The Conservation of the Native Orchids of Lombardy Text By: Simon Pierce, Università Degli Studi Dell’Insubria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Taxonomic Notes on Anacamptis Pyramidalis Var. Urvilleana (Orchidaceae), a Good Endemic Orchid from Malta
J. Eur. Orch. 48 (1): 19 – 28. 2016. Stephen Mifsud Taxonomic notes on Anacamptis pyramidalis var. urvilleana (Orchidaceae), a good endemic orchid from Malta Keywords Orchidaceae; Anacamptis urvilleana; Anacamptis pyramidalis; Anacamptis pyramidalis var. urvilleana; Maltese endemics; Flora of Malta; Central Mediterranean region. Summary Mifsud S. (2016): Taxonomic notes on Anacamptis pyramidalis var. urvilleana (Orchidaceae), a good endemic orchid from Malta.- J. Eur. Orch. 48 (1): 19-28. In several global plant species databases the Maltese-endemic Anacamptis urvilleana is considered as a synonym of A. pyramidalis, hence reflecting the belief of some European authors. A number of morphological differences and phenology differentiate the Maltese pyramidical orchid from A. pyramidalis. As a result, it is suggested to maintain the identity of this orchid as A. pyramidalis var. urvilleana which merits conservation treatments different from the widely distributed A. pyramidalis s. str. Zusammenfassung Mifsud S. (2016): Taxonomische Anmerkungen zu Anacamptis pyramidalis var. urvilleana (Orchidaceae), eine gute endemische Orchidee von Malta.- J. Eur. Orch. 48 (1): 19-28. In verschiedenen weltweiten Datenbanken botanischer Namen, die auch die Meinung einiger europäischer Autoren wiedergeben, wird der maltesische Endemit Anacamptis urvilleana als Synonym von A. pyramidalis geführt. Die maltesische Pyramiden-Hundswurz unterscheidet sich jedoch sowohl in einer Reihe von morphologischen Merkmalen als auch phenologisch von A. pyramidalis. Auf dieser Grundlage wird vorgeschlagen, diese Orchidee als A. pyramidalis var. urvilleana zu führen. Zu ihrem Schutz sind andere Erhaltungsmaßnahmen erforderlich als für die weitverbreitete A. pyramidalis s. str. Journal Europäischer Orchideen 48 (1): 2016. 19 1. Introduction Anacamptis urvilleana Sommier & Caruana Gatto was described in 1915 (refer Fig.1) as an endemic orchid from the Maltese islands. -
Orchid Flora of the Muntele Mic (Caraş – Severin Country, Romania)
BIO LOGICA NYSSANA 7 (2) ⚫ December 2016: 107-112 Milanovici, S. ⚫ The orchid flora of the Muntele Mic… DOI: 10.5281/zenodo.2528264 7 (2) • December 2016: 107-112 12th SFSES • 16-19 June 2016, Kopaonik Mt Original Article Received: 25 June 2018 Revised: 28 Sptember 2018 Accepted: 18 November 2018* The orchid flora of the Muntele Mic (Caraş – Severin County, Romania) Sretco Milanovici Natural Science Section, Banat National Museum, Huniade Square no. 1, Timișoara City, Timiș County, Romania * E-mail: [email protected] Abstract: Milanovici, S.: The orchid flora of the Muntele Mic (Caraş – Severin County, Romania). Biologica Nyssana, 7 (2), December 2016: 107-112. Muntele Mic Mountain is located in the southwestern part of Romania and belongs to the Southern Carpathians. Although relatively small, Muntele Mic contains most of typical mountain and high-mountain habitats. The field research regarding the orchid’s family in the Muntele Mic area, have started in the summer of 2009. Owing to easy access (asphalt road that goes to the tourist center of Muntele Mic), although it is classified as part of the European Natura 2000 network (ROSCI0126 Munţii Ţarcu), the area is influenced by negative anthropogenic factors. Although considered to be a very anthropized area, the field research concluded that there are 10 species of orchids growing in this location, of which three: Gymnadenia frivaldii Hampe ex Griseb., Dactylorhiza fuchsii (Druce) Soó and Dactylorhiza saccifera (Brongn.) Soó), were not mentioned in the literature data. Key words: orchids, conservation, threats, Muntele Mic, Romania Apstrakt: Milanovici, S.: Flora orhideja planine Muntele Mic (Caraş – Severin County, Romania). -
Rare Plant Monitoring 2017
RARE PLANT MONITORING 2017 Ajuga pyramidalis Ophrys insectifera © Zoe Devlin What is it? In 2017, we decided to carry out a small pilot scheme on rare plant monitoring. Where experienced plant recorders had submitted recent casual records of rare plants to the Centre, they were asked if they would be willing to visit their rare plant population once a year during its flowering period and to count the total number of individuals present. The response to the scheme from the small number of recorders contacted has been overwhelming positive and it has resulted in very valuable data being collected in 2017. Data on the rare plant location, the count and additional information about the site is submitted online through a dedicated web portal set up by the Data Centre. The project was discussed and agreed with the NPWS. It is framed around the 2016 Vascular Plant Red List and is mainly focused on monitoring vulnerable, near threatened and rare least concern species. Why is it important? When assessing the national FAST FACTS 2017 conservation status of very rare species according to IUCN Red List methodology, it is recommended that 37 you use annual population count data. That’s the total number of rare plant Given the numbers of rare plant populations that were monitored in the species a country might have, this 2017 pilot information can be difficult to collect in any volume. This citizen science project relies on the generosity of 22 expert volunteers to ‘keep an eye’ on That’s the number of rare plant species rare populations near them and to that were monitored in 2017 submit standardised count data once a year. -
In Vitropollen Germination of Orchids Traditionally Used
148 European Journal of Environmental Sciences IN VITRO POLLEN GERMINATION OF ORCHIDS TRADITIONALLY USED TO PRODUCE SALEP YASEMIN KEMEÇ1,*, KAAN HÜRKAN1, and CÜNEYT AKI2 1 Çanakkale Onsekiz Mart University, Institute of Natural and Applied Sciences, Department of Biology, 17100 Çanakkale, Turkey 2 Çanakkale Onsekiz Mart University, Faculty of Science and Arts, Department of Biology, 17100 Çanakkale, Turkey * Corresponding author: [email protected] ABSTRACT In Turkey the tubers of about 120 orchid species are widely collected for manufacturing the traditional drink salep. In this study, we focused on the in vitro germination of the pollen of the salep orchid species Ophrys mammosa, Orchis provincialis, Anacamptis morio subsp. morio, Orchis simia and Neotinea tridentata and discussed the potential effects this might have on the conservation of these orchids by reducing the need to collect them in the field. Pollen was sown on different media; Knudson, Orchimax and the medium described by Malmgren, and then incubated at 24 ± 1 °C in darkness for 24 h. Germinated pollen was stained with Brilliant Blue and examined under a stereoscopic microscope. Results of Tukey and Dunnett T3 statistical tests indicated that in terms of percentage germination, the best germination was observed on O. mammosa by 55% and Orchimax was the most successful medium by 50.5%. For pollinaria germination, the best rate was observed on O. mammosa by 69%. The medium Malmgren was the best germinative by 61.3%. It is clearly seen that difference in germination rates among studied species are achieved using different media. The development of such a method of studied species in this research points to the fact that this is possible and should serve as encouragement for others to devise procedures for other species. -
Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations. -
Appendix LEA10 Local Wildlife Site Maps and Citations KENT LOCAL WILDLIFE SITE Site Ref: AS01 Site: Hemsted Forest Grid Ref: TQ819360
Appendix LEA10 Local Wildlife Site maps and citations KENT LOCAL WILDLIFE SITE Site Ref: AS01 Site: Hemsted Forest Grid Ref: TQ819360 580000 580500 581000 581500 582000 582500 583000 583500 138500 138500 138000 138000 137500 137500 137000 137000 136500 136500 136000 136000 135500 135500 135000 135000 134500 134500 134000 134000 580000 580500 581000 581500 582000 582500 583000 583500 0 250 500 1,000 Kent Wildlife Trust 2017 Meters This map is based upon Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office ± © Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings. 100019238. 2017. Approved: 2017 Jun AS01 Hemsted Forest Page 1 of 3 KENT LOCAL WILDLIFE SITE KWT File Ref: 820362 Site Name: Hemsted Forest Site Ref. No: AS01 LPA: Ashford / Tunbridge Wells Central Grid Ref: TQ 819360 Parish: Cranbrook / Benenden / Category: Woodland, grassland Biddenden Owner: Forestry Commission Natural Area: High Weald Area: 509.25 ha AONB: No Date first notified: 1986 TPO: Yes Dates revised: 1993, Feb 2000, June 2016 Date last approved: June 2017 REASON FOR DESIGNATION Much of the woodland within this site is included on Natural England’s Provisional Ancient Woodland Inventory and is known to support at least 42 ancient woodland vascular plant indicator species. The site also includes areas of secondary woodland which are contiguous with the ancient woodland and which are considered to have the potential for colonisation by species associated with the ancient woodland. RATIONALE FOR SITE BOUNDARY The site boundary stretches from Tottenden Wood in the far south to Hammer Wood at the north. -
The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012). -
Reproductive Success of Anacamptis Morio (Orchidaceae) in the Donau-Auen National Park, Austria
Reproductive success of Anacamptis morio (Orchidaceae) in the Donau-Auen National Park, Austria Master´s thesis for acquiring the academic grade “Diplom-Ingenieurin” (Dipl.-Ing.in) equivalent to Master of Science (MSc) submitted by Christina Felicitas Teibert supervisors Priv.-Doz. Dr. Matthias Kropf Ao.Univ.Prof. Dipl.-Ing. Dr.nat.techn. Monika Kriechbaum Vienna, April 2018 University of Natural Resources and Life Sciences, Vienna Institute for Integrative Nature Conservation Research Affidavit I hereby declare that I am the sole author of this work. No assistance other than that which is permitted has been used. Ideas and quotes taken directly or indirectly from other sources are identified as such. This written work has not yet been submitted in any part. ______________________ Acknowledgements First, I want to give my most profound thanks to my supervisors Matthias Kropf and Monika Kriechbaum, who enthused me with science, botany and in special the topic of orchids. They always had time when I came with questions, and, or enthusiastic ideas for new hypothesis about my research issues. All our talks and discussions where very delightful and gave me the opportunity to satisfy my thirst for knowledge and to learn a lot! Further on, I want to give my thanks to Karoline Zsak, my advisor and contact person from the Donau-Auen National Park, for her organizational support and quick response in times of need! In addition to that, I want to thank the Donau-Auen National Park for the financial support and the permission of making my scientific research possible! Furthermore, I want to give my thanks to Baerbel Pachinger for her help in the identification of bumblebees and wild bees and Bernhard Splechtna for one or two hints about technical issues on my laptop! Finally, I want to give my thanks for the chance to occupy a working table at the “Institute for Integrative Nature Conservation Research” where I found a perfect working environment with charming colleagues of keen scientists. -
GIROS Notizie 19 (2002)
GIROS Notizie n. 19 - gennaio 2002 GIROS NOTIZIE G.I.R.O.S. Notiziario per i Soci Anno 2002 - No 19 - quadrimestrale Gruppo Italiano per la Ricerca sulle Orchidee Spontanee Direttore responsabile: web: http://astro.df.unipi.it/ORCHIDS Mauro Biagioli ([email protected], e-mail: [email protected] [email protected]) Segretario di redazione: [email protected] Bruno Barsella ([email protected]) Sede legale: Redazione e impaginazione a cura di: Via Testi, 7 - 48018 FAENZA (RA) Bruno Barsella ([email protected]) Tel# 0546/30833 (Paolo Liverani) Paolo Grünanger ([email protected]) Giuliano Pacifico ([email protected]) Proprietà: ETS Pisa Segreteria: Via Rosi, 21 - 55100 LUCCA (LU) Stampa: Litografia Varo, Ghezzano, Pisa Tel# 0583/492169 (Marcello Pieruccini) Registrato il 31 gennaio 2001 e-mail: [email protected] presso il Tribunale di Pisa al n. 3 Abbonamento annuo: 20,00 Quota sociale 2002: 25,00 Spedizione in abbonamento postale da versare sul c.c.p. no 13552559 intestato a: Gruppo Micologico M. Danesi A.M.B. Comitato Scientifico: 55029 - Ponte a Moriano - Lucca Paolo Grünanger ([email protected]) Giorgio Perazza ([email protected]) Carlo Del Prete ([email protected]) Grafica copertine: Patrizia Cini e Bruno Barsella Cariche sociali per il triennio 2000-2002 Sulla copertina: Neottia nidus-avis ( L . ) Consiglio Direttivo: Rich., orchidea dell’anno 2002 dello SCEO Paolo Liverani (Presidente) fotografia di Stivi Betti Bruno Barsella (Vicepresidente) Marcello Pieruccini (Segretario) NOTA DELLA REDAZIONE: Stivi Betti (Tesoriere) Ringraziamo i numerosi soci che hanno M. Elisabetta Aloisi Masella contribuito alla realizzazione di questo numero di “GIROS Notizie”. -
THE IRISH RED DATA BOOK 1 Vascular Plants
THE IRISH RED DATA BOOK 1 Vascular Plants T.G.F.Curtis & H.N. McGough Wildlife Service Ireland DUBLIN PUBLISHED BY THE STATIONERY OFFICE 1988 ISBN 0 7076 0032 4 This version of the Red Data Book was scanned from the original book. The original book is A5-format, with 168 pages. Some changes have been made as follows: NOMENCLATURE has been updated, with the name used in the 1988 edition in brackets. Irish Names and family names have also been added. STATUS: There have been three Flora Protection Orders (1980, 1987, 1999) to date. If a species is currently protected (i.e. 1999) this is stated as PROTECTED, if it was previously protected, the year(s) of the relevant orders are given. IUCN categories have been updated as follows: EN to CR, V to EN, R to V. The original (1988) rating is given in brackets thus: “CR (EN)”. This takes account of the fact that a rare plant is not necessarily threatened. The European IUCN rating was given in the original book, here it is changed to the UK IUCN category as given in the 2005 Red Data Book listing. MAPS and APPENDIX have not been reproduced here. ACKNOWLEDGEMENTS We are most grateful to the following for their help in the preparation of the Irish Red Data Book:- Christine Leon, CMC, Kew for writing the Preface to this Red Data Book and for helpful discussions on the European aspects of rare plant conservation; Edwin Wymer, who designed the cover and who, as part of his contract duties in the Wildlife Service, organised the computer applications to the data in an efficient and thorough manner. -
The Contribution of Pollination Interactions to the Assemblage of Dry Grassland Communities SSD: BIO03
Corso di Dottorato di ricerca in Scienze Ambientali ciclo 30 Tesi di Ricerca The contribution of pollination interactions to the assemblage of dry grassland communities SSD: BIO03 Coordinatore del Dottorato ch. prof. Bruno Pavoni Supervisore prof. Gabriella Buffa Dottorando Edy Fantinato Matricola 818312 Contents Abstract Introduction and study framework Chapter 1. Does flowering synchrony contribute to the sustainment of dry grassland biodiversity? Chapter 2. New insights into plants coexistence in species-rich communities: the pollination interaction perspective Chapter 3. The resilience of pollination interactions: importance of temporal phases Chapter 4. Co-occurring grassland communities: the functional role of exclusive and shared species in the pollination network organization Chapter 5. Are food-deceptive orchid species really functionally specialized for pollinators? Chapter 6. Altitudinal patterns of floral morphologies in dry calcareous grasslands Conclusions and further research perspectives Appendix S1_Chapter 2 Appendix ESM1_Chapter 3 1 Abstract Temperate semi-natural dry grasslands are known for the high biodiversity they host. Several studies attempted to pinpoint principles to explain the assembly rules of local communities and disentangle the coexistence mechanisms that ensure the persistence of a high species richness. In this study we examined the influence of pollination interactions on the assemblage of dry grassland communities and in the maintenance of the biodiversity they host. The issue has been addressed from many different perspectives. We found that similarly to habitat filtering and interspecific interactions for abiotic resources, in dry grassland communities interactions for pollination contribute to influence plant species assemblage. We found entomophilous species flowering synchrony to be a key characteristic, which may favour the long lasting maintenance of rare species populations within the community.