Chapter 7 Dynamic Notebooks: Jupyter, Markdown, and Pandoc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Usask Open Textbook Authoring Guide – Ver.1.0
USask Open Textbook Authoring Guide – Ver.1.0 USask Open Textbook Authoring Guide – Ver.1.0 A Guide to Authoring & Adapting Open Textbooks at the University of Saskatchewan Distance Education Unit (DEU), University of Saskatchewan Jordan Epp, M.Ed., Kristine Dreaver-Charles, M.Sc.Ed., Jeanette McKee, M.Ed. Open Press DEU, Usask Saskatoon Copyright:2016 by Distance Education Unit, University of Saskatchewan. This book is an adaptation based on the B.C. Open Textbook Authoring Guide created by BCcampus and licensed with a CC-BY 4.0 license. Changes to the BCcampus Authoring Guide for this University of Saskatchewan adaptation included: Changing the references from BCcampus Open Project to be more relevant to the University of Saskatchewan’s open textbook development. Creation of a new title page and book title. Changing information about Support Services to be University of Saskatchewan specific. Performing a general text edit throughout the guide, added image captions, and updated most images to remove the BCcampus branding. Updating Pressbook platform nomenclature to be consistent with the current version of Pressbooks. Unless otherwise noted, this book is released under a Creative Commons Attribution (CC-BY) 4.0 Unported license. Under the terms of the CC-BY license you can freely share, copy or redistribute the material in any medium or format, or adapt the material by remixing, transforming or modifying this material providing you attribute the Distance Education Unit, University of Saskatchewan and BCcampus. Attribution means you must give appropriate credit to the Distance Education Unit, University of Saskatchewan and BCcampus as the original creator, note the CC-BY license this document has been released under, and indicate if you have made any changes to the content. -
Tuto Documentation Release 0.1.0
Tuto Documentation Release 0.1.0 DevOps people 2020-05-09 09H16 CONTENTS 1 Documentation news 3 1.1 Documentation news 2020........................................3 1.1.1 New features of sphinx.ext.autodoc (typing) in sphinx 2.4.0 (2020-02-09)..........3 1.1.2 Hypermodern Python Chapter 5: Documentation (2020-01-29) by https://twitter.com/cjolowicz/..................................3 1.2 Documentation news 2018........................................4 1.2.1 Pratical sphinx (2018-05-12, pycon2018)...........................4 1.2.2 Markdown Descriptions on PyPI (2018-03-16)........................4 1.2.3 Bringing interactive examples to MDN.............................5 1.3 Documentation news 2017........................................5 1.3.1 Autodoc-style extraction into Sphinx for your JS project...................5 1.4 Documentation news 2016........................................5 1.4.1 La documentation linux utilise sphinx.............................5 2 Documentation Advices 7 2.1 You are what you document (Monday, May 5, 2014)..........................8 2.2 Rédaction technique...........................................8 2.2.1 Libérez vos informations de leurs silos.............................8 2.2.2 Intégrer la documentation aux processus de développement..................8 2.3 13 Things People Hate about Your Open Source Docs.........................9 2.4 Beautiful docs.............................................. 10 2.5 Designing Great API Docs (11 Jan 2012)................................ 10 2.6 Docness................................................. -
Markdown Markup Languages What Is Markdown? Symbol
Markdown What is Markdown? ● Markdown is a lightweight markup language with plain text formatting syntax. Péter Jeszenszky – See: https://en.wikipedia.org/wiki/Markdown Faculty of Informatics, University of Debrecen [email protected] Last modified: October 4, 2019 3 Markup Languages Symbol ● Markup languages are computer languages for annotating ● Dustin Curtis. The Markdown Mark. text. https://dcurt.is/the-markdown-mark – They allow the association of metadata with parts of text in a https://github.com/dcurtis/markdown-mark clearly distinguishable way. ● Examples: – TeX, LaTeX https://www.latex-project.org/ – Markdown https://daringfireball.net/projects/markdown/ – troff (man pages) https://www.gnu.org/software/groff/ – XML https://www.w3.org/XML/ – Wikitext https://en.wikipedia.org/wiki/Help:Wikitext 2 4 Characteristics Usage (2) ● An easy-to-read and easy-to-write plain text ● Collaboration platforms and tools: format that. – GitHub https://github.com/ ● Can be converted to various output formats ● See: Writing on GitHub (e.g., HTML). https://help.github.com/en/categories/writing-on-github – Trello https://trello.com/ ● Specifically targeted at non-technical users. ● See: How To Format Your Text in Trello ● The syntax is mostly inspired by the format of https://help.trello.com/article/821-using-markdown-in-trell o plain text email. 5 7 Usage (1) Usage (3) ● Markdown is widely used on the web for ● Blogging platforms and content management entering text. systems: – ● The main application areas include: Ghost https://ghost.org/ -
Jupyter Notebooks—A Publishing Format for Reproducible Computational Workflows
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elpub digital library Jupyter Notebooks—a publishing format for reproducible computational workflows Thomas KLUYVERa,1, Benjamin RAGAN-KELLEYb,1, Fernando PÉREZc, Brian GRANGERd, Matthias BUSSONNIERc, Jonathan FREDERICd, Kyle KELLEYe, Jessica HAMRICKc, Jason GROUTf, Sylvain CORLAYf, Paul IVANOVg, Damián h i d j AVILA , Safia ABDALLA , Carol WILLING and Jupyter Development Team a University of Southampton, UK b Simula Research Lab, Norway c University of California, Berkeley, USA d California Polytechnic State University, San Luis Obispo, USA e Rackspace f Bloomberg LP g Disqus h Continuum Analytics i Project Jupyter j Worldwide Abstract. It is increasingly necessary for researchers in all fields to write computer code, and in order to reproduce research results, it is important that this code is published. We present Jupyter notebooks, a document format for publishing code, results and explanations in a form that is both readable and executable. We discuss various tools and use cases for notebook documents. Keywords. Notebook, reproducibility, research code 1. Introduction Researchers today across all academic disciplines often need to write computer code in order to collect and process data, carry out statistical tests, run simulations or draw figures. The widely applicable libraries and tools for this are often developed as open source projects (such as NumPy, Julia, or FEniCS), but the specific code researchers write for a particular piece of work is often left unpublished, hindering reproducibility. Some authors may describe computational methods in prose, as part of a general description of research methods. -
Deep Dive on Project Jupyter
A I M 4 1 3 Deep dive on Project Jupyter Dr. Brian E. Granger Principal Technical Program Manager Co-Founder and Leader Amazon Web Services Project Jupyter © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Project Jupyter exists to develop open-source software, open standards and services for interactive and reproducible computing. https://jupyter.org/ Overview • Project Jupyter is a multi-stakeholder, open source project. • Jupyter’s flagship application is the Text Math Jupyter Notebook. • Notebook document format: • Live code, narrative text, equations, images, visualizations, audio. • ~100 programming languages supported. Live code • Over 500 contributors across >100 GitHub repositories. • Part of the NumFOCUS Foundation: • Along with NumPy, Pandas, Julia, Matplotlib,… Charts Who uses Jupyter and how? Students/Teachers Data science Data Engineers Machine learning Data Scientists Scientific computing Researchers Data cleaning and transformation Scientists Exploratory data analysis ML Engineers Analytics ML Researchers Simulation Analysts Algorithm development Reporting Data visualization Jupyter has a large and diverse user community • Many millions of Jupyter users worldwide • Thousands of AWS customers • Highly international • Over 5M public notebooks on GitHub alone Example: Dive into Deep Learning • Dive into Deep Learning is a free, open-source book about deep learning. • Zhang, Lipton, Li, Smola from AWS • All content is Jupyter Notebooks on GitHub. • 890 page PDF, hundreds of notebooks • https://d2l.ai/ © 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved. Common threads • Jupyter serves an extremely broad range of personas, usage cases, industries, and applications • What do these have in common? Ideas of Jupyter • Computational narrative • “Real-time thinking” with a computer • Direct manipulation user interfaces that augment the writing of code “Computers are good at consuming, producing, and processing data. -
The R Journal Volume 4/2, December 2012
The Journal Volume 4/2, December 2012 A peer-reviewed, open-access publication of the R Foundation for Statistical Computing Contents Editorial . .3 Contributed Research Articles What’s in a Name? . .5 It’s Not What You Draw, It’s What You Don’t Draw . 13 Debugging grid Graphics . 19 frailtyHL: A Package for Fitting Frailty Models with H-likelihood . 28 influence.ME: Tools for Detecting Influential Data in Mixed Effects Models . 38 The crs Package: Nonparametric Regression Splines for Continuous and Categorical Predic- tors.................................................... 48 Rfit: Rank-based Estimation for Linear Models . 57 Graphical Markov Models with Mixed Graphs in R . 65 Programmer’s Niche The State of Naming Conventions in R . 74 News and Notes Changes in R . 76 Changes on CRAN . 80 News from the Bioconductor Project . 101 R Foundation News . 102 2 The Journal is a peer-reviewed publication of the R Foun- dation for Statistical Computing. Communications regarding this pub- lication should be addressed to the editors. All articles are licensed un- der the Creative Commons Attribution 3.0 Unported license (CC BY 3.0, http://creativecommons.org/licenses/by/3.0/). Prospective authors will find detailed and up-to-date submission in- structions on the Journal’s homepage. Editor-in-Chief: Martyn Plummer Editorial Board: Heather Turner, Hadley Wickham, and Deepayan Sarkar Editor Help Desk: Uwe Ligges Editor Book Reviews: G. Jay Kerns Department of Mathematics and Statistics Youngstown State University Youngstown, Ohio 44555-0002 USA [email protected] R Journal Homepage: http://journal.r-project.org/ Email of editors and editorial board: [email protected] The R Journal is indexed/abstracted by EBSCO, DOAJ, Thomson Reuters. -
Tecnologías Libres Para La Traducción Y Su Evaluación
FACULTAD DE CIENCIAS HUMANAS Y SOCIALES DEPARTAMENTO DE TRADUCCIÓN Y COMUNICACIÓN Tecnologías libres para la traducción y su evaluación Presentado por: Silvia Andrea Flórez Giraldo Dirigido por: Dra. Amparo Alcina Caudet Universitat Jaume I Castellón de la Plana, diciembre de 2012 AGRADECIMIENTOS Quiero agradecer muy especialmente a la Dra. Amparo Alcina, directora de esta tesis, en primer lugar por haberme acogido en el máster Tecnoloc y el grupo de investigación TecnoLeTTra y por haberme animado luego a continuar con mi investigación como proyecto de doctorado. Sus sugerencias y comentarios fueron fundamentales para el desarrollo de esta tesis. Agradezco también al Dr. Grabriel Quiroz, quien como profesor durante mi último año en la Licenciatura en Traducción en la Universidad de Antioquia (Medellín, Colombia) despertó mi interés por la informática aplicada a la traducción. De igual manera, agradezco a mis estudiantes de Traducción Asistida por Computador en la misma universidad por interesarse en el software libre y por motivarme a buscar herramientas alternativas que pudiéramos utilizar en clase sin tener que depender de versiones de demostración ni recurrir a la piratería. A mi colega Pedro, que comparte conmigo el interés por la informática aplicada a la traducción y por el software libre, le agradezco la oportunidad de llevar la teoría a la práctica profesional durante todos estos años. Quisiera agradecer a Esperanza, Anna, Verónica y Ewelina, compañeras de aventuras en la UJI, por haber sido mi grupo de apoyo y estar siempre ahí para escucharme en los momentos más difíciles. Mis más sinceros agradecimientos también a María por ser esa voz de aliento y cordura que necesitaba escuchar para seguir adelante y llegar a feliz término con este proyecto. -
SENTINEL-2 DATA PROCESSING USING R Case Study: Imperial Valley, USA
TRAINING KIT – R01 DFSDFGAGRIAGRA SENTINEL-2 DATA PROCESSING USING R Case Study: Imperial Valley, USA Research and User Support for Sentinel Core Products The RUS Service is funded by the European Commission, managed by the European Space Agency and operated by CSSI and its partners. Authors would be glad to receive your feedback or suggestions and to know how this material was used. Please, contact us on [email protected] Cover image credits: ESA The following training material has been prepared by Serco Italia S.p.A. within the RUS Copernicus project. Date of publication: November 2020 Version: 1.1 Suggested citation: Serco Italia SPA (2020). Sentinel-2 data processing using R (version 1.1). Retrieved from RUS Lectures at https://rus-copernicus.eu/portal/the-rus-library/learn-by-yourself/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. DISCLAIMER While every effort has been made to ensure the accuracy of the information contained in this publication, RUS Copernicus does not warrant its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made of this publication. Consequently, such use is at the recipient’s own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The information contained in this publication does not purport to constitute professional advice. 2 Table of Contents 1 Introduction to RUS ........................................................................................................................ -
Final Report for the Redus Project
FINAL REPORT FOR THE REDUS PROJECT Reduced Uncertainty in Stock Assessment Erik Olsen (HI), Sondre Aanes Norwegian Computing Center, Magne Aldrin Norwegian Computing Center, Olav Nikolai Breivik Norwegian Computing Center, Edvin Fuglebakk, Daisuke Goto, Nils Olav Handegard, Cecilie Hansen, Arne Johannes Holmin, Daniel Howell, Espen Johnsen, Natoya Jourdain, Knut Korsbrekke, Ono Kotaro, Håkon Otterå, Holly Ann Perryman, Samuel Subbey, Guldborg Søvik, Ibrahim Umar, Sindre Vatnehol og Jon Helge Vølstad (HI) RAPPORT FRA HAVFORSKNINGEN NR. 2021-16 Tittel (norsk og engelsk): Final report for the REDUS project Sluttrapport for REDUS-prosjektet Undertittel (norsk og engelsk): Reduced Uncertainty in Stock Assessment Rapportserie: År - Nr.: Dato: Distribusjon: Rapport fra havforskningen 2021-16 17.03.2021 Åpen ISSN:1893-4536 Prosjektnr: Forfatter(e): 14809 Erik Olsen (HI), Sondre Aanes Norwegian Computing Center, Magne Aldrin Norwegian Computing Center, Olav Nikolai Breivik Norwegian Program: Computing Center, Edvin Fuglebakk, Daisuke Goto, Nils Olav Handegard, Cecilie Hansen, Arne Johannes Holmin, Daniel Howell, Marine prosesser og menneskelig Espen Johnsen, Natoya Jourdain, Knut Korsbrekke, Ono Kotaro, påvirkning Håkon Otterå, Holly Ann Perryman, Samuel Subbey, Guldborg Søvik, Ibrahim Umar, Sindre Vatnehol og Jon Helge Vølstad (HI) Forskningsgruppe(r): Godkjent av: Forskningsdirektør(er): Geir Huse Programleder(e): Bentiske ressurser og prosesser Frode Vikebø Bunnfisk Fiskeridynamikk Pelagisk fisk Sjøpattedyr Økosystemakustikk Økosystemprosesser -
Translate Toolkit Documentation Release 2.0.0
Translate Toolkit Documentation Release 2.0.0 Translate.org.za Sep 01, 2017 Contents 1 User’s Guide 3 1.1 Features..................................................3 1.2 Installation................................................4 1.3 Converters................................................6 1.4 Tools................................................... 57 1.5 Scripts.................................................. 96 1.6 Use Cases................................................. 107 1.7 Translation Related File Formats..................................... 124 2 Developer’s Guide 155 2.1 Translate Styleguide........................................... 155 2.2 Documentation.............................................. 162 2.3 Building................................................. 165 2.4 Testing.................................................. 166 2.5 Command Line Functional Testing................................... 168 2.6 Contributing............................................... 170 2.7 Translate Toolkit Developers Guide................................... 172 2.8 Making a Translate Toolkit Release................................... 176 2.9 Deprecation of Features......................................... 181 3 Additional Notes 183 3.1 Release Notes.............................................. 183 3.2 Changelog................................................ 246 3.3 History of the Translate Toolkit..................................... 254 3.4 License.................................................. 256 4 API Reference 257 4.1 -
Exploratory Data Science Using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E
The Story in the Notebook: Exploratory Data Science using a Literate Programming Tool Mary Beth Kery1 Marissa Radensky2 Mahima Arya1 Bonnie E. John3 Brad A. Myers1 1Human-Computer Interaction Institute 2Amherst College 3Bloomberg L. P. Carnegie Mellon University Amherst, MA New York City, NY Pittsburgh, PA [email protected] [email protected] mkery, mahimaa, bam @cs.cmu.edu ABSTRACT engineers, many of whom never receive formal training in Literate programming tools are used by millions of software engineering [30]. programmers today, and are intended to facilitate presenting data analyses in the form of a narrative. We interviewed 21 As even more technical novices engage with code and data data scientists to study coding behaviors in a literate manipulations, it is key to have end-user programming programming environment and how data scientists kept track tools that address barriers to doing effective data science. For of variants they explored. For participants who tried to keep instance, programming with data often requires heavy a detailed history of their experimentation, both informal and exploration with different ways to manipulate the data formal versioning attempts led to problems, such as reduced [14,23]. Currently even experts struggle to keep track of the notebook readability. During iteration, participants actively experimentation they do, leading to lost work, confusion curated their notebooks into narratives, although primarily over how a result was achieved, and difficulties effectively through cell structure rather than markdown explanations. ideating [11]. Literate programming has recently arisen as a Next, we surveyed 45 data scientists and asked them to promising direction to address some of these problems [17]. -
2019 Annual Report
ANNUAL REPORT 2019 TABLE OF CONTENTS LETTER FROM THE BOARD CO-CHAIRPERSON ..............................................03 PROJECTS ....................................................................................................................... 04 New Sponsored Projects Project Highlights from 2019 Project Events Case Studies Affiliated Projects NumFOCUS Services to Projects PROGRAMS ..................................................................................................................... 16 PyData PyData Meetups PyData Conferences PyData Videos Small Development Grants to NumFOCUS Projects Inaugural Visiting Fellow Diversity and Inclusion in Scientific Computing (DISC) Google Season of Docs Google Summer of Code Sustainability Program GRANTS ........................................................................................................................... 25 Major Grants to Sponsored Projects through NumFOCUS SUPPORT ........................................................................................................................ 28 2019 NumFOCUS Corporate Sponsors Donor List FINANCIALS ................................................................................................................... 34 Revenue & Expenses Project Income Detail Project EOY Balance Detail PEOPLE ............................................................................................................................ 38 Staff Board of Directors Advisory Council LETTER FROM THE BOARD CO-CHAIRPERSON NumFOCUS was founded in