4.3.4 IsFPTASAchievable?.............................118 4.4 Conclusion.........................................121 Chapter 5 Minimum Backward Fr´echet Distance 123 5.1 Introduction........................................123 5.2 Problem Definition . .................................124 5.3 Algorithm.........................................125 5.4 Improvement.......................................129 5.5 Conclusion.........................................132 Chapter 6 Weighted Minimum Backward Fr´echet Distance 134 6.1 Introduction........................................134 6.2 Preliminaries and Problem Definition . ......................136 6.3 Algorithm.........................................137 6.4 Improvement.......................................148 6.4.1 FirstStep.....................................148 6.4.2 SecondStep...................................152 6.5 Conclusion.........................................155 Chapter 7 Minimizing Walking Length in Map Matching 156 7.1 Introduction........................................156 7.2 Preliminaries and Definitions ..............................159 7.3 Algorithm.........................................162 viii 7.4 Improvement . 170 7.5 Weighted Non-planar Graphs . 174 7.6 Conclusion . 174 Chapter 8 Open Problems and Future Work 176 Bibliography 181 ix List of Tables Table 3.1 14 Triangular Irregular Networks (TINs) for experiments . 76 Table 3.2 Comparing refinement process and enhanced sleeve methods . 78 Table 3.3 The result of the methods on five TINs. Number of Edges of the Graph (SES), Pre-processing Time (Tp), Average Query Time (QTav), Accuracy (AC), Average Memory Usage (Mav), Top 5 percent Average Memory Usage (TMav), Method 1: Refinement Process, Method 2: Enhanced Sleeve, Method 3: Hybrid . 81 Table 3.4 The result of the methods on other TINs. Number of Edges of the Graph (SES), Pre-processing Time (Tp), Average Query Time (QTav), Accuracy (AC), Average Memory Usage (Mav), Top 5 percent Average Memory Usage (TMav), Method 1: Refinement Process, Method 2: Enhanced Sleeve, Method 3: Hybrid . 83 Table 3.5 The result of the methods on the Everest TIN with weights rather than slopes. In Random Everest the weights are assigned randomly. In Flat Everest all the weights are the same. Number of Edges of the Graph (SES), Pre-processing Time (Tp), Average Query Time (QTav), Accuracy (AC), Average Memory Usage (Mav), Top 5 percent Average Memory Usage (TMav), Method 1: Refinement Process, Method 2: Enhanced Sleeve, Method 3: Hybrid . 84 Table 3.6 The result of fitting 2-parameter Weibull distribution that shape param- eter k is less than 1. Also the result of Kolmogorov-Smirnov goodness- of-fit test (K-S) is reported. 91 x Table 3.7 Correlation between the measures of the distributions of the TINs and the accuracy of our algorithm on the TINs. 93 xi List of Figures Figure 1.1 a) A simply connected region.
Recommended publications
  • Object Oriented Programming
    No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows.
    [Show full text]
  • A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons
    A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons Eric Berberich, Arno Eigenwillig, Michael Hemmer Susan Hert, Kurt Mehlhorn, and Elmar Schomer¨ [eric|arno|hemmer|hert|mehlhorn|schoemer]@mpi-sb.mpg.de Max-Planck-Institut fur¨ Informatik, Stuhlsatzenhausweg 85 66123 Saarbruck¨ en, Germany Abstract. We give an exact geometry kernel for conic arcs, algorithms for ex- act computation with low-degree algebraic numbers, and an algorithm for com- puting the arrangement of conic arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be obtained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations. The algorithm and its implementation are complete (they can handle all cases), exact (they give the mathematically correct result), and efficient (they can handle inputs with several hundred primitives). 1 Introduction We give an exact geometry kernel for conic arcs, algorithms for exact computation with low-degree algebraic numbers, and a sweep-line algorithm for computing arrangements of curved arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be ob- tained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations (Figure 1). A regularized boolean operation is a standard boolean operation (union, intersection, complement) followed by regularization. Regularization replaces a set by the closure of its interior and eliminates dangling low-dimensional features.
    [Show full text]
  • On Combinatorial Approximation Algorithms in Geometry Bruno Jartoux
    On combinatorial approximation algorithms in geometry Bruno Jartoux To cite this version: Bruno Jartoux. On combinatorial approximation algorithms in geometry. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris-Est, 2018. English. NNT : 2018PESC1078. tel- 02066140 HAL Id: tel-02066140 https://pastel.archives-ouvertes.fr/tel-02066140 Submitted on 13 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris-Est École doctorale MSTIC On Combinatorial Sur les algorithmes d’approximation Approximation combinatoires Algorithms en géométrie in Geometry Bruno Jartoux Thèse de doctorat en informatique soutenue le 12 septembre 2018. Composition du jury : Lilian Buzer ESIEE Paris Jean Cardinal Université libre de Bruxelles président du jury Guilherme Dias da Fonseca Université Clermont Auvergne rapporteur Jesús A. de Loera University of California, Davis rapporteur Frédéric Meunier École nationale des ponts et chaussées Nabil H. Mustafa ESIEE Paris directeur Vera Sacristán Universitat Politècnica de Catalunya Kasturi R. Varadarajan The University of Iowa rapporteur Last revised 16th December 2018. Thèse préparée au laboratoire d’informatique Gaspard-Monge (LIGM), équipe A3SI, dans les locaux d’ESIEE Paris. LIGM UMR 8049 ESIEE Paris Cité Descartes, bâtiment Copernic Département IT 5, boulevard Descartes Cité Descartes Champs-sur-Marne 2, boulevard Blaise-Pascal 77454 Marne-la-Vallée Cedex 2 93162 Noisy-le-Grand Cedex Bruno Jartoux 2018.
    [Show full text]
  • 2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (Chair), Bobby Kleinberg September 14Th, 2020
    2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (chair), Bobby Kleinberg September 14th, 2020 SIGACT Mission Statement: The primary mission of ACM SIGACT (Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory) is to foster and promote the discovery and dissemination of high quality research in the domain of theoretical computer science. The field of theoretical computer science is the rigorous study of all computational phenomena - natural, artificial or man-made. This includes the diverse areas of algorithms, data structures, complexity theory, distributed computation, parallel computation, VLSI, machine learning, computational biology, computational geometry, information theory, cryptography, quantum computation, computational number theory and algebra, program semantics and verification, automata theory, and the study of randomness. Work in this field is often distinguished by its emphasis on mathematical technique and rigor. 1. Awards ▪ 2020 Gödel Prize: This was awarded to Robin A. Moser and Gábor Tardos for their paper “A constructive proof of the general Lovász Local Lemma”, Journal of the ACM, Vol 57 (2), 2010. The Lovász Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the existence of certain objects even though they occur with exponentially small probability. The original proof was not algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple, powerful algorithmic paradigm that converts almost all known applications of the LLL into randomized algorithms matching the bounds of the existence proof. The paper further gives a derandomized algorithm, a parallel algorithm, and an extension to the “lopsided” LLL.
    [Show full text]
  • Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part I)
    Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part I) Matthew He, Ph.D. Professor/Director Division of Math, Science, and Technology Nova Southeastern University, Florida, USA December 18-21, 2010, Hong Kong, China BIBM 2010 OUTLINE INTRODUCTION: FUNDAMENTAL QUESTIONS PART I : GENETIC CODES , BIOLOGICAL SEQUENCES , DNA AND PROTEIN STRUCTURES PART II: BIOLOGICAL FUNCTIONS, NETWORKS, SYSTEMS BIOLOGY AND COGNITIVE INFORMATICS TABLE OF TOPICS: PART I I. Bioinformatics and Mathematics 1.1 Introduction 12G1.2 Genet ic Co de an dMd Mat hemat ics 1.3 Mathematical Background 1.4 Converting Data to Knowledge 1.5 Big Picture: Informatics 16Chll1.6 Challenges and dP Perspect ives II. Genetic Codes, Matrices, and Symmetrical Techniques 2.1 Introduction 2.2 Matrix Theory and Symmetry Preliminaries 2.3 Genetic Codes and Matrices 2.4 Challenges and Perspectives III. Biological Sequences, Sequence Alignment, and Statistics 3.1 Introduction 3.2 Mathematical Sequences 3.3 Sequence Alignment 3.4 Sequence Analysis/Further Discussions 3.5 Challenges and Perspectives TABLE OF TOPICS: PART I IV. Structures of DNA and Knot Theory 4.1 Introduction 4.2 Knot Theory Preliminaries 4.3 DNA Knots and Links 4.4 Challenggpes and Perspectives V. Protein Structures, Geometry, and Topology 51I5.1 In tro duc tion 5.2 Computational Geometry and Topology 5.3 Protein Structures and Prediction 5.4 Statistical Approach and Discussions 5. 5 Cha llenges an d Perspec tives TABLE OF TOPICS: PART II VI. Biological Networks and Graph Theory 6. 1 Introduction 6.2 Graph Theory and Network Topology 6.3 Models of Biological Networks 6.4 Challenges and Perspectives VII.
    [Show full text]
  • Computational Geometry and Computer Graphics by Dobkin
    Computational Geometry and Computer Graphics David P. Dobkin+ Department of Computer Science Princeton University Princeton, NJ 08544 ABSTRACT Computer graphics is a de®ning application for computational geometry. The interaction between these ®elds is explored through two scenarios. Spatial subdivisions studied from the viewpoint of computa- tional geometry are shown to have found application in computer graph- ics. Hidden surface removal problems of computer graphics have led to sweepline and area subdivision algorithms in computational geometry. The paper ends with two promising research areas with practical applica- tions: precise computation and polyhedral decomposition. 1. Introduction Computational geometry and computer graphics both consider geometric phenomena as they relate to computing. Computational geometry provides a theoretical foundation involving the study of algorithms and data structures for doing geometric computations. Computer graphics concerns the practical development of the software, hardware and algorithms necessary to create graphics (i.e. to display geometry) on the computer screen. At the interface lie many common problems which each discipline must solve to reach its goal. The techniques of the ®eld are often similar, sometimes dif- ferent. And, each ®elds has built a set of paradigms from which to operate. Thus, it is natural to ask the question: How do computer graphics and computational geometry interact? It is this question that motivates this paper. I explore here life at the interface between computational geometry and computer graphics. Rather than striving for completeness (see e.g. Yao [Ya] for a broader survey), I consider in detail two scenarios in which the two ®elds have overlapped. The goal is to trace the development of the ideas used in the two areas and to document the movement back and forth.
    [Show full text]
  • 45 ROBUST GEOMETRIC COMPUTATION Vikram Sharma and Chee K
    45 ROBUST GEOMETRIC COMPUTATION Vikram Sharma and Chee K. Yap INTRODUCTION Nonrobustness refers to qualitative or catastrophic failures in geometric algorithms arising from numerical errors. Section 45.1 provides background on these problems. Although nonrobustness is already an issue in “purely numerical” computation, the problem is compounded in “geometric computation.” In Section 45.2 we character- ize such computations. Researchers trying to create robust geometric software have tried two approaches: making fixed-precision computation robust (Section 45.3), and making the exact approach viable (Section 45.4). Another source of nonro- bustness is the phenomenon of degenerate inputs. General methods for treating degenerate inputs are described in Section 45.5. For some problems the exact ap- proach may be expensive or infeasible. To ensure robustness in this setting, a recent extension of exact computation, the so-called “soft exact approach,” has been proposed. This is described in Section 45.6. 45.1 NUMERICAL NONROBUSTNESS ISSUES Numerical nonrobustness in scientific computing is a well-known and widespread phenomenon. The root cause is the use of fixed-precision numbers to represent real numbers, with precision usually fixed by the machine word size (e.g., 32 bits). The unpredictability of floating-point code across architectural platforms in the 1980s was resolved through a general adoption of the IEEE standard 754-1985. But this standard only makes program behavior predictable and consistent across platforms; the errors are still present. Ad hoc methods for fixing these errors (such as treating numbers smaller than some ε as zero) cannot guarantee their elimination. Nonrobustness is already problematic in purely numerical computation: this is well documented in numerous papers in numerical analysis with the key word “pitfalls” in their title.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Computational Geometry
    Computational Geometry Third Edition Mark de Berg · Otfried Cheong Marc van Kreveld · Mark Overmars Computational Geometry Algorithms and Applications Third Edition 123 Prof. Dr. Mark de Berg Dr. Marc van Kreveld Department of Mathematics Department of Information and Computer Science and Computing Sciences TU Eindhoven Utrecht University P.O. Box 513 P.O. Box 80.089 5600 MB Eindhoven 3508 TB Utrecht The Netherlands The Netherlands [email protected] [email protected] Dr. Otfried Cheong, ne´ Schwarzkopf Prof. Dr. Mark Overmars Department of Computer Science Department of Information KAIST and Computing Sciences Gwahangno 335, Yuseong-gu Utrecht University Daejeon 305-701 P.O. Box 80.089 Korea 3508 TB Utrecht [email protected] The Netherlands [email protected] ISBN 978-3-540-77973-5 e-ISBN 978-3-540-77974-2 DOI 10.1007/978-3-540-77974-2 ACM Computing Classification (1998): F.2.2, I.3.5 Library of Congress Control Number: 2008921564 © 2008, 2000, 1997 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc.
    [Show full text]
  • An Investigation of Droplets and Films Falling Over Horizontal Tubes
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 An investigation of droplets and films falling vo er horizontal tubes Jesse David Killion Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Killion, Jesse David, "An investigation of droplets and films falling vo er horizontal tubes" (2003). Retrospective Theses and Dissertations. 19454. https://lib.dr.iastate.edu/rtd/19454 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An investigation of droplets and films falling over horizontal tubes by Jesse David Killion A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Srinivas Garimella, Major Professor Richard H. Pletcher James C. Hill Iowa State University Ames, Iowa 2003 Copyright OO Jesse David Killion, 2003. All rights reserved. 11 Graduate College Iowa State University This is to certify that the master's thesis of Jesse David Killion has met the thesis requirements of Iowa State University Signatures have been redacted for privacy 111 TABLE OF CONTENTS ABSTRACT V ACKNOWLEDGEMENTS
    [Show full text]
  • Variational Tetrahedral Mesh Generation from Discrete Volume Data Julien Dardenne, Sébastien Valette, Nicolas Siauve, Noël Burais, Rémy Prost
    Variational tetrahedral mesh generation from discrete volume data Julien Dardenne, Sébastien Valette, Nicolas Siauve, Noël Burais, Rémy Prost To cite this version: Julien Dardenne, Sébastien Valette, Nicolas Siauve, Noël Burais, Rémy Prost. Variational tetrahedral mesh generation from discrete volume data. The Visual Computer, Springer Verlag, 2009, 25 (5), pp.401-410. hal-00537029 HAL Id: hal-00537029 https://hal.archives-ouvertes.fr/hal-00537029 Submitted on 17 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) Variational tetrahedral mesh generation from discrete volume data J. Dardenne · S. Valette · N. Siauve · N. Burais · R. Prost the date of receipt and acceptance should be inserted later Abstract In this paper, we propose a novel tetrahedral mesh measured in terms of minimal dihedral angle. Indeed, the ac- generation algorithm, which takes volumic data (voxels) as curacy and convergence speed of a FEM-based simulation an input. Our algorithm performs a clustering of the origi- depends on the mesh objective quality. As a consequence, a nal voxels within a variational framework. A vertex replaces lot of research was carried out on the topic of mesh gener- each cluster and the set of created vertices is triangulated in ation.
    [Show full text]
  • Combinatorial Problems in Computational Geometry
    Tel-Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences School of Computer Science Combinatorial Problems in Computational Geometry Thesis submitted for the degree of “Doctor of Philosophy” by Shakhar Smorodinsky Under the supervision of Prof. Micha Sharir Submitted to the Senate of Tel-Aviv University June 2003 The work on this thesis was carried out under the supervision of Prof. Micha Sharir iii iv The thesis is dedicated to my parents, Meir and Nechama Smorodinsky, whom I love and who inspired me to love science. To my brother Rani and his family Tami, Guy, Adi, Omer. To Saba Eliahu (Niutek, who was recently upgraded to Niutekle), and to Savta Dora. v vi Acknowledgments I would like to express my deepest gratitude to my advisor Micha Sharir, who taught and inspired me, and spent so much time with me, discussing many problems (some of which are part of this thesis) and reading and commenting on this manuscript. More than anything, working with Micha was a profound pleasure. I would also like to thank J´anosPach who inspired me by his enthusiasm to count crossings in flat-land and who spent time with me discussing various geometric combi- natorial problems. I would also like to thank Pankaj Agarwal, Noga Alon, Boris Aronov, Alon Efrat, Guy Even, Zvika Lotker, J´anosPach, Sariel Har-Peled, Dana Ron for many helpful and stimulating discussions of scientific problems. I would like to thank some of my co-authors with whom I closely worked: Boris Aronov, Guy Even, Sariel Har-Peled, Zvika Lotker, J´anosPach, Rom Pinchasi, Micha Sharir.
    [Show full text]