Adventures in Theoretical Astrophysics

Total Page:16

File Type:pdf, Size:1020Kb

Adventures in Theoretical Astrophysics Adventures in Theoretical Astrophysics Thesis by Alison Jane Farmer In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2005 (Defended May 13, 2005) ii c 2005 Alison Jane Farmer All Rights Reserved iii Acknowledgements Thanks... To everyone who made my PhD more than just an academic experience. To my Caltech officemates, who have all managed to be successful despite my constant inane chatter: To Dawn Erb and Naveen “Dalek” Reddy for the best-decorated office in Robinson, to Margaret Pan for eating as many meringues as I did, and to Mike Santos for being as good at listening as he is at talking.1 To my big brothers at the IAS, for all the teasing. To all the men I have wronged. To everyone who beat me at sports. To everyone who is in more than one of the above categories. To California for my accent. To New Jersey for the cicadas. To db for feeding me like royalty while I wrote up this thesis.2 To Mr. Higgins of James Gillespie’s High School in Edinburgh for giving up his lunchtimes to talk physics. To Sterl Phinney for converting me to theory. To Asantha Cooray and Eric Agol for their collaboration. To Re’em Sari for making me behave better, and for lunch. To Peter Goldreich — my advisor, father-figure, grandfather-figure, personal trainer, chauffeur and friend — for everything. To Susan Goldreich for looking after him. To my parents, Ann and John Farmer, for believing in me. 1Marill! 2Rat vit rˆot, rˆot tenta rat, rat mit patte `arˆot, rˆot brˆula patte `arat. iv Abstract This thesis is a tour of topics in theoretical astrophysics, unified by their diversity and their pursuit of physical understanding of astrophysical phenomena. In the first chapter, we raise the possibility of the detection of white dwarfs in transit surveys for extrasolar Earths, and discuss the peculiarities of detecting these more massive objects. A population synthesis calculation of the gravitational wave background from extragalactic bi- nary stars is then presented. In this study, we establish a firm understanding of the uncertainties in such a calculation and provide a valuable reference for planning the Laser Interferometer Space Antenna mission. The long-established problem of cosmic ray confinement to the Galaxy is addressed in another chapter. We introduce a new wave damping mechanism, due to the presence of background turbu- lence, that prevents the confinement of cosmic rays by the resonant streaming instability. We also investigate the spokes in Saturn’s B ring, an electrodynamic mystery that is being illuminated by new data sent back from the Cassini spacecraft. In particular, we present assessments of the presence of charged dust near the rings, and the size of currents and electric fields in the ring system. We make inferences from the Cassini discovery of oxygen ions above the rings. In addition, the previous leading theory for spoke formation is demonstrated to be unphysical. In the final chapter, we explain the wayward motions of Prometheus and Pandora, two small moons of Saturn. Previously found to be chaotic as a result of mutual interactions, we account for their behavior by analogy with a parametric pendulum. We caution that this behavior may soon enter a new regime. v Contents Acknowledgements iii Abstract iv 1 Introduction and Executive Summary 1 2 Finding White Dwarfs with Transit Searches 8 Abstract 9 2.1 Introduction.................................... ..... 10 2.2 Whitedwarfbinaryvariations. ......... 11 2.3 Whitedwarfsinbinaries. ....... 13 2.3.1 EvolutiontotheWD–MSstage. .... 13 2.3.2 Populationsynthesis . ..... 14 2.4 Detectingwhitedwarfs. ....... 15 2.4.1 Stellarvariability. ...... 17 2.5 Discussion...................................... .... 20 2.6 Conclusions ..................................... .... 22 3 The Gravitational Wave Background from Cosmological Compact Binaries 26 Abstract 27 3.1 Introduction.................................... ..... 28 3.2 Gravitationalwavesfromabinarysystem . ........... 31 vi 3.3 EvolutiontotheDDstage. ...... 32 3.3.1 CEE+CEE ..................................... 33 3.3.2 StableRLOF+CEE ................................ 34 3.4 Analyticargumentsaboutspectralshape . ........... 35 3.5 Modelconstruction............................... ...... 39 3.5.1 The BSE codeandpopulationsynthesis . 39 3.5.2 Thestateofobservations . ..... 41 3.5.3 Candidatemodels ............................... .. 42 3.5.4 Interacting DDs and modifications made to the BSE code........... 46 3.6 Cosmologicalequations . ....... 48 3.6.1 Basicequations................................ ... 49 3.6.2 Computationalequations . ..... 50 3.6.3 Quantitiesused................................ ... 52 3.6.4 Cosmicstarformationhistory. ....... 53 3.7 Basicresults.................................... ..... 55 3.7.1 Contributors .................................. .. 58 3.7.1.1 Eccentricharmonics . 58 3.7.1.2 Interactingbinaries . .. 59 3.7.1.3 WDtypes,chirpmass,andmergerrates . ... 61 3.7.2 Progenitors ................................... .. 67 3.8 Outlook ......................................... .. 72 3.9 Comparisonwithpreviouswork. ........ 74 3.10Conclusions .................................... ..... 77 4 Wave Damping by MHD Turbulence and its Effect upon Cosmic Ray Propagation in the ISM 83 vii Abstract 84 4.1 Introduction.................................... ..... 85 4.2 TheMHDcascadeasadampingmechanism. ....... 86 4.2.1 Relevantpropertiesofthecascade . ........ 86 4.2.2 Theturbulentdampingrate. ..... 87 4.3 Competitionbetweengrowthanddamping. .......... 88 4.3.1 Resonantscatteringofcosmicrays . ........ 88 4.3.1.1 Parallellengthscale . .. 88 4.3.1.2 Perpendicularlengthscale . .... 89 4.3.2 Growthanddamping .............................. 90 4.4 Application to cosmic ray self-confinement in the ISM . .............. 91 4.4.1 Comparisonwithpreviouswork. ...... 93 4.5 Conclusions ..................................... .... 94 5 Ghosts of Saturn: Studies for the Ring Spokes 97 Abstract 98 5.1 Introduction.................................... ..... 98 5.2 Observationsofthespokes: theclues . ........... 99 5.2.1 Immediateinferences. ..... 102 5.3 Saturniansystemandrings . ....... 103 5.3.1 Saturn........................................ 103 5.3.2 Rings ........................................ 103 5.4 Photoelectronlayer.. .. .. .. .. .. .. .. .. .. .. .. .. ....... 105 5.4.1 Distributionofsurfacecharge . ........ 107 5.5 Dustaroundtherings .............................. ..... 108 5.5.1 Dustfromimpacts ............................... 108 5.6 Dustcharging.................................... .... 110 viii 5.6.1 Dustcharginginvacuum . .. 111 5.6.2 Dust charging within the Debye sheath . ....... 112 5.6.3 Levitationofdust .............................. .. 113 5.6.4 Dustcharginginaplasma. .... 115 5.7 Theringatmosphereandionosphere . ......... 115 5.7.0.1 Theobservations. .. .. .. .. .. .. .. .. .. .. .. .. 116 5.7.1 Conservativeinterpretation . ........ 117 5.7.2 Liberalinterpretation . ...... 120 5.7.2.1 Neutrallossrate ............................. 120 5.7.2.2 Loss processes for ions in the collisional atmosphere ......... 121 5.7.3 Debyesheathinpresenceofplasma . ...... 125 5.8 Electrodynamicsandcurrents . ......... 127 5.8.1 Conductivities in a magnetic field . ........ 130 5.8.2 Currentsintheringplane . ..... 132 5.8.2.1 ElectronsinDebyesheath. 132 5.8.2.2 Ionsinringatmosphere . 132 5.8.2.3 Dustgrains................................ 134 5.8.3 Nonvanishingcurrentsatcorotation . ......... 137 5.8.3.1 RingcurrentduetogradBdrift . 137 5.8.3.2 Ringcurrentdue tocorotationcharge . ..... 138 5.8.3.3 Field-alignedcurrents . .. 138 5.9 Theionosphere ................................... .... 140 5.9.1 Collisiontypes ................................ .. 140 5.9.2 Ionosphericwinds .............................. .. 142 5.10 Summary of environment: what have we learned and where dowegofromhere? . 143 5.11 2-streaminstability. ......... 144 5.12Previousattempts ............................... ...... 147 ix 5.13Conclusions .................................... ..... 147 5.14 Appendix: Velocity drifts in electric fields . ............... 152 5.14.1 Withneutralcollisions. ....... 152 5.14.2 IncludingCoulombcollisions . ........ 153 5.15 Appendix: the 2-stream instability . ............ 155 5.15.1 Thefluidequations. .... 155 5.15.2 Identicalfluids ............................... .... 156 5.15.3 Extremeplasmafrequencyratio . ....... 156 5.15.4 Includinglightfluids . ...... 157 5.15.5 Saturation of the instability . ......... 158 6 Spoke Formation under Moving Plasma Clouds 159 Abstract 160 6.1 Introduction.................................... ..... 160 6.2 Driftofaplasmacloud............................. ...... 162 6.2.1 Themodel ..................................... 163 6.2.2 Finding the drift velocity . ...... 163 6.3 WhereGMerred .................................... 166 6.4 Recalculationofdriftvelocity . ........... 167 6.5 Conclusions ..................................... .... 168 7 Understanding the Behavior of Prometheus and Pandora 170 Abstract 171 7.1 Introduction.................................... ..... 171 7.2 Resonantinteractions . ....... 172 7.3 Chaos—asimpleintroduction . ........ 174 7.4 Pendulumequations ............................... ..... 175 x 7.4.0.1 Integration ................................ 176 7.4.1 Systembehaviorandtheseparatrix . ....... 176 7.4.2 Action and locating separatrix crossings . ........... 177 7.4.3 Separation in phase space and Lyapunov exponent . .......... 179 7.4.4
Recommended publications
  • 2020 July 09 Dr. Paul Hertz Astrophysics Director Science
    2020 July 09 Dr. Paul Hertz Astrophysics Director Science Missions Directorate National Aeronautics and Space administration (NASA) Dear Paul, The NASA Astrophysics Advisory Committee (APAC) had its Summer meeting on 2020 June 23-24. Due to the COVID-19 pandemic and related NASA operational and travel restriction (Stage 4), the entire two-days of the meeting where conducted virtually using WebExtm videoconferencing technology accompanied by dial-in phone lines. The following members of the APAC attended the meeting: Kelly Holley-Bockelman, Laura Brenneman, John Conklin (Vice Chair), Asantha Cooray, Massimiliano Galeazzi, Jessica Gaskin, Hashima Hasan (APAC Executive Secretary), William Jones, Suvrath Mahadevan, Margaret Meixner, Michael Meyer, Leonidas Moustakas, Lucianne Walkowitz, and Chick Woodward (APAC Chair). Public lines were opened, and Dr. Hasan began the meeting by welcoming all the APAC members, and explaining its purpose. Dr. Hasan reminded APAC members who had conflicts of interest with specific topics on the agenda that as conflicted members they were allowed to listen to the presentation but could not participate in the committee’s discussion. Dr. Hasan then reviewed the Federal Advisory Committee Act (FACA) rules. Dr. Woodward then welcomed the members to the meeting, outlined the agenda, and reiterated some of the FACA and conflict of interest rules. APAC members proceeded to introduce themselves. The agenda consisted of the following presentations: • Astrophysics Division Update – Paul Hertz • State of the Profession – Chick Woodward and the APAC Committee • ExoPAG, COPAG, and PhysPAG reports – Michael Meyer, Margaret Meixner, Graca Rocha • SOFIA update – Margaret Meixner, Naseem Rangwala • James Webb update – Eric Smith • ESCAPE update – Kevin France • Athena update – Rob Petre • GUSTO update – Chris Walker • COSI update – John Tomsick • CASE/ARIEL update – Mark Swain • Science Activation update – Kristen Erickson The APAC thanks all the presenters for their time and efforts to provide crisp and informative presentations.
    [Show full text]
  • Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration
    Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 02/07/07 PROTOPLANETARY DISK TURBULENCE DRIVEN BY THE STREAMING INSTABILITY: NON-LINEAR SATURATION AND PARTICLE CONCENTRATION A. Johansen1 Max-Planck-Institut f¨ur Astronomie, 69117 Heidelberg, Germany and A. Youdin2 Princeton University Observatory, Princeton, NJ 08544 Accepted for publication in ApJ ABSTRACT We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as super- particles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.
    [Show full text]
  • Setting the Stage: Planet Formation and Volatile Delivery
    Noname manuscript No. (will be inserted by the editor) Setting the Stage: Planet formation and Volatile Delivery Julia Venturini1 · Maria Paula Ronco2;3 · Octavio Miguel Guilera4;2;3 Received: date / Accepted: date Abstract The diversity in mass and composition of planetary atmospheres stems from the different building blocks present in protoplanetary discs and from the different physical and chemical processes that these experience during the planetary assembly and evolution. This review aims to summarise, in a nutshell, the key concepts and processes operating during planet formation, with a focus on the delivery of volatiles to the inner regions of the planetary system. 1 Protoplanetary discs: the birthplaces of planets Planets are formed as a byproduct of star formation. In star forming regions like the Orion Nebula or the Taurus Molecular Cloud, many discs are observed around young stars (Isella et al, 2009; Andrews et al, 2010, 2018a; Cieza et al, 2019). Discs form around new born stars as a natural consequence of the collapse of the molecular cloud, to conserve angular momentum. As in the interstellar medium, it is generally assumed that they contain typically 1% of their mass in the form of rocky or icy grains, known as dust; and 99% in the form of gas, which is basically H2 and He (see, e.g., Armitage, 2010). However, the dust-to-gas ratios are usually higher in discs (Ansdell et al, 2016). There is strong observational evidence supporting the fact that planets form within those discs (Bae et al, 2017; Dong et al, 2018; Teague et al, 2018; Pérez et al, 2019), which are accordingly called protoplanetary discs.
    [Show full text]
  • The Multifaceted Planetesimal Formation Process
    The Multifaceted Planetesimal Formation Process Anders Johansen Lund University Jurgen¨ Blum Technische Universitat¨ Braunschweig Hidekazu Tanaka Hokkaido University Chris Ormel University of California, Berkeley Martin Bizzarro Copenhagen University Hans Rickman Uppsala University Polish Academy of Sciences Space Research Center, Warsaw Accumulation of dust and ice particles into planetesimals is an important step in the planet formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of gas and ice giants forming by core accretion. Left-over planetesimals in the form of asteroids, trans-Neptunian objects and comets provide a unique record of the physical conditions in the solar nebula. Debris from planetesimal collisions around other stars signposts that the planetesimal formation process, and hence planet formation, is ubiquitous in the Galaxy. The planetesimal formation stage extends from micrometer-sized dust and ice to bodies which can undergo run-away accretion. The latter ranges in size from 1 km to 1000 km, dependent on the planetesimal eccentricity excited by turbulent gas density fluctuations. Particles face many barriers during this growth, arising mainly from inefficient sticking, fragmentation and radial drift. Two promising growth pathways are mass transfer, where small aggregates transfer up to 50% of their mass in high-speed collisions with much larger targets, and fluffy growth, where aggregate cross sections and sticking probabilities are enhanced by a low internal density. A wide range of particle sizes, from mm to 10 m, concentrate in the turbulent gas flow. Overdense filaments fragment gravitationally into bound particle clumps, with most mass entering planetesimals of contracted radii from 100 to 500 km, depending on local disc properties.
    [Show full text]
  • L~,~!E?-~}On Streaming Dust Particle Instability
    ,I Indian Journ~f Radio' & ~patePhysics Vol. 23, Defember 1:,?~kPp. 410-415 Effect of streaming ~l~,~!E?-~}onstreaming dust particle instability Ix. { ....Physics Department,V ~ik~rn;, University yjj;yar~m~~ of Bombay,'{JS1DlTI\r' Bombay 400 090 , ,/ I J / '1J . Received 11 March 1994; revis'ed received 28 July 1994 '7 ~,ffiispersion relation for ~coustic wav~ in a homogeneous, unmagnetized and uniform plasma consistihg of charged streaming dust particles and streaming electrons is solved. The results are used .J to interpret the interaction between the solar wind plasma and ~.!~ry \iust QarticleJ. Due to this, it is suggested that, small dust particles are likely to be swept by the solar wind and thus assist in the formation of cometary tail.) :2). p 'i1 , -' /"" 1 Introduction cles with solar wind has been shown to have an Dust is found to be a common component in important role in the interpretation of large scale many plasma environments. Space plasmas, plane• structures of dusty plasma regionslH6. tary rings, cometary tails, asteroid belts, magne• To assess the interaction between the solar tospheres and lower part of earth ionosphere con• wind and cometary dust tail the conditions for the tain dust particles. In the laboratory plasmas, out• onset of streaming instability by jets, expanding gassing from nucleus, electrostatic disruption etc. halos and solar wind with dusty environment have /. are sOl)1e of the sources of dust particles. These been analyzed5• Bharuthram et al.17have analyzed dust grains collect ions and electrons and acquire the two stream ion instability and also the insta• an electric charge which can be equivalent to bility of drifting dust beams.
    [Show full text]
  • Alactic Observer
    alactic Observer G John J. McCarthy Observatory Volume 14, No. 2 February 2021 International Space Station transit of the Moon Composite image: Marc Polansky February Astronomy Calendar and Space Exploration Almanac Bel'kovich (Long 90° E) Hercules (L) and Atlas (R) Posidonius Taurus-Littrow Six-Day-Old Moon mosaic Apollo 17 captured with an antique telescope built by John Benjamin Dancer. Dancer is credited with being the first to photograph the Moon in Tranquility Base England in February 1852 Apollo 11 Apollo 11 and 17 landing sites are visible in the images, as well as Mare Nectaris, one of the older impact basins on Mare Nectaris the Moon Altai Scarp Photos: Bill Cloutier 1 John J. McCarthy Observatory In This Issue Page Out the Window on Your Left ........................................................................3 Valentine Dome ..............................................................................................4 Rocket Trivia ..................................................................................................5 Mars Time (Landing of Perseverance) ...........................................................7 Destination: Jezero Crater ...............................................................................9 Revisiting an Exoplanet Discovery ...............................................................11 Moon Rock in the White House....................................................................13 Solar Beaming Project ..................................................................................14
    [Show full text]
  • Circularizing Planet Nine Through Dynamical Friction with an Extended, Cold Planetesimal Belt
    MNRAS 000,1{9 (2017) Preprint 6 November 2018 Compiled using MNRAS LATEX style file v3.0 Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt Linn E.J. Eriksson,1? Alexander J. Mustill,1 Anders Johansen1 1Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund, Sweden Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Unexpected clustering in the orbital elements of minor bodies beyond the Kuiper belt has led to speculations that our solar system actually hosts nine planets, the eight established plus a hypothetical \Planet Nine". Several recent studies have shown that a planet with a mass of about 10 Earth masses on a distant eccentric orbit with perihelion far beyond the Kuiper belt could create and maintain this clustering. The evolutionary path resulting in an orbit such as the one suggested for Planet Nine is nevertheless not easily explained. Here we investigate whether a planet scattered away from the giant-planet region could be lifted to an orbit similar to the one suggested for Planet Nine through dynamical friction with a cold, distant planetesimal belt. Recent simulations of planetesimal formation via the streaming instability suggest that planetesimals can readily form beyond 100 au. We explore this circularisation by dynamical friction with a set of numerical simulations. We find that a planet that is scattered from the region close to Neptune onto an eccentric orbit has a 20-30% chance of obtaining an orbit similar to that of Planet Nine after 4:6 Gyr. Our simulations also result in strong or partial clustering of the planetesimals; however, whether or not this clustering is observable depends on the location of the inner edge of the planetesimal belt.
    [Show full text]
  • Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind.
    [Show full text]
  • Gravitational Time Delay Effects on Cosmic Microwave Background Anisotropies
    PHYSICAL REVIEW D, VOLUME 63, 023504 Gravitational time delay effects on cosmic microwave background anisotropies Wayne Hu* Institute for Advanced Study, Princeton, New Jersey 08540 and Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637 Asantha Cooray† Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637 ͑Received 2 August 2000; published 18 December 2000͒ We study the effect of gravitational time delay on the power spectra and bispectra of the cosmic microwave background ͑CMB͒ temperature and polarization anisotropies. The time delay effect modulates the spatial surface at recombination on which temperature anisotropies are observed, typically by ϳ1 Mpc. While this is a relatively large shift, its observable effects in the temperature and polarization fields are suppressed by geometric considerations. The leading order effect is from its correlation with the closely related gravitational lensing effect. The change to the temperature-polarization cross power spectrum is of order 0.1% and is hence comparable to the cosmic variance for the power in the multipoles around lϳ1000. While unlikely to be extracted from the data in its own right, its omission in modeling would produce a systematic error comparable to this limiting statistical error and, in principle, is relevant for future high precision experiments. Contributions to the bispectra result mainly from correlations with the Sachs-Wolfe effect and may safely be neglected in a low density universe. DOI: 10.1103/PhysRevD.63.023504 PACS number͑s͒: 98.80.Es, 95.85.Nv I. INTRODUCTION small effects can accumulate along the path. Indeed it is well known that the gravitational lensing of CMB photons has a In order that the full potential of anisotropies in the cos- substantial effect on the power spectrum of the anisotropies mic microwave background ͑CMB͒ temperature and polar- ͓11,12͔.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Overview of the Origins Space telescope: science drivers to observatory requirements Margaret Meixner, Lee Armus, Cara Battersby, James Bauer, Edwin Bergin, et al. Margaret Meixner, Lee Armus, Cara Battersby, James Bauer, Edwin Bergin, Asantha Cooray, Jonathan J. Fortney, Tiffany Kataria, David T. Leisawitz, Stefanie N. Milam, Klaus Pontoppidan, Alexandra Pope, Karin Sandstrom, Johannes G. Staguhn, Kevin B. Stevenson, Kate Y. Su, Charles Matt Bradford, Dominic Benford, Denis Burgarella, Sean Carey, Ruth C. Carter, Elvire De Beck, Michael J. Dipirro, Kimberly Ennico-Smith, Maryvonne Gerin, Frank P. Helmich, Lisa Kaltenegger, Eric. E. Mamajek, Gary Melnick, Samuel Harvey Moseley, Desika Narayanan, Susan G. Neff, Deborah Padgett, Thomas L. Roellig, Itsuki Sakon, Douglas Scott, Kartik Sheth, Joaquin Vieira, Martina Wiedner, Edward Wright, Jonas Zmuidzinas, "Overview of the Origins Space telescope: science drivers to observatory requirements," Proc. SPIE 10698, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 106980N (24 July 2018); doi: 10.1117/12.2312255 Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 23 Aug 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Overview of the Origins Space Telescope: Science Drivers to Observatory Requirements Margaret Meixnera,b,c, Lee Armusd, Cara Battersbye, James Bauerf, Edwin Berging, Asantha Coorayh, Jonathan J. Fortneyi, Tiffany Katariaj, David T. Leisawitzc, Stefanie N. Milamc, Klaus Pontoppidana, Alexandra Popek, Karin Sandstroml, Johannes G. Staguhnb,c, Kevin B. Stevensona, Kate Y. Sum, Charles Matt Bradfordj, Dominic Benfordn, Denis Burgarellao, Sean Careyd, Ruth C.
    [Show full text]
  • Order-Of-Magnitude Physics: Understanding the World with Dimensional Analysis, Educated Guesswork, and White Lies Peter Goldreic
    Order-of-Magnitude Physics: Understanding the World with Dimensional Analysis, Educated Guesswork, and White Lies Peter Goldreich, California Institute of Technology Sanjoy Mahajan, University of Cambridge Sterl Phinney, California Institute of Technology Draft of 1 August 1999 c 1999 Send comments to [email protected] ii Contents 1 Wetting Your Feet 1 1.1 Warmup problems 1 1.2 Scaling analyses 13 1.3 What you have learned 21 2 Dimensional Analysis 23 2.1 Newton’s law 23 2.2 Pendula 27 2.3 Drag in fluids 31 2.4 What you have learned 41 3 Materials I 43 3.1 Sizes 43 3.2 Energies 51 3.3 Elastic properties 53 3.4 Application to white dwarfs 58 3.5 What you have learned 62 4 Materials II 63 4.1 Thermal expansion 63 4.2 Phase changes 65 4.3 Specific heat 73 4.4 Thermal diffusivity of liquids and solids 77 4.5 Diffusivity and viscosity of gases 79 4.6 Thermal conductivity 80 4.7 What you have learned 83 5 Waves 85 5.1 Dispersion relations 85 5.2 Deep water 88 5.3 Shallow water 106 5.4 Combining deep- and shallow-water gravity waves 108 5.5 Combining deep- and shallow-water ripples 108 5.6 Combining all the analyses 109 5.7 What we did 109 Bibliography 110 1 1 Wetting Your Feet Most technical education emphasizes exact answers. If you are a physicist, you solve for the energy levels of the hydrogen atom to six decimal places. If you are a chemist, you measure reaction rates and concentrations to two or three decimal places.
    [Show full text]
  • Astrophysics in 2006 3
    ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media.
    [Show full text]