Supplementary Table 5. Abundance of Gut Microbes in the ND-FMT And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota -
Succession and Cazyme Expression of Marine Bacterial
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416354; this version posted December 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Sweet and magnetic: Succession and CAZyme expression of marine bacterial communities encountering a mix of alginate and pectin particles Carina Bunse1,2,*, Hanna Koch3,4,*, Sven Breider3, Meinhard Simon1,3 and Matthias Wietz2,3# 1Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Germany 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany 3Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Germany 4Department of Microbiology, Radboud University Nijmegen, The Netherlands *These authors contributed equally to this work. #Corresponding author HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Am Handelshafen 12 27570 Bremerhaven Germany Email: [email protected] Telephone +49-471-48311454 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416354; this version posted December 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Polysaccharide particles are an important nutrient source and microhabitat for marine bacteria. However, substrate-specific bacterial dynamics in a mixture of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. -
Raineya Orbicola Gen. Nov., Sp. Nov. a Slightly Thermophilic Bacterium of the Phylum Bacteroidetes and the Description of Raineyaceae Fam
TAXONOMIC DESCRIPTION Albuquerque et al., Int J Syst Evol Microbiol 2018;68:982–989 DOI 10.1099/ijsem.0.002556 Raineya orbicola gen. nov., sp. nov. a slightly thermophilic bacterium of the phylum Bacteroidetes and the description of Raineyaceae fam. nov. Luciana Albuquerque,1 Ana Rita M. Polónia,1 Cristina Barroso,1,2 Hugo J. C. Froufe,2 Olga Lage,3,4 Alexandre Lobo-da-Cunha,4,5 Conceiçao~ Egas1,2 and Milton S. da Costa1,* Abstract An isolate, designated SPSPC-11T, with an optimum growth temperature of about 50 C and an optimum pH for growth between 7.5 and 8.0, was recovered from a hot spring in central Portugal. Based on phylogenetic analysis of its 16S rRNA sequence, the new organism is most closely related to the species of the genus Thermonema but with a pairwise sequence similarity of <85 %. The isolate was orange-pigmented, formed non-motile long filaments and rod-shaped cells that stain Gram-negative. The organism was strictly aerobic, oxidase-positive and catalase-positive. The major fatty acids were iso- C15:0, iso-C15 : 0 2-OH and iso-C17 : 0 3-OH. The major polar lipids were one aminophospholipid, two aminolipids and three unidentified lipids. Menaquinone 7 was the major respiratory quinone. The DNA G+C content of strain SPSPC-11T was 37.6 mol% (draft genome sequence). The high quality draft genome sequence corroborated many of the phenotypic characteristics of strain SPSPC-11T. Based on genotypic, phylogenetic, physiological and biochemical characterization we describe a new species of a novel genus represented by strain SPSPC-11T (=CECT 9012T=LMG 29233T) for which we propose the name Raineya orbicola gen. -
Compile.Xlsx
Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge; -
Chemosynthetic and Photosynthetic Bacteria Contribute Differentially to Primary Production Across a Steep Desert Aridity Gradient
The ISME Journal https://doi.org/10.1038/s41396-021-01001-0 ARTICLE Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient 1,2 3,4 5 6 2 Sean K. Bay ● David W. Waite ● Xiyang Dong ● Osnat Gillor ● Steven L. Chown ● 3 1,2 Philip Hugenholtz ● Chris Greening Received: 23 November 2020 / Revised: 16 April 2021 / Accepted: 28 April 2021 © The Author(s) 2021. This article is published with open access Abstract Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia 1234567890();,: 1234567890();,: were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, withthecapacitytoalsouseatmosphericH2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. -
Genomic Analysis of Uncultured Microbes in Marine Sediments
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Singled Out: Genomic analysis of uncultured microbes in marine sediments Jordan Toby Bird University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Bird, Jordan Toby, "Singled Out: Genomic analysis of uncultured microbes in marine sediments. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4829 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jordan Toby Bird entitled "Singled Out: Genomic analysis of uncultured microbes in marine sediments." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this dissertation and recommend its acceptance: Mircea Podar, Andrew D. Steen, Erik R. Zinser Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Singled Out: Genomic analysis of uncultured microbes in marine sediments A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jordan Toby Bird December 2017 Copyright © 2017 by Jordan Bird All rights reserved. -
Phylogenetic Responses of Marine Free-Living Bacterial Community to Phaeocystis Globosa Bloom in Beibu Gulf, China
fmicb-11-01624 July 14, 2020 Time: 17:42 # 1 ORIGINAL RESEARCH published: 16 July 2020 doi: 10.3389/fmicb.2020.01624 Phylogenetic Responses of Marine Free-Living Bacterial Community to Phaeocystis globosa Bloom in Beibu Gulf, China Nan Li1*, Huaxian Zhao1, Gonglingxia Jiang1, Qiangsheng Xu1, Jinli Tang1, Xiaoli Li1, Jiemei Wen1, Huimin Liu1, Chaowu Tang1, Ke Dong2 and Zhenjun Kang3* 1 Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China, 2 Department of Biological Sciences, Kyonggi University, Suwon-si, South Korea, 3 Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China Phaeocystis globosa blooms are recognized as playing an essential role in shaping the structure of the marine community and its functions in marine ecosystems. In this study, we observed variation in the alpha diversity and composition of marine free-living bacteria during P. globosa blooms and identified key microbial community Edited by: assembly patterns during the blooms. The results showed that the Shannon index Olga Lage, was higher before the blooming of P. globosa in the subtropical bay. Marinobacterium University of Porto, Portugal (g-proteobacteria), Erythrobacter (a-proteobacteria), and Persicobacter (Cytophagales) Reviewed by: Xiaoqian Yu, were defined as the most important genera, and they were more correlated with University of Vienna, Austria environmental factors at the terminal stage of P. globosa blooms. Furthermore, different Catarina Magalhães, community assembly processes were observed. Both the mean nearest relatedness University of Porto, Portugal index (NRI) and nearest taxon index (NTI) revealed the dominance of deterministic *Correspondence: Nan Li factors in the non-blooming and blooming periods of P. -
Characterizing the Fecal Microbiota and Resistome of Corvus Brachyrhynchos (American Crow) in Fresno and Davis, California
ABSTRACT CHARACTERIZING THE FECAL MICROBIOTA AND RESISTOME OF CORVUS BRACHYRHYNCHOS (AMERICAN CROW) IN FRESNO AND DAVIS, CALIFORNIA American Crows are common across the United States, well adapted to human habitats, and congregate in large winter roosts. We aimed to characterize the bacterial community (microbiota) of the crows’ feces, with an emphasis on human pathogens. The antibiotic resistance (AR) of the bacteria was analyzed to gain insight into the role crows may play in the spread of AR genes. Through 16S rRNA gene and metagenomic sequencing, the microbiota and antibiotic resistance genes (resistome) were determined. The core microbiota (taxa found in all crows) contained Lactobacillales (22.2% relative abundance), Enterobacteriales (21.9%) and Pseudomonadales (13.2%). Among the microbiota were human pathogens including Legionella, Camplycobacter, Staphylococcus, Streptococcus, and Treponema, among others. The Fresno, California crows displayed antibiotic resistance genes for multiple drug efflux pumps, macrolide-lincosamide- streptogramin (MLS), and more. Ubiquitous, urban wildlife like the American Crow may play a role in the spread of AR pathogens to the environment and human populations. Rachel Lee Nelson August 2018 CHARACTERIZING THE FECAL MICROBIOTA AND RESISTOME OF CORVUS BRACHYRHYNCHOS (AMERICAN CROW) IN FRESNO AND DAVIS, CALIFORNIA by Rachel Lee Nelson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology in the College of Science and Mathematics California State University, Fresno August 2018 APPROVED For the Department of Biology: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree. -
A Non-Canonical Mismatch Repair Pathway in Prokaryotes
A non-canonical mismatch repair pathway in prokaryotes Article (Published Version) Castañeda-García, A, Prieto, A I, Rodríguez-Beltrán, J, Alonso, N, Cantillon, D, Costas, C, Pérez- Lago, L, Zegeye, E D, Herranz, M, Plociński, P, Tonjum, T, García de Viedma, D, Paget, M, Waddell, S J, Rojas, A M et al. (2017) A non-canonical mismatch repair pathway in prokaryotes. Nature Communications, 8. a14246. ISSN 2041-1723 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/66997/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. -
Analysis of Microbial Community Structures and Functions in Heavy Metal-Contaminated Soils Using Molecular Methods
ANALYSIS OF MICROBIAL COMMUNITY STRUCTURES AND FUNCTIONS IN HEAVY METAL-CONTAMINATED SOILS USING MOLECULAR METHODS THÈSE NO 2862 (2003) PRÉSENTÉE À LA FACULTÉ ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT Institut des sciences et technologies de l'environnement SECTION DES SCIENCES ET INGÉNIERIE DE L'ENVIRONNEMENT ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Fabienne GREMION biologiste diplômée de l'Université de Neuchâtel de nationalité suisse et originaire de Gruyères (FR) acceptée sur proposition du jury: Prof. H. Harms, directeur de thèse Dr A. Chatzinotas, rapporteur Prof. A. Hartmann, rapporteur Prof. Ch. Holliger, rapporteur Dr F. Widmer, rapporteur Lausanne, EPFL 2003 SUMMARY The contamination of agricultural land and groundwater by heavy metals is essentially linked to human activities. A major problem with heavy metals is that they cannot be biodegraded and therefore reside in the environment for long periods of time if they are not removed. Thus, depending of the kind and depth of contamination, different remediation techniques were developed. One of these methods, called «phytoextraction», uses the ability of so-called hyperaccumulating plants to extract high amounts of heavy metals. Accumulation of heavy metals in the environment is a serious concern for animal and human health. At the microscopic scale, heavy metals may have also deleterious effects on bacteria which are the key-players of the different nutrient turnovers in soils. Consequently, ecosystem functioning can be seriously perturbed and the long-term soil fertility may be threatened. The recent development of molecular biology greatly contributed to the discovery of the microbial diversity and its function in the soil. -
Sequence Analysis Allows Functional Annotation of Tyrosine Recombinases in Prokaryotic Genomes
bioRxiv preprint doi: https://doi.org/10.1101/542381; this version posted February 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Sequence analysis allows functional annotation of tyrosine recombinases in prokaryotic genomes. Authors: Georgy Smyshlyaev1,2, Orsolya Barabas2, Alex Bateman1 1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Hinxton, UK 2European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany Corresponding author: Georgy Smyshlyaev Postdoctoral Fellow, Barabas Lab European Molecular Biology Laboratory Structural and Computational Biology Unit Meyerhofstraße 1 69117 Heidelberg, Germany T +49 6221 387-8645 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/542381; this version posted February 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Background: Tyrosine recombinases perform site-specific genetic recombination in bacteria and archaea. They safeguard genome integrity by resolving chromosome multimers, as well as mobilize transposons, phages and integrons, driving dissemination of genetic traits and antibiotic resistance. Despite their abundance and genetic impact, tyrosine recombinase diversity and evolution has not been thoroughly characterized, which greatly hampers their functional classification. Results: Here, we conducted a comprehensive search and comparative analysis of diverse tyrosine recombinases from bacterial, archaeal and phage genomes. -
The Impact of Urbanization on Soil Bacterial Diversity and Community Composition in Long Island, New York
The Impact of Urbanization on Soil Bacterial Diversity and Community Composition in Long Island, New York by KAUNG MYAT SAN Thesis submitted to the Graduate Faculty in Biology in fulfillment of the requirements for the degree of Master of Art, The City University of New York March 2019 Approved by: __________________________________ Date: _________________________________________ i TABLE OF CONTENT Thesis Approval Form………………………………………………………………… i-ii Abstract………………………………………………………………….……………… iii Acknowledgements……………………………………………………………………... iv Introduction……………………………………….……………………. ……………. 1-7 1.1 Urbanization 1.2 Soil profile 1.3 Role of Microbes in Soil 1.4 Soil Bacterial Diversity and pH is linked to Human Population Density in Urban Centers 1.5 The Effects of Soil pH on Bacterial Diversity and the community composition Objectives and Hypotheses…………………………………………………………. 8-12 Materials and Methods……………………………………………………………. 13-21 2.1 Environmental Soil Collection 2.2 Soil Characterization of pH 2.3 Metagenomic Methods 2.4 DNA Sequences Processing 2.5 Statistical Analysis Results ……………………………………………………………………………… 22-28 Discussion …………………………………………………………………………. 29-32 Supplementary Materials…………………………………………………………. 33-42 References…………………………………………………………………………. 43-44 i QUEENS COLLEGE Of THE CITY UNIVERSITY OF NEW YORK Thesis Approval Form Mr./Ms_________________________________________________________________ (Please Print) a candidate for the degree of Master of Art [ ] Master of Science in Education [ ] Has satisfactorily completed a Master’s thesis