Inferring SSH State Machines Using Protocol State Fuzzing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CEH: Certified Ethical Hacker Course Content
CEH: Certified Ethical Hacker Course ID #: 1275-100-ZZ-W Hours: 35 Course Content Course Description: The Certified Ethical Hacker (CEH) program is the core of the most desired information security training system any information security professional will ever want to be in. The CEH, is the first part of a 3 part EC-Council Information Security Track which helps you master hacking technologies. You will become a hacker, but an ethical one! As the security mindset in any organization must not be limited to the silos of a certain vendor, technologies or pieces of equipment. This course was designed to provide you with the tools and techniques used by hackers and information security professionals alike to break into an organization. As we put it, “To beat a hacker, you need to think like a hacker”. This course will immerse you into the Hacker Mindset so that you will be able to defend against future attacks. It puts you in the driver’s seat of a hands-on environment with a systematic ethical hacking process. Here, you will be exposed to an entirely different way of achieving optimal information security posture in their organization; by hacking it! You will scan, test, hack and secure your own systems. You will be thought the Five Phases of Ethical Hacking and thought how you can approach your target and succeed at breaking in every time! The ve phases include Reconnaissance, Gaining Access, Enumeration, Maintaining Access, and covering your tracks. The tools and techniques in each of these five phases are provided in detail in an encyclopedic approach to help you identify when an attack has been used against your own targets. -
ECE 435 – Network Engineering Lecture 4
ECE 435 { Network Engineering Lecture 4 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 13 September 2018 Announcements • HW#1 was due. • HW#2 will be posted. Write a mini webserver. • Cybersecurity club Linux Security Lab on Saturday 1 WWW wrapup 2 What if Server Overloaded? • Slashdot effect (modern: HackerNews?) • caching/proxy { squid • Content Delivery Network { akami • Server farms 3 Security • SSL { Secure Socket Layer • Replaced by TLS (Transport Layer Security) • Port 443 for https • Public key encryption. 4 Setting Up a Web-server • Apache • Easy to do, more difficult to secure 5 Web Seach • Web-bots index the web. robots.txt file • Altavista, Hotbot, Excite, Inktomi, etc. • Curated search like Yahoo (people organize links rather than automatically search) • Google (1996 some machine in Stanford, 1997-1998) • MSN search 1999, rebranded Microsoft Bing 2009 6 Remote Connections 7 telnet/rlogin/rsh/ssh • telnet { login to remote system (tcp port 23) everything (including passwords) sent in plain text • rsh/rlogin { remote shell, remote login. (tcp port 514) Didn't even need password, could configure to let you run commands on remote machine. Security based if you had same username on both machines, assumption was getting root on a UNIX machine and connected to Ethernet was expensive/difficult 8 SSH secure shell • tcp port 22 • can login, run commands, tunnel tcp/ip, tunnel X11, file transfer (scp, sftp) • Large number of RFCs • Version 1: 1995, originally freeware but became private • Version 2: 2005, openBSD based on last free version • For security reasons there's a push to drop Version 1 • uses public-key cryptography • transport layer: arranges initial key exchange, server 9 authentication, key re-exchange • user authentication layer: can have password, or can set up keys to allow passwordless, DSA or RSA key pairs • connection layer: set up channels • lots of encryption types supported, old ones being obsoleted as found wanting • Various ssh servers/clients. -
Authenticated Encryption in SSH
Authenticated Encryption in SSH Kenny Paterson Information Security Group @kennyog; www.isg.rhul.ac.uk/~kp Overview (both lectures) • Secure channels and their properties • AEAD (revision) • AEAD ≠ secure channel – the [APW09] attack on SSH • The state of AEAD in SSH today • A new attack on CBC-mode in OpenSSH • Security analysis of other SSH and OpenSSH modes – CTR, ChaChaPoly, gEtM, AES-GCM. 2 Secure channels and their properties Why do we need secure channels? • Secure communications is the most common real- world application of cryptography today. • Secure communications systems are extremely widely-deployed in practice: • SSL/TLS, DTLS, IPsec, SSH, OpenVPN,… • WEP/WPA/WPA2 • GSM/UMTS/4g/LTE • Cryptocat, OTR, SilentCircle • OpenPGP, iMessage, Telegram, Signal, and a thousand other messaging apps • QUIC, MinimalT, TCPcrypt 4 Security properties • Confidentiality – privacy for data • Integrity – detection of data modification • Authenticity – assurance concerning the source of data 5 Some less obvious security properties • Anti-replay • Detection that messages have been repeated. • Detection of deletion • Detection that messages have been deleted by the adversary or dropped by the network. • Detection of re-0rdering • Ensuring that the relative order of messages in each direction on the secure channel is preserved. • Possibly re-ordering the event of violation. • Prevention of traffic-analysis. • Using traffic padding and length-hiding techniques. 6 Possible functionality requirements • Speedy • Low-memory • On-line/parallelisable crypto-operations • Performance is heavily hardware-dependent. • May have different algorithms for different platforms. • IPR-friendly • This issue has slowed down adoption of many otherwise good algorithms, e.g. OCB. • Easy to implement • Without introducing any side-channels. -
Fbi Fbi Flash
TLP: GREEN FBI FLASH FBI FBI Liaison Alert System #M-000045-TT The following information was obtained through FBI investigation and is provided in conjunction with the FBI’s statutory requirement to conduct victim notification as outlined in 42 USC § 10607. In furtherance of public-private partnerships, the FBI routinely advises private industry of various cyber threat indicators observed during the course of our investigations. This data is provided in order to help cyber security professionals and systems administrators to guard against the persistent malicious actions of cyber criminals. This product is released at TLP: GREEN. The information in this product is useful for the awareness of all participating organizations as well as with peers within the broader community or sector. Recipients may share this information with peers and partner organizations within their sector or community, but not via publicly accessible channels. SUMMARY The FBI is providing the following information with HIGH confidence: A group of cyber actors utilizing infrastructure located in Iran have been conducting computer network exploitation activity against public and private U.S. organizations, including Cleared Defense Contractors (CDCs), academic institutions, and energy sector companies. The actors typically utilize common computer intrusion techniques such as the use of TOR, open source reconnaissance, exploitation via SQL injection and web shells, and open source tools for further network penetration and persistence. Internet-facing infrastructures, such as web servers, are typical targets for this group. Once the actors penetrate a victim network, the actors exfiltrate network design information and legitimate user credentials for the victim network. Often times, the actors are able to harvest administrative user credentials and use the credentials to move laterally through a network. -
Wind River® Vxworks® 7 Third Party License Notices
Wind River® VxWorks® 7 Third Party License Notices This document contains third party intellectual property (IP) notices for the BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY Wind River® VxWorks® 7 distribution. Certain licenses and license notices THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, may appear in other parts of the product distribution in accordance with the OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN license requirements. ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Trademarks All company, product and service names used in this software are for ACPICA identification purposes only. Version: 20170303 Component(s): Runtime Wind River and VxWorks are registered trademarks of Wind River Systems. Description: Provides code to implement ACPI specification in VxWorks. UNIX is a registered trademark of The Open Group. IBM and Bluemix are registered trademarks of the IBM Corporation. NOTICES: All other third-party trademarks are the property of their respective owners. 1. Copyright Notice Some or all of this work - Copyright (c) 1999 - 2016, Intel Corp. All rights reserved. Third Party Notices 2. License 2.1. This is your license from Intel Corp. under its intellectual property rights. You may have additional license terms from the party that provided you this software, covering your right to use that party's intellectual property rights. 64-Bit Dynamic Linker Version: 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a copy Component(s): Runtime of the source code appearing in this file ("Covered Code") an irrevocable, Description: The dynamic linker is used to load shared libraries. -
Analysis and Processing of Cryptographic Protocols
Analysis and Processing of Cryptographic Protocols Submitted in partial fulfilment of the requirements of the degree of Bachelor of Science (Honours) of Rhodes University Bradley Cowie Grahamstown, South Africa November 2009 Abstract The field of Information Security and the sub-field of Cryptographic Protocols are both vast and continually evolving fields. The use of cryptographic protocols as a means to provide security to web servers and services at the transport layer, by providing both en- cryption and authentication to data transfer, has become increasingly popular. However, it is noted that it is rather difficult to perform legitimate analysis, intrusion detection and debugging on data that has passed through a cryptographic protocol as it is encrypted. The aim of this thesis is to design a framework, named Project Bellerophon, that is capa- ble of decrypting traffic that has been encrypted by an arbitrary cryptographic protocol. Once the plain-text has been retrieved further analysis may take place. To aid in this an in depth investigation of the TLS protocol was undertaken. This pro- duced a detailed document considering the message structures and the related fields con- tained within these messages which are involved in the TLS handshake process. Detailed examples explaining the processes that are involved in obtaining and generating the var- ious cryptographic components were explored. A systems design was proposed, considering the role of each of the components required in order to produce an accurate decryption of traffic encrypted by a cryptographic protocol. Investigations into the accuracy and the efficiency of Project Bellerophon to decrypt specific test data were conducted. -
Download CVS 1.11.1P1-3 From: Ftp://Ftp.Software.Ibm.Com/Aix/Freesoftware/Aixtoolbox/RPMS/Ppc/Cvs/ Cvs-1.11.1P1-3.Aix4.3.Ppc.Rpm
2003 CERT Advisories CERT Division [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. http://www.sei.cmu.edu REV-03.18.2016.0 Copyright 2017 Carnegie Mellon University. All Rights Reserved. This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con- strued as an official Government position, policy, or decision, unless designated by other documentation. References herein to any specific commercial product, process, or service by trade name, trade mark, manu- facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute. This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA 01731-2100 NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu- tion. Please see Copyright notice for non-US Government use and distribution. -
Detection and Analysis of Tor Onion Services
Detection and Analysis of Tor Onion Services Martin Steinebach1;∗, Marcel Schäfer2, Alexander Karakuz and Katharina Brandl1 1Fraunhofer SIT, Germany 2Fraunhofer USA CESE E-mail: [email protected] ∗Corresponding Author Received 28 November 2019; Accepted 28 November 2019; Publication 23 January 2020 Abstract Tor onion services can be accessed and hosted anonymously on the Tor network. We analyze the protocols, software types, popularity and uptime of these services by collecting a large amount of .onion addresses. Websites are crawled and clustered based on their respective language. In order to also determine the amount of unique websites a de-duplication approach is implemented. To achieve this, we introduce a modular system for the real-time detection and analysis of onion services. Address resolution of onion services is realized via descriptors that are published to and requested from servers on the Tor network that volunteer for this task. We place a set of 20 volunteer servers on the Tor network in order to collect .onion addresses. The analysis of the collected data and its comparison to previous research provides new insights into the current state of Tor onion services and their development. The service scans show a vast variety of protocols with a significant increase in the popularity of anonymous mail servers and Bitcoin clients since 2013. The popularity analysis shows that the majority of Tor client requests is performed only for a small subset of addresses. The overall data reveals further that a large amount of permanent services provide no actual content for Tor users. A significant part consists instead of bots, services offered via multiple domains, or duplicated websites for phishing Journal of Cyber Security and Mobility, Vol. -
Data Acquisition Systems), Section 1
INST 260 (Data Acquisition systems), section 1 Lab Data acquisition and transport over Ethernet: Question 91, completed objectives due by the end of day 6, section 3 Exam Day 6 of section 3 – only a simple calculator may be used! Complete mastery of these objectives due by the next exam date Specific objectives for the “mastery” exam: Electricity Review: Calculate and annotate voltages and currents in a DC series-parallel resistor circuit • given source and resistor values Sketch proper wire connections for a data acquisition unit to measure an analog sensor signal • Convert between different numeration systems (decimal, binary, hexadecimal, octal) • Calculate ADC (analog-digital converter) input and output values given calibrated ranges • Solve for a specified variable in an algebraic formula • Determine the possibility of suggested faults in a simple circuit given measured values (voltage, current), • a schematic diagram, and reported symptoms Motor/relay/3phase/PLC Review: Determine status of a relay logic circuit given a schematic diagram • and switch stimulus conditions INST241 Review: Identify (American) wire colors for different thermocouple types • INST250 Review: Convert between different pressure units (PSI, ”W.C., bar, etc.) showing proper • mathematical cancellation of units (i.e. the “unity fraction” technique) Recommended daily schedule Day 1 Theory session topic: Signal coupling, shielding, and wiring practices Questions 1 through 20; answer questions 1-9 in preparation for discussion (remainder for practice) Day 2 Theory session -
SECUMOBI SERVER Technical Description
SECUMOBI SERVER Technical Description Contents SIP Server 3 Media Relay 10 Dimensioning of the Hardware 18 SIP server 18 Media Proxy 18 Page 2 of 18 SIP Server Operatingsystem: Debian https://www.debian.org/ Application: openSIPS http://www.opensips.org/ OpenSIPS is built and installed from source code. The operating system is installed with the following packages: Package Description acpi displays information on ACPI devices acpi-support-base scripts for handling base ACPI events such as the power button acpid Advanced Configuration and Power Interface event daemon adduser add and remove users and groups anthy-common input method for Japanese - common files and dictionary apt Advanced front-end for dpkg apt -utils APT utility programs aptitude terminal-based package manager (terminal interface only) autopoint The autopoint program from GNU gettext backup -manager command -line backup tool base-files Debian base system miscellaneous files base-passwd Debian base system master password and group files bash The GNU Bourne Again SHell bc The GNU bc arbitrary precision calculator language binutils The GNU assembler, linker and binary utilities bison A parser generator that is compatible with YACC bsdmainutils collection of more utilities from FreeBSD bsdutils Basic utilities from 4.4BSD-Lite build -essential Informational list of build -essential packages busybox Tiny utilities for small and embedded systems bzip2 high-quality block-sorting file compressor - utilities ca-certificates Common CA certificates console-setup console font and keymap -
A History of Cyber Security Attacks 1980 to Present a History of Cyber Security Attacks 1980 to Present
A History of Cyber Security Attacks 1980 to Present http://taylorandfrancis.com A History of Cyber Security Attacks 1980 to Present Bruce Middleton CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-8586-0 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans- mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright .com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices
To appear in Proceedings of the 21st USENIX Security Symposium, August 2012. Initial public release; July 2, 2012. For the newest revision of this paper, partial source code, and our online key-check service, visit https://factorable.net. Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices † ‡ ‡ ‡ Nadia Heninger ∗ Zakir Durumeric ∗ Eric Wustrow J. Alex Halderman † University of California, San Diego ‡ The University of Michigan [email protected] {zakir, ewust, jhalderm}@umich.edu Abstract expect that today’s widely used operating systems and RSA and DSA can fail catastrophically when used with server software generate random numbers securely. In this malfunctioning random number generators, but the extent paper, we test that proposition empirically by examining to which these problems arise in practice has never been the public keys in use on the Internet. comprehensively studied at Internet scale. We perform The first component of our study is the most compre- the largest ever network survey of TLS and SSH servers hensive Internet-wide survey to date of two of the most and present evidence that vulnerable keys are surprisingly important cryptographic protocols, TLS and SSH (Sec- widespread. We find that 0.75% of TLS certificates share tion 3.1). By scanning the public IPv4 address space, keys due to insufficient entropy during key generation, we collected 5.8 million unique TLS certificates from and we suspect that another 1.70% come from the same 12.8 million hosts and 6.2 million unique SSH host keys faulty implementations and may be susceptible to com- from 10.2 million hosts.