Luminosity Profiles of Prominent Stellar Halos

Total Page:16

File Type:pdf, Size:1020Kb

Luminosity Profiles of Prominent Stellar Halos Journal of the Korean Astronomical Society http://dx.doi.org/10.5303/JKAS.2018.51.4.73 51: 73 ∼ 88, 2018 June pISSN: 1225-4614 · eISSN: 2288-890X c 2018. The Korean Astronomical Society. All rights reserved. http://jkas.kas.org LUMINOSITY PROFILES OF PROMINENT STELLAR HALOS Hong Bae Ann and Hyeong Wook Park Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; [email protected] Received May 9, 2018; accepted June 30, 2018 Abstract: We present a sample of 54 disk galaxies which have well developed extraplanar structures. We selected them using visual inspections from the color images of the Sloan Digital Sky Survey. Since the sizes of the extraplanar structures are comparable to the disks, they are considered as prominent stellar halos rather than large bulges. A single S´ersic profile fitted to the surface brightness along the minor-axis of the disk shows a luminosity excess in the central regions for the majority of sample galaxies. This central excess is considered to be caused by the central bulge component. The mean S´ersic index of the single component model is 1.1 ± 0.9. A double S´ersic profile model that employs n = 1 for the inner region, and varying n for the outer region, provides a better fit than the single S´ersic profile model. For a small fraction of galaxies, a S´ersic profile fitted with n = 4 for the inner region gives similar results. There is a weak tendency of increasing n with increasing luminosity and central velocity dispersion, but there is no dependence on the local background density. Key words: galaxies: general — galaxies: photometry — galaxies: structure 1. INTRODUCTION difficult to observe. In the case of the Milky way, its halo luminosity is ∼ 1 per cent of the total luminosity, Stellar halos are thought to be ubiquitous in disk galax- and other spirals usually have halo luminosities similar ies (Sackett et al. 1994; Morrison et al. 1997; Lequeux to the Milky Way (Courteau et al. 2011). Since the et al. 1998; Abe et al. 1999; Zibetti et al. 2004; Zibetti surface brightness level needed to analyze the structure & Ferguson 2004; Zibetti et al. 2004; McConnachie et −2 of stellar halos is so faint (∼ 30 mag arcsec ), it re- al. 2006; Chapman et al. 2006; Kalirai et al. 2006; Seth quires highly precise observations and data reductions et al. 2007; de Jong et al. 2007; Mouhcine et al. 2007; are required to prevent observational artifacts. The first Helmi 2008; Jablonka et al. 2010; Ibata et al. 2014). detection of the stellar halo around disk galaxies was In the framework of the Λ cold dark matter (ΛCDM) reported for NGC5907 by Sackett et al. (1994), and cosmology (Springel et al. 2006), the existence of stel- confirmed by Lequeux et al. (1996) and Lequeux et al. lar halos around disk galaxies is very natural because (1998). Zibetti et al. (2004) applied an image stacking they are byproducts of hierarchical galaxy formation. technique to disk galaxies to derive the structural pa- They are thought to be formed by the accretion and rameters of their stellar halos. They showed that stellar disruption of dwarf satellites (Bullock & Johnston 2005; halos are moderately flattened spheroids with spatial Abadi et al. 2006; Font et al. 2006; de Lucia & Helmi luminosity distributions that are well described by a 2008; Font et al. 2008; Johnston et al. 2008; Gilbert et −3 power law (∼ r ). al. 2009; Cooper et al. 2010; Zolotov et al. 2010). There is mounting evidence that the accretion and disruption On the other hand, there are some disk galaxies of infalling satellites play a major role in building the with prominent stellar halos which are bright enough to stellar halos around disk galaxies (Searl & Zinn 1978; be visually identified. A well known example is NGC Johnston et al. 1996; Helmi & White 1999; Ferguson et 4594 (M104), a spiral galaxy, known as the Sombrero al. 2002; Bullock & Johnston 2005; Ibata et al. 2007; galaxy, with a Hubbe type of Sa (de Vaucouleurs et al. Johnston et al. 2008; Romanowsky et al. 2016). On 1991) however, it is sometimes considered as a peculiar the other hand, gas rich mergers in the early phase of elliptical galaxy (McQuinn et al. 2016) because of its the galaxy assembly (Brook et al. 2004), and in − situ bright stellar halo. The nucleus of NGC 4594 is fairly star formation (Font et al. 2011) were also proposed as bright, and there is a supermassive black hole in the cen- explanations of the origin of stellar halos. The ejec- ter (Kormendy 1988, 1996; Ho et al. 1997). More often, tion of in − situ stars formed at high redshift (z ∼> 3) the prominent stellar halo of NGC 4594 is considered as by subsequent major (Zolotov et al. 2009) and minor a massive bulge which contains ∼ 90% of the total lumi- mergers (Purcell et al. 2010) also could contribute to nosity (Kent 1988). However, the V −band minor axis stellar halos. profile of NGC 4594 (Jarvis & Freeman 1985) shows a ∼ The surface brightness of the stellar halos of spi- break at 55 arcsec which suggests two components, a ral galaxies is typically 10 magnitudes below the night stellar halo and central bulge. Detailed surface photom- sky background (Bakos & Trujillo 2012), making them etry of NGC 4594 (Burkhead 1986) also showed that the outer spheroidal component is a prominent stellar halo Corresponding author: H. B. Ann that can be well approximated by an ellipsoid with an 73 74 Ann & Park of prominent stellar halos and establish basic statistics. In particular, we aim to derive the S´ersic index of the luminosity profile of the prominent stellar halos to char- acterize the shape of the luminosity distribution. The S´ersic index n is known to be correlated with the lu- minosity, effective radius, and the central velocity dis- persion of galaxies (Graham et al. 2001; Mollenhoff & Heidt 2001; Graham 2002) when applied to ellipticals and the bulges of disk galaxies, Since prominent stel- lar halos are rare phenomena, we are also interested in their environment. This paper is organized as follows. The data and sample selection are described in Section 2, and the results of the present study are given in Section 3. Dis- cussion and conclusions are provided in Section 4. 2. DATA AND SAMPLE SELECTION 2.1. Selection of Prominent Stellar Halos We selected prominent stellar halos using the color im- ages provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (Abazajian et al. 2009). We used the Korea Institute of Advanced Study Value-Added Figure 1. Color-magnitude diagram of the sample galaxies Galaxy Catalog (KIAS-VAGC; Choi et al. 2010) to se- that show prominent stellar halos. lect the parent sample of target galaxies that have red- shifts less than z = 0.032, and r-magnitudes brighter axis ratio of b/a = 0.64. A clear distinction between than 17.77. The number of parent sample galaxies is the central bulge and the stellar halo can be seen in 44,244. We first selected 7,810 edge-on galaxies through the Spitzer 3.6-µ image (Gadotti & S´anchez-Janssem visual inspections of the SDSS color images in the par- 2012), in which the stellar halo is rounder than the cen- ent sample. Because of the large axis ratios (b/a) of the tral bulge, and dominates over the disk and bulge at prominent stellar halos, they are likely to be omitted large radius (r ∼> 215 arcsec). in the sample of edge-on galaxies selected by axis ratio Since most stellar halos are too faint to be observed criteria. Thus, it is necessary to conduct a visual inspec- by conventional methods, the number of galaxies with tion of the color images to see whether or not galaxies detailed observations of their stellar halos is quite lim- are edge-on. The selection criterion we have applied is ited. Therefore, there are no statistical samples of the the axis ratio of the disks and not the entire galaxy. structure and physical properties of stellar halos. On Sometimes, a well distinguished dustlane is considered the other hand, stellar halos have been well predicted as evidence of edge-on disks. by numerical simulations (Katz & Gunn 1991; Stein- Since we have selected the prominent stellar halos metz & Muller 1995; Brook et al. 2004) in the CDM by visual inspections of the color images without quan- scenario (White & Frenk 1991; Kauffmann et al. 1993). titative selection criteria, the selected sample is subject In a sense, these simulations failed to reproduce Milky to some personal bias, but we do not think we omit a Way type stellar halos whose mass fraction is less than significant fraction of prominent stellar halos. The final ∼ 1 per cent of the total luminous matter. Most stel- sample contains 54 galaxies, and corresponds to 0.1% lar halos that they modeled were too massive compared of the parent sample of 44,244 galaxies, and 0.7% of to observed stellar halos. However, Brook et al. (2004) the 7810 edge-on galaxies. This means that prominent was able to make different kinds of stellar halos depend- stellar halos are very rare. The basic properties of the ing on the supernova (SN) feedback mechanisms used. 54 galaxies are presented in Table 1, most of which are One model is similar to the faint stellar halos, often obtained from the KIAS-VAGC. observed, and another is similar to the massive stellar Figure 1 shows the color-magnitude diagram of halos that were reported in the previous studies (Katz galaxies in the final sample.
Recommended publications
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • The Young Nuclear Stellar Disc in the SB0 Galaxy NGC 1023
    MNRAS 457, 1198–1207 (2016) doi:10.1093/mnras/stv2864 The young nuclear stellar disc in the SB0 galaxy NGC 1023 E. M. Corsini,1,2‹ L. Morelli,1,2 N. Pastorello,3 E. Dalla Bonta,` 1,2 A. Pizzella1,2 and E. Portaluri2 1Dipartimento di Fisica e Astronomia ‘G. Galilei’, Universita` di Padova, vicolo dell’Osservatorio 3, I-35122 Padova, Italy 2INAF–Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia Accepted 2015 December 3. Received 2015 November 5; in original form 2015 September 11 Downloaded from ABSTRACT Small kinematically decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the http://mnras.oxfordjournals.org/ structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic centre, is rejected.
    [Show full text]
  • Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
    RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies.
    [Show full text]
  • Radio Sources in Low-Luminosity Active Galactic Nuclei
    A&A 392, 53–82 (2002) Astronomy DOI: 10.1051/0004-6361:20020874 & c ESO 2002 Astrophysics Radio sources in low-luminosity active galactic nuclei III. “AGNs” in a distance-limited sample of “LLAGNs” N. M. Nagar1, H. Falcke2,A.S.Wilson3, and J. S. Ulvestad4 1 Arcetri Observatory, Largo E. Fermi 5, Florence 50125, Italy 2 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany e-mail: [email protected] 3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Adjunct Astronomer, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 4 National Radio Astronomy Observatory, PO Box 0, Socorro, NM 87801, USA e-mail: [email protected] Received 23 January 2002 / Accepted 6 June 2002 Abstract. This paper presents the results of a high resolution radio imaging survey of all known (96) low-luminosity active galactic nuclei (LLAGNs) at D ≤ 19 Mpc. We first report new 2 cm (150 mas resolution using the VLA) and 6 cm (2 mas resolution using the VLBA) radio observations of the previously unobserved nuclei in our samples and then present results on the complete survey. We find that almost half of all LINERs and low-luminosity Seyferts have flat-spectrum radio cores when observed at 150 mas resolution. Higher (2 mas) resolution observations of a flux-limited subsample have provided a 100% (16 of 16) detection rate of pc-scale radio cores, with implied brightness temperatures ∼>108 K. The five LLAGNs with the highest core radio fluxes also have pc-scale “jets”.
    [Show full text]
  • Two Stellar Components in the Halo of the Milky Way
    1 Two stellar components in the halo of the Milky Way Daniela Carollo1,2,3,5, Timothy C. Beers2,3, Young Sun Lee2,3, Masashi Chiba4, John E. Norris5 , Ronald Wilhelm6, Thirupathi Sivarani2,3, Brian Marsteller2,3, Jeffrey A. Munn7, Coryn A. L. Bailer-Jones8, Paola Re Fiorentin8,9, & Donald G. York10,11 1INAF - Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy, 2Department of Physics & Astronomy, Center for the Study of Cosmic Evolution, 3Joint Institute for Nuclear Astrophysics, Michigan State University, E. Lansing, MI 48824, USA, 4Astronomical Institute, Tohoku University, Sendai 980-8578, Japan, 5Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Australian Capital Territory 2611, Australia, 6Department of Physics, Texas Tech University, Lubbock, TX 79409, USA, 7US Naval Observatory, P.O. Box 1149, Flagstaff, AZ 86002, USA, 8Max-Planck-Institute für Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany, 9Department of Physics, University of Ljubljana, Jadronska 19, 1000, Ljubljana, Slovenia, 10Department of Astronomy and Astrophysics, Center, 11The Enrico Fermi Institute, University of Chicago, Chicago, IL, 60637, USA The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, which can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for is dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components -- an inner and an outer halo – that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium).
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Near-Field Cosmology with Extremely Metal-Poor Stars
    AA53CH16-Frebel ARI 29 July 2015 12:54 Near-Field Cosmology with Extremely Metal-Poor Stars Anna Frebel1 and John E. Norris2 1Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email: [email protected] 2Research School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Weston, Australian Capital Territory 2611, Australia; email: [email protected] Annu. Rev. Astron. Astrophys. 2015. 53:631–88 Keywords The Annual Review of Astronomy and Astrophysics is stellar abundances, stellar evolution, stellar populations, Population II, online at astro.annualreviews.org Galactic halo, metal-poor stars, carbon-enhanced metal-poor stars, dwarf This article’s doi: galaxies, Population III, first stars, galaxy formation, early Universe, 10.1146/annurev-astro-082214-122423 cosmology Copyright c 2015 by Annual Reviews. All rights reserved Abstract The oldest, most metal-poor stars in the Galactic halo and satellite dwarf galaxies present an opportunity to explore the chemical and physical condi- tions of the earliest star-forming environments in the Universe. We review Access provided by California Institute of Technology on 01/11/17. For personal use only. the fields of stellar archaeology and dwarf galaxy archaeology by examin- Annu. Rev. Astron. Astrophys. 2015.53:631-688. Downloaded from www.annualreviews.org ing the chemical abundance measurements of various elements in extremely metal-poor stars. Focus on the carbon-rich and carbon-normal halo star populations illustrates how these provide insight into the Population III star progenitors responsible for the first metal enrichment events. We extend the discussion to near-field cosmology, which is concerned with the forma- tion of the first stars and galaxies, and how metal-poor stars can be used to constrain these processes.
    [Show full text]
  • ASTRONOMY and ASTROPHYSICS the Elliptical Galaxy Formerly Known As the Local Group: Merging the Globular Cluster Systems
    Astron. Astrophys. 358, 471–480 (2000) ASTRONOMY AND ASTROPHYSICS The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems Duncan A. Forbes1,2, Karen L. Masters1, Dante Minniti3, and Pauline Barmby4 1 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, UK 2 Swinburne University of Technology, Astrophysics and Supercomputing, Hawthorn, Victoria 3122, Australia 3 P. Universidad Catolica,´ Departamento de Astronom´ıa y Astrof´ısica, Casilla 104, Santiago 22, Chile 4 Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 5 November 1999 / Accepted 27 January 2000 Abstract. Prompted by a new catalogue of M31 globular clus- al. 1995; Minniti et al. 1996). Furthermore Hubble Space Tele- ters, we have collected together individual metallicity values for scope studies of merging disk galaxies reveal evidence for the globular clusters in the Local Group. Although we briefly de- GC systems of the progenitor galaxies (e.g. Forbes & Hau 1999; scribe the globular cluster systems of the individual Local Group Whitmore et al. 1999). Thus GCs should survive the merger of galaxies, the main thrust of our paper is to examine the collec- their parent galaxies, and will form a new GC system around tive properties. In this way we are simulating the dissipationless the newly formed elliptical galaxy. merger of the Local Group, into presumably an elliptical galaxy. The globular clusters of the Local Group are the best studied Such a merger is dominated by the Milky Way and M31, which and offer a unique opportunity to examine their collective prop- appear to be fairly typical examples of globular cluster systems erties (reviews of LG star clusters can be found in Brodie 1993 of spiral galaxies.
    [Show full text]
  • Search for Gas Accretion Imprints in Voids: I. Sample Selection and Results for NGC 428
    MNRAS 000,1{13 (2018) Preprint 1 November 2018 Compiled using MNRAS LATEX style file v3.0 Search for gas accretion imprints in voids: I. Sample selection and results for NGC 428 Evgeniya S. Egorova,1;2? Alexei V. Moiseev,1;2;3 Oleg V. Egorov1;2 1 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, Moscow 119234, Russia 2 Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz 369167, Russia 3 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya ul. 84/32, Moscow 117997, Russia Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the first results of a project aimed at searching for gas accretion events and interactions between late-type galaxies in the void environment. The project is based on long-slit spectroscopic and scanning Fabry-Perot interferometer observations per- formed with the SCORPIO and SCORPIO-2 multimode instruments at the Russian 6-m telescope, as well as archival multiwavelength photometric data. In the first paper of the series we describe the project and present a sample of 18 void galaxies with oxy- gen abundances that fall below the reference `metallicity-luminosity' relation, or with possible signs of recent external accretion in their optical morphology. To demonstrate our approach, we considered the brightest sample galaxy NGC 428, a late-type barred spiral with several morphological peculiarities. We analysed the radial metallicity dis- tribution, the ionized gas line-of-sight velocity and velocity dispersion maps together with WISE and SDSS images. Despite its very perturbed morphology, the velocity field of ionized gas in NGC 428 is well described by pure circular rotation in a thin flat disc with streaming motions in the central bar.
    [Show full text]
  • Exploring the Mass Assembly of the Early-Type Disc Galaxy NGC 3115 with MUSE? A
    A&A 591, A143 (2016) Astronomy DOI: 10.1051/0004-6361/201628743 & c ESO 2016 Astrophysics Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE? A. Guérou1; 2; 3, E. Emsellem3; 4, D. Krajnovic´5, R. M. McDermid6; 7, T. Contini1; 2, and P.M. Weilbacher5 1 IRAP, Institut de Recherche en Astrophysique et Planétologie, CNRS, 14, avenue Édouard Belin, 31400 Toulouse, France 2 Université de Toulouse, UPS-OMP, Toulouse, France 3 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany e-mail: [email protected] 4 Universite Lyon 1, Observatoire de Lyon, Centre de Recherche Astrophysique de Lyon and École Normale Supérieure de Lyon, 9 avenue Charles André, 69230 Saint-Genis-Laval, France 5 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 6 Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109, Australia 7 Australian Astronomical Observatory, PO Box 915, Sydney NSW 1670, Australia Received 19 April 2016 / Accepted 7 May 2016 ABSTRACT We present MUSE integral field spectroscopic data of the S0 galaxy NGC 3115 obtained during the instrument commissioning at the ESO Very Large Telescope (VLT). We analyse the galaxy stellar kinematics and stellar populations and present two-dimensional maps of their associated quantities. We thus illustrate the capacity of MUSE to map extra-galactic sources to large radii in an efficient manner, i.e. ∼4 Re, and provide relevant constraints on its mass assembly. We probe the well-known set of substructures of NGC 3115 (nuclear disc, stellar rings, outer kpc-scale stellar disc, and spheroid) and show their individual associated signatures in the MUSE stellar kinematics and stellar populations maps.
    [Show full text]
  • A Quartet of Black Holes and a Missing Duo: Probing the Low-End of the MBH − Σ Relation with the Adaptive Optics Assisted Integral-field Spectroscopy
    MNRAS 000, 1–28 (2016) Preprint 23 April 2018 Compiled using MNRAS LATEX style file v3.0 A quartet of black holes and a missing duo: probing the low-end of the MBH − σ relation with the adaptive optics assisted integral-field spectroscopy Davor Krajnovic´ 1?, Michele Cappellari2, Richard M. McDermid3;4, Sabine Thater1, Kristina Nyland5, P. Tim de Zeeuw6;7, Jesus´ Falcon-Barroso´ 8;9, Sadegh Khochfar10, Harald Kuntschner6, Marc Sarzi11, and Lisa M. Young12 1Leibniz-Institut f¨urAstrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany 2Sub-Department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 3Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia 4Australian Gemini Office, Australian Astronomical Observatory, PO Box 915, Sydney, NSW 1670, Australia 5National Radio Astronomy Observatory, Charlottesville, VA 22903, USA 6Max Planck Institut f¨urextraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany 7Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 8Instituto de Astrof´ısicade Canarias, V´ıaL´acteas/n, E-38200 La Laguna, Tenerife, Spain 9Departamento de Astrof´ısica,Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 10Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK 11Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB, UK 12Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA Accepted 2018 March 20. Received 2018 February 23; in original form 2017 May 16 ABSTRACT We present mass estimates of supermassive black holes in six nearby fast rotating early-type galaxies (NGC 4339, NGC 4434, NGC 4474, NGC 4551, NGC 4578 and NGC 4762) with ef- fective stellar velocity dispersion around 100 km/s.
    [Show full text]
  • The Flint River Observer
    1 bachelorette status by becoming Mrs. Laura Feltman. THE Everyone in FRAC wishes Laura and Trent Feltman, her husband-to-be, years of happily wedded bliss. FLINT RIVER -Bill Warren * * * OBSERVER Last Month’s Meeting/Activities. We had 21 members – speaker Felix Luciano and Dwight NEWSLETTER OF THE FLINT Harness, Alfred McClure, Bill Warren, Carlos RIVER ASTRONOMY CLUB Flores, Ken Harris, Tom Moore, Kenneth & Rose Olson, Alan Rutter, Aaron Calhoun, Erik An Affiliate of the Astronomical League Erikson, Truman Boyle, Dan Pillatzki, Larry Higgins, Eva Schmidler, Dawn Chappell, John Vol. 21, No. 3 May, 2018 Felbinger, Sean Neckel, Steve Hollander and Officers: President, Dwight Harness (1770 Cindy Barton – at our April meeting. Felix’s Hollonville Rd., Brooks, Ga. 30205, 770-227-9321, impressive performance took us through the process [email protected]); Vice President, Bill he uses to convert captured photons of light into his Warren (1212 Everee Inn Rd., Griffin, Ga. 30224, amazing astrophotos that you see in the Observer. [email protected]); Secretary, Carlos Our non-photographers might not have understood Flores; Treasurer, Jeremy Milligan. everything he talked about, but we appreciate the Board of Directors: Larry Higgins; Aaron effort that goes into the making of an astrophoto. Calhoun; and Alan Rutter. It’s a lot of work, but to folks like Felix and Alan Facebook Coordinator: Laura Harness; Alcor: Pryor it’s a labor of love. Carlos Flores; Webmaster: Tom Moore; “Into each life some rain must fall,” sang Ella Program Coordinator/Newsletter Editor: Bill Firzgerald and the Ink Spots in 1944. For Warren; Observing Coordinator: Sean Neckel; astronomers, though, it doesn’t take rain to cancel NASA Contact: Felix Luciano.
    [Show full text]