Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Table of Contents List of Figures .............................................................................................................. iv Executive Summary ...................................................................................................... 1 Introduction ................................................................................................................... 2 Purpose of the Geologic Resource Evaluation Program ............................................................................................2 Geographic Setting.....................................................................................................................................................2 Geologic Setting .........................................................................................................................................................2 Ancient Samoan History .............................................................................................................................................3 Geologic Issues........................................................................................................... 11 Reef and Ecosystem Health .....................................................................................................................................11 Water and Energy Resources...................................................................................................................................12 Geologic Hazards .....................................................................................................................................................13 Coastal Erosion and Beach Loss..............................................................................................................................14 Geologic Features and Processes............................................................................. 16 Volcanoes and Volcanism ........................................................................................................................................16 Coral Reefs and Sea Level Change .........................................................................................................................16 Weathering and Erosion ...........................................................................................................................................17 Map Unit Properties .................................................................................................... 23 Map Unit Properties Table - Tutuila Map Units.........................................................................................................24 Map Unit Properties Table - Tau Map Units .............................................................................................................25 Map Unit Properties Table - Ofu and Olosega Map Units.........................................................................................26 Geologic History.......................................................................................................... 27 Glossary....................................................................................................................... 37 References................................................................................................................... 39 Appendix A: Geologic Map Graphic .......................................................................... 42 Attachment 1: Geologic Resource Evaluation Products CD NPSA Geologic Resource Evaluation Report iii List of Figures Figure 1. Location of American Samoa. .........................................................................................................................4 Figure 2. Location of Samoa Islands in the South Pacific ..............................................................................................5 Figure 3. Features within the Melanesian Borderland. ...................................................................................................6 Figure 4A. Bathymetry surrounding the island of Tutuila................................................................................................7 Figure 4B. Bathymetry surrounding the islands of Ofu-Olosega. ...................................................................................8 Figure 4C. Bathymetry surrounding the island of T’au ...................................................................................................9 Figure 5. Shallow water areas around American Samoa .............................................................................................10 Figure 6: Map showing features mentioned in the text.................................................................................................18 Figure 7: Development of a volcanic island chain over a stationary hotspot ................................................................19 Figure 8: Simplified stages of hotspot island volcanism ...............................................................................................20 Figure 9: Pocillopora eydouxi Antler Coral ...................................................................................................................21 Figure 10: Acropora abrobanoides...............................................................................................................................21 Figure 11: Goniopora fruiticosa....................................................................................................................................22 Figure 12: Gardineroseris planulata.............................................................................................................................22 Figure 13. Geologic time scale.....................................................................................................................................30 Figure 14. Generalized location of plates in the Pacific basin ......................................................................................31 Figure 15. Geographic map of the current tectonic plates............................................................................................32 Figure 16. Location of hotspots across the South Pacific.............................................................................................33 Figure 17. Bathymetry of the Samoan seamounts .......................................................................................................34 Figure 18. Samoa Islands atop the Pacific plate in the vicinity of the Tonga trench.....................................................35 Figure 19. Evolution of the positions of the Tonga trench, seamounts, and Vitiaz lineament.......................................36 iv NPS Geologic Resources Division Executive Summary This report accompanies the digital geologic map for National Park of American Samoa in American Samoa, which the Geologic Resources Division produced in collaboration with its partners. It contains information relevant to resource management and scientific research. National Park of American Samoa is the only National and sand mining reduces sand supply to beaches, which Park Service unit south of the equator. It comprises parts are shrinking. Geologic hazards such as debris flows and of four separate islands and harbors lush rainforests, landslides threaten the growing populated areas. The steep terrain, diverse coral communities, lagoons, and following four topics of concern to park management beaches. Habitats at the park include shoreline wetlands, have geological underpinnings: cloud forests, and littoral forests. • Ocean temperatures and reef health. Surface water Geology is fundamental to the creation of the islands and temperatures in the South Pacific are rising. Coral to the environments of American Samoa. Geology species in American Samoa are the current subject of influences surface water flow, and it contributes to much study because some species are able to climate, weather, hydrology, and topography. Geologic withstand extreme temperatures. However, slight units and structures provide the framework for the increases in ocean temperature can cause other corals craggy, eroded volcanic island peaks blanketed by to “bleach” or expel their symbiotic zooxanthellae rainforests, for beaches, lagoons, and pristine reef areas algae and, if the high temperature is prolonged, coral in the South Pacific Ocean. polyps can die. The islands of American Samoa rise thousands of feet Excess nutrients and pollutants also harm the reefs. from the Pacific Ocean floor as a series of broad shield Transplanting resistant coral species to vulnerable areas may be a way to preserve the reefs at American volcanoes. These volcanoes formed as the Pacific plate moved over a stationary hotspot deep in the earth. Samoa and elsewhere throughout the Pacific. Alternating lava flows and airfall (pyroclastic) debris that • Sea level rise. Sea level is likely to rise in the near hardened into tuff, volcanic breccia, lapilli, and cinder future. Global climate changes are warming and layers form these volcanoes. Although the initial expanding surface waters within the South Pacific volcanism that created these islands has ceased, the Ocean Basin, and melting ice caps shed water into the tectonically complex setting of American Samoa—near oceans. Rising sea level may force changes in the reefs, the junction of the Pacific and Australian plates—means park infrastructure, and park management. that
Recommended publications
  • Ocean Trench
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Ocean trench Ocean trenches are long, narrow depressions on the seafloor. These chasms are the deepest parts of the ocean—and some of the deepest natural spots on Earth. G R A D E S 5 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 11 Images, 1 Video, 2 Links For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/ocean-trench/ Ocean trenches are long, narrow depressions on the seafloor. These chasms are the deepest parts of the ocean—and some of the deepest natural spots on Earth. Ocean trenches are found in every ocean basin on the planet, although the deepest ocean trenches ring the Pacific as part of the so-called “Ring of Fire” that also includes active volcanoes and earthquake zones. Ocean trenches are a result of tectonic activity, which describes the movement of the Earth’s lithosphere. In particular, ocean trenches are a feature of convergent plate boundaries, where two or more tectonic plates meet. At many convergent plate boundaries, dense lithosphere melts or slides beneath less-dense lithosphere in a process called subduction, creating a trench. Ocean trenches occupy the deepest layer of the ocean, the hadalpelagic zone. The intense pressure, lack of sunlight, and frigid temperatures of the hadalpelagic zone make ocean trenches some of the most unique habitats on Earth.
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • The Paleo Dutton Plateau: a Geomorphologic Conundrum
    THE PALEO DUTTON PLATEAU: A GEOMORPHOLOGIC CONUNDRUM N. Christian Smoot - Sr. Fellow ([email protected]) Geoplasma Research Institute (GRI) Hoschton, Georgia 30548 USA ABSTRACT Guyots on the Dutton Ridge are used to explain the pre-existence of a plateau in the NW Pacific region. The idea was basically proposed in a 1983 paper but was not proven until the discovery of the basin-wide N-S fracture zone/mega-trends and the orthogonal intersections in the 1990s. The proposal is based on the multibeam sonar-based morphology itself and the intersections of both E-W Mendocino/Surveyor megatrends and N-S Udintsev/Kashima megatrends converging there. Keywords: Multibeam Bathymetry, Fracture Zones, Megatrend Figure 1. First full representation of the Dutton Ridge [7]. Intersections, Guyots The feature was contoured at 200 fm using ship-of-opportunity single-beam data. Most of the features were recognizable in the proper locations. All in all, this was not a bad contouring job 1. INTRODUCTION considering the quality and quantity of the information available at that time. This locator is contoured from that at 500 fm with Fully accurate bathymetric data for eight guyots from the Dutton the 3000 fm isobath on the upper right and at the trenches. Ridge are based on U.S. Naval Oceanographic Office (NAVOCEANO) swath mapping by the SASS multi-beam sonar During the 1970s and 80s NAVOCEANO did a total-coverage, system in the 1970s [1]. The Dutton Ridge is a major east-west swath mapped SASS survey by the USNS DUTTON (T-AGS- 275 nautical mile-long (510 km) trending feature that intersects 22).
    [Show full text]
  • 05. Dida Kusnida.Cdr
    Geo-Science J.G.S.M. Vol. 17 No. 2 Mei 2016 hal. 99 - 106 Depositional Modification in Seram Trough, Eastern Indonesia Modifikasi Pengendapan di Palung Seram, Indonesia Timur Dida Kusnida, Tommy Naibaho, and Yulinar Firdaus Marine Geological Institute of Indonesia, Jl. Dr. Djundjunan 236, Bandung-40174 [email protected] Naskah diterima : 1 Maret 2016, Revisi terakhir : 3 Mei 2016, Disetujui : 4 Mei 2016 Abstract - Seismic reflection profiles considered to Abstrak - Penampang rekaman seismik yang dianggap represent the morphotectonics of the study area and mewakili morfotektonik daerah studi dan diverifikasi verified by surficial sedimentary data presented in this dengan data sedimen permukaan yang disajikan dalam paper directed to understand the sedimentary depositional tulisan ini diarahkan untuk memahami dinamika dynamics. Seismic data interpretation results show the pengendapan sedimen. Hasil penafsiran data seismik gradation and sediment facies cycles in accordance with menunjukan gradasi dan siklus fasies sedimen sesuai the episode of tectonic activities, which is characterized by dengan episod aktivitas tektonik yang dicirikan oleh the avalanche of the Seram Trough base-of slopes longsoran material lereng Palung Seram. Data seismik materials. Seismic data reveal more than 1250 meters menunjukan lebih dari 1250 meter sedimen secara akustik acoustically chaotic to laminated, indicate fine-grained kaotik hingga berlapis, mencirikan sedimen berbutir sediments between slumps at its base of slope and fine halus antara slam pada lereng bagian bawah dan sedimen marine sediments at the trough floor. Thus, it suggests that marin halus pada lantai palung. Dengan demikian, diduga the Seram Trough is in the process of differential vertical bahwa Palung Seram berada dalam proses pergerakan movement causing depositional modification due to the vertikal diferensial yang menyebabkan terjadinya accretionary prism growths.
    [Show full text]
  • Context-Aware Web-Mining Engine
    Context Aware Web-mining Engine Christopher Goh Zhen Fung Koay Tze Min River Valley High School Raffles Institution Singapore Singapore [email protected] [email protected] Abstract—The context of a user’s query is often lost when using extracted to download more layers of web documents. These search engines such as Google, as they limit the number of search documents are ranked according to their similarity to the query, terms that can be input. Therefore, they may not return the most using natural language processing with machine learning relevant or desired results often. This project developed a context- techniques, to return search results of higher relevancy. aware web mining engine (CAWE), which allows the user to use the entire content of multiple documents as the query, to search and rank We compared the performance of CAWE with Google, the web documents by their similarity to it. CAWE combines the search most widely used search engine in the world, holding 70.69% results from Google, Yahoo and Bing search engines, and further of the search engine market share as of November 2015 [1]. crawls the links found in the downloaded web documents. The web Most popular search engines (Bing, DuckDuckGo, Baidu, documents are then ranked according to their content’s relevance to Yahoo, etc.) make use of similar PageRank techniques like the query documents. This ability for document matching is enabled Google, with variants of semantic matching [2]. by natural language processing techniques. Experiments showed that CAWE performed better than Google in finding more relevant web B. Drawbacks of Current Popular Search Engines documents.
    [Show full text]
  • GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean Polina Lemenkova
    GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean Polina Lemenkova To cite this version: Polina Lemenkova. GMT Based Comparative Analysis and Geomorphological Mapping of the Ker- madec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, Cluj University Press, 2019, 14 (2), pp.39-48. 10.21163/GT_2019.142.04. hal-02333464 HAL Id: hal-02333464 https://hal.archives-ouvertes.fr/hal-02333464 Submitted on 16 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Geographia Technica, Vol. 14, Issue 2, 2019, pp 39 to 48 GMT BASED COMPARATIVE ANALYSIS AND GEOMORPHOLOGICAL MAPPING OF THE KERMADEC AND TONGA TRENCHES, SOUTHWEST PACIFIC OCEAN Polina LEMENKOVA1 DOI: 10.21163/GT_2019.142.04 ABSTRACT: Current study is focused on the GMT based modelling of the two hadal trenches located in southwest Pacific Ocean, eastwards from Australia: Tonga and Kermadec. Due to its inaccessible location, the seafloor of the deep-sea trench can only be visualized using remote sensing tools and advanced algorithms of data analysis. The importance of the developing and technical improving of the innovative methods in cartographic data processing is indisputable.
    [Show full text]
  • T Delft Hydraulic and Offshore Engineering Division Delft University of Technology Ctwa43oo Coastal Engineering Volume I
    CTwa4300 Coastal Engineering Volume Faculty of Civil Engineering and Geosciences Subfaculty of Civil Engineering T Delft Hydraulic and Offshore Engineering Division Delft University of Technology cTwa43oo Coastal Engineering Volume I Prof.ir. K. d'Angremond Ir. C.M.G. Somers 310222 cTwa43oo Coastal Engineering Volume I Prof.ir. K. d'Angremond Ir. C.M.G. Somers 310222 Contents List of Figxires List of Tables List of Symbols Preface 2 1 Introduction 3 1.1 The coast 3 1.2 Coastal engineering 4 1.3 Structure of these lecture notes 5 2 The natural subsystem 6 2.1 Introduction 6 2.1.1 Dynamics of a coast 6 2.1.2 Genesis of the universe, earth, ocean, and atmosphere 7 2.1.3 Sea level change 12 2.2 Geology 13 2.2.1 Geologic time and definitions 13 2.2.2 Plate tectonics: the changing map of the earth 14 2.2.3 Tectonic classification of coasts 18 2.3 Climatology 23 2.3.1 Introduction 23 2.3.2 Meteorological system 23 2.3.3 From meteorology to climatology 24 2.3.4 The hydrological cycle 25 2.3.5 Solar radiation and temperature distributions 27 2.3.6 Atmospheric circulation and wind 31 2.4 Oceanography 35 2.4.1 Introduction 35 2.4.2 Variable density 36 2.4.3 Geostrophic currents 38 2.4.4 The tide 40 2.4.5 Seiches 46 2.4.6 Short waves 47 2.4.7 Wind wave statistics 56 2.4.8 Storm surges 69 2.4.9 Tsunamis 60 2.5 Morphology 62 2.5.1 Introduction 62 2.5.2 Surf zone processes 63 2.5.3 Sediment transport 64 2.5.4 Coastline changes 68 3 Coastal formations 70 3.1 Introduction 70 3.2 Transgressive coasts 73 3.2.1 Definition 73 3.2.2 Estuaries 73 3.2.3 Tidal
    [Show full text]
  • Petit Spot Rejuvenated Volcanism Superimposed on Plume-Derived
    RESEARCH ARTICLE “Petit Spot” Rejuvenated Volcanism Superimposed 10.1029/2018GC007985 on Plume‐Derived Samoan Shield Volcanoes: Key Points: ‐ • Within the 645‐m Tutuila drill core Evidence From a 645 m Drill Core From we find isotopically heterogeneous lavas as well as several abrupt Tutuila Island, American Samoa temporal and geochemical Andrew A. Reinhard1 , Matthew G. Jackson1 , Jerzy Blusztajn2 , Anthony A. P. Koppers3 , boundaries 1 4 • The proximity of Samoan volcanoes Alexander R. Simms , and Jasper G. Konter to the Tonga Trench and 1 2 geochronology are consistent with a Department of Earth Science, University of California, Santa Barbara, CA, USA, Woods Hole Oceanographic Institution, tectonic influence on rejuvenated Woods Hole, MA, USA, 3College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA, volcanism 4Department of Earth Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA • The tectonic setting and isotopic signatures of the Samoan rejuvenated lavas link them to “petit spots” outboard of the Japan Trench Abstract In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, Supporting Information: spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched • Supporting Information S1 mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to • Table S1 “ ” • Table S2 1.17 Ma) shield lavas with a primordial common (focus zone) component interlayered with lavas that • Table S3 sample a depleted mantle component.
    [Show full text]
  • 2. the D'entrecasteaux Zone—New Hebrides
    Collot, J.-Y., Greene, H. G., Stokking, L. B., et al., 1992 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 134 2. THE D'ENTRECASTEAUX ZONE-NEW HEBRIDES ISLAND ARC COLLISION ZONE: AN OVERVIEW1 J.-Y. Collot2 and M. A. Fisher3 ABSTRACT The <TEntrecasteaux Zone, encompassing the North d'Entrecasteaux Ridge and the Bougainville Guyot, collide with the central New Hebrides Island Arc. The d'Entrecasteaux Zone trends slightly oblique to the 10-cm/yr relative direction of plate motion so that the ridge and the guyot scrape slowly (2.5 cm/yr) north, parallel to the trench. The North d'Entrecasteaux Ridge consists of Paleogene mid-ocean ridge basalt basement and Pliocene to Pleistocene sediment. The Bougainville Guyot is an andesitic, middle Eocene volcano capped with upper Oligocene to lower Miocene and Miocene to Pliocene lagoonal limestones. Geophysical and geologic data collected prior to Leg 134 indicate that the two collision zones differ in morphology and structure. The North d'Entrecasteaux Ridge extends, with a gentle dip, for at least 15 km eastward beneath the arc slope and has produced a broad (20-30 km), strongly uplifted area (possibly by 1500-2500 m) that culminates at the Wousi Bank. This tectonic pattern is further complicated by the sweeping of the ridge along the trench, which has produced a lobate structure formed by strike-slip and thrust faults as well as massive slumps north of the ridge. South of the ridge, the sweeping has formed large normal faults and slump scars that suggest collapse of arc-slope rocks left in the wake of the ridge.
    [Show full text]
  • SUBDUCTION ZONES • Most Subduction Zones Are Found in the Pacific Ocean
    ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017 Why is there no oceanic crust older than 200 million years? SUBDUCTION • If new oceanic crust is being continuously created along the earth’s spreading ridge system, then we must find some way to re-cycle it back into the mantle. [WHY? –otherwise the earth would be expanding!!!!] • Old oceanic crust (>200 million years) is returned to the mantle at the deep ocean trenches. • These are known as SUBDUCTION ZONES • Most subduction zones are found in the Pacific Ocean. This means that the Pacific Ocean is shrinking and the Atlantic Ocean is expanding. Convection in the mantle Lithosphere Recap Lithosphere (or plate) – is rigid and is composed of crust and upper mantle. Thickness varies from 10-150 km. Asthenosphere – is soft, plastic and convecting. Melting of the asthenosphere produces volcanic rocks at ocean ridges. SUBDUCTION Cross-section through the southern Pacific Ocean New oceanic crust and lithosphere are created at the East Pacific Rise Old oceanic crust and lithosphere are subducted at deep ocean trenches (Tonga trench and Chile trench). Kamchatka Pacific Ocean trench Aleutian trench Japan trench Costa Rica trench Marianas trench Tonga trench Chile trench East Pacific Rise Notice that the trenches are often curved with the convex side facing the direction of subduction. This is because the earth is spherical Consequently by observing the curvature of the trench we can easily determine which side is being subducted Details of a subduction zone • Slab of lithosphere descends back into the mantle at a deep ocean trench. • Earthquakes trace the descent of the slab into the mantle (Benioff Zone).
    [Show full text]
  • Telepresence-Enabled Exploration of The
    ! ! ! ! 2014 WORKSHOP TELEPRESENCE-ENABLED EXPLORATION OF THE !EASTERN PACIFIC OCEAN WHITE PAPER SUBMISSIONS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TABLE OF CONTENTS ! ! NORTHERN PACIFIC! Deep Hawaiian Slopes 7 Amy Baco-Taylor (Florida State University) USS Stickleback (SS-415) 9 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Sunken Battlefield of Midway 10 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Systematic Mapping of the California Continental Borderland from the Northern Channel Islands to Ensenada, Mexico 11 Jason Chaytor (USGS) Southern California Borderland 16 Marie-Helene Cormier (University of Rhode Island) Expanded Exploration of Approaches to Pearl Harbor and Seabed Impacts Off Oahu, Hawaii 20 James Delgado (NOAA ONMS Maritime Heritage Program) Gulf of the Farallones NMS Shipwrecks and Submerged Prehistoric Landscape 22 James Delgado (NOAA ONMS Maritime Heritage Program) USS Independence 24 James Delgado (NOAA ONMS Maritime Heritage Program) Battle of Midway Survey and Characterization of USS Yorktown 26 James Delgado (NOAA ONMS Maritime Heritage Program) Deep Oases: Seamounts and Food-Falls (Monterey Bay National Marine Sanctuary) 28 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Lost Shipping Containers in the Deep: Trash, Time Capsules, Artificial Reefs, or Stepping Stones for Invasive Species? 31 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Channel Islands Early Sites and Unmapped Wrecks 33 Lynn Dodd (University of Southern
    [Show full text]
  • Louisville Seamount Subduction: Tracking Mantle Flow Beneath the Central Tonga-Kermadec Arc
    Louisville seamount subduction: tracking mantle flow beneath the central Tonga-Kermadec arc Christian Timm1*, Daniel Bassett2, Ian J. Graham1, Matthew I. Leybourne1†, Cornel E.J. de Ronde1, Jon Woodhead3, Daniel Layton-Matthews4 and Anthony B. Watts2 1Department of Marine Geoscience, GNS Science, PO Box 30-368, Lower Hutt, New Zealand, 2Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, 3School of Earth Sciences, University of Melbourne, Victoria 3010, Australia, 4Department of Geological Sciences & Geological Engineering, Queen’s University, Kingston, Ontario, Canada, † now at ALS Geochemistry, 2103 Dollarton Hwy, North Vancouver, BC, Canada [email protected] Subduction of alkaline intraplate seamounts beneath a geochemically depleted mantle wedge provides a rare opportunity to study element recycling and mantle flow in some detail. One example of a seamount chain – oceanic arc collision is the ~2,600 km long Tonga-Kermadec arc, where midway the Cretaceous Louisville seamount chain subducts beneath the central Tonga-Kermadec arc system. Here subduction of a thin sediment package (~200 m) beneath oceanic lithosphere together with an aqueous fluid-dominated system allows to track geochemical signatures from the subducted Louisville seamounts and to better understand mantle flow geometry. Geochemical analyses of recent lavas (<10 ka) from volcanic centers west of the contemporaneous Louisville-Tonga trench intersection (Monowai, ‘U’ and ‘V’) show elevated 206Pb/204Pb, 208Pb/204Pb and to a lesser extend 87Sr/86Sr values but N-MORB-type compared to centers to the north and south (e.g. Turner et al., 1997; Haase et al., 2002; Timm et al., 2012) but mostly similar N-MORB-type ratios of fluid-immobile trace elements (e.g.
    [Show full text]