S to Get You Started: ■ Decorate with Nature

Total Page:16

File Type:pdf, Size:1020Kb

S to Get You Started: ■ Decorate with Nature Volume VIII, Number 6 HealthierHolidays– November/December 2008 OnaBudget You can create healthier, less- toxic holidays — and save money The Next too! Here are some ideas to get you started: ■ Decorate with nature. Bring- STEP ing nature inside helps you create a holiday mood while reducing toxic manufacturing and waste. Toward a Healthier Future How does your backyard inspire your creativity? Turn branches, A Bi-monthly Newsletter of the Sebastopol Toxics Education Program leaves, pine cones, and seasonal foods into attractive centerpieces, wreaths, and mantelpiece décor. PreventingPlastic A Better Way You can even explore nature’s art The good news is that we can re- with family and friends. After the Pollution cycle plastic, remaking it into com- festivities, offer what’s left to the posite lumber, railroad ties, play- birds and compost pile. I recently discovered another rea- ground items, clothing, carpeting, ■ Use natural scents. Replace son to keep plastics out of our and new bags. However, currently commercial scents and their shared environment. only about 3% of plastics are re- mystery ingredients (often toxic It turns out that, in addition to its cycled. petrochemicals) with diluted own toxic components, plastics in ■ Plastics accepted here. In addi- essential oils in a spray bottle; the wild become virtual sponges for tion to household plastic containers, fresh flowers in a vase; or herbs other human-made toxics, such as North Bay Corp. (which handles all simmering in water or thrown in PCBs and DDT. In one study, plastic of Sonoma County’s recycling) now the fireplace. Much better! was found to absorb up to one mil- takes clean plastic bags and other soft ■ Give less-toxic gifts. Choose lion times the level of these poisons film plastics in the blue recycling can organic foods and clothing, toys in the water itself. (though not at Recycletown). made from natural materials, and Plastic’s benefit of durability You can also drop plastic bags at most books that educate people about means that it’s long-lasting in the grocery stores. This is actually pref- creating a healthier home and environment. Instead of biodegrad- erable, because they’ll stay cleaner if world. The options are plentiful! ing back into nature, it “photo- not mixed with other materials, and ■ Manage pests less-toxically. degrades,” breaking into increas- thus be more usable domestically. Discourage ants without toxic ingly smaller pieces. Animals eat ■ Getting more info. For a handy sprays by removing what’s attract- these toxic pellets, which fill their flyer describing plastic bag and film ing them, blocking their entry bellies, block vital nutrients, com- recycling, see <http://unicycler.com/ points, and wiping paths clean promise their health, and pdf/plastic_bags.pdf>. There’s also a with a soapy sponge. Remove bioaccumulate toxics up the food flyer summarizing the blue can’s mold and reduce regrowth with chain — including into the fish that overall rules, though it has the older diluted tea tree oil. we and other larger creatures eat. plastics info, at <http://unicycler.com/ ■ Discard responsibly. Setup an Plastics are cluttering even the pdf/sonoma_county_ssr_brochure. easy system for guests to help re- most remote and once-pristine pdf>. Find more recycling specifics cycle holiday trash. Keep toxics places on earth. For instance, in the in the AT&T Yellow Pages (under “R”), out of landfills by recycling your northern Pacific Ocean, there’s a so- at <www.recyclenow. org>, and from old techno-toys, including com- called plastic island (more accurately the EcoDesk (707) 565-3375. puters, TVs, phones, etc. More re- a trash spiral) estimated to be the The Bigger Picture cycling information is at <www. size of Texas and a mind-boggling recyclenow.org> and in the Recy- 3.5 million tons. A researcher here Of course, to truly decrease our cling Guide in your Yellow Pages. found six pounds of plastic for ev- earth impact, we must also ery pound of plankton! Sci- “reduce and reuse” the plastics By being creative, we can truly entists estimate that each in our lives. For instance, you make this a season of love for all. year at least a million sea- can: For more about the above sugges- tions, look up past TNS issues by birds and 100,000 ma- ■ Buy a reusable grocery topic at <www.healthyworld.org/ rine mammals and bag. Each reusable bag can sea turtles die from STEPIndex.html>. For more eco- eliminate 1,000 plastic shop- holiday ideas, see <www.healthy eating or getting en- ping bags over its lifetime. tangled in plastic. world.org/ecoholidays.html>. See Plastic, over ~ Patricia Dines the next s t e p UpdatesonPastStories ficials. Melamine, used to make plas- Plastic, continued tics and fertilizer, is believed to be Ideally, choose one made of organic added to watered-down milk to mask cotton or recycled plastic. Healing Bhopal’s Toxic Tragedy the protein deficiency and cut costs. ■ Buy a reusable water bottle, to In 1984, residents of Bhopal, In- Especially damaging is tainted avoid purchasing single-use ones. dia, were awakened by a catastrophic milk from Sanlu, China’s largest Consider stainless steel and hard toxic gas release which killed over powdered milk producer, which had plastic options. 20,000 people; made hundreds of been highlighted as a reputable com- ■ thousands ill; and continues to poi- pany with stringent quality controls. Buy food in bulk, to reduce the Problem reports there as early as De- plastic packaging you use. son people through their contami- nated environment and water supply. cember 2007 went unaddressed, ■ Reuse your plastic bags and (See more about this in TNS VI/5.) making the situation worse. containers. I dry my washed bags Finally this August, after 24 years Baby formula and other milk with Real Goods’ counter bag dryer of insufficient action and 130 days products have been pulled from <www.realgoods.com>. Then they stores around China and in other and my reusable containers go inside of survivor protests (with interna- tional support), India’s government Asian countries. The World Health my cloth bag, ready for use at the announced that they’ll address some Organization is talking with Chinese store. Other bags line my garbage officials about how to strengthen cans and collect compost materials. survivor demands by setting up a commission to help rehabilitate vic- their food quality system. ■ Give away unneeded plastic tims and clean up the area’s hazard- SOURCE: “China’s product safety watchdog shopping bags, for instance to a ous waste. steps down,” by Tini Tran, Associated Press thrift store. The Bhopali campaigners say they <http://news.yahoo.com/s/ap/20080923/ ■ Complete the loop and buy re- ap_on_re_as/as_china_baby_formula_ now will turn to monitoring the new recall> cycled. View recycled products, from commission’s progress, holding Dow coasters to jewelry to furniture, at Chemical responsible for paying for FOR MORE INFO: For a more in-depth look <www.RecycleStore.com>. at China’s environmental and regulatory cleanup and rehabilitation, and pros- problems, see “The Last Empire: China’s ~ Patricia Dines ecuting the company for registering Pollution Problem Goes Global,” by Jacques pesticides in India via bribery. Leslie, Mother Jones, Dec. 10, 2007 <www. For more information, see Pesti- motherjones.com/news/feature/2008/01/the- last-empire.html> cide Action Network’s webpage <www.panna.org/bhopal>. California’s Toxic Protections Increase China’s Poisoned Products Continue In previous issues, we’ve dis- cussed various toxics found in con- In the spring of 2007, a series of sumer products, risking harm to crises revealed toxics (including lead people and the environment. This and melamine) in a wide variety of September, two landmark chemical Chinese products, including seafood, policy reform bills were signed into processed foods, pet food, tooth- California law, increasing the state’s paste, and children’s toys. (More ability to keep toxic chemicals out of about this is in TNS VII/5.) consumer products and laying the ABOUTSTEP After initially evading inquiries, framework for a broader approach to China finally acted, closing factories, regulating dangerous chemicals. The Next STEP (TNS) is published six times a year by the Sebastopol Toxics Education Pro- announcing new regulations, and Both bills passed the legislature gram (STEP). STEP is a project of the City of clearly hoping to restore consumer with broad bipartisan support, sig- Sebastopol, implemented by local citizen volun- confidence and preserve export mar- teers. STEP’s mission is to support city residents naling that lawmakers are ready to in reducing their toxic use and exposure, creating kets. They even executed the dis- move from the current piecemeal ap- a healthier and safer Sebastopol for everyone. graced chief of China’s food and drug proach. Organizations helping craft Newsletter Editor, Lead Writer, and Layout: agency, after he was convicted of ac- Patricia Dines, Email <[email protected]> this pioneering legislation were the cepting bribes to allow fake medicine Sierra Club, the Breast Cancer Fund, Newsletter Editorial Team: Patricia Dines and onto the domestic market. Jim Gleaves the California League of Conserva- Newsletter Design Concept and Logo De- Unfortunately, China’s problems tion Voters, and Environment Califor- sign: Lyn Dillin (neé Bouguereau) continue. Recently, the widespread nia. “Our laws need to catch up with STEP Founders: Michael Black, Patricia Dines, melamine contamination of baby for- the science,” said Jeanne Rizzo, R.N., Rebecca Dwan, Jeff Edelheit, Nan Fuchs, Craig mula and powdered milk, sickening Litwin, and Larry Robinson. president of the Breast Cancer Fund. nearly 53,000 children, has led to the STEP, P. O. Box 1776, Sebastopol CA 95473 FOR MORE INFO: See <www.breastcancer <www.ci.sebastopol.ca.us> resignation of China’s food safety fund.org/site/pp.asp?c=kwKXLdPaE&b= watchdog and the firing of other of- Printed on recycled paper.
Recommended publications
  • Release of Melamine and Formaldehyde from Melamine-Formaldehyde Plastic Kitchenware
    molecules Article Release of Melamine and Formaldehyde from Melamine-Formaldehyde Plastic Kitchenware , Ingo Ebner * y , Steffi Haberer, Stefan Sander, Oliver Kappenstein , Andreas Luch and Torsten Bruhn y Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; [email protected] (S.H.); [email protected] (S.S.); [email protected] (O.K.); [email protected] (A.L.); [email protected] (T.B.) * Correspondence: [email protected]; Tel.: +49-30-18412-27403 These authors contributed equally to this work. y Academic Editor: Roland Franz Received: 26 June 2020; Accepted: 31 July 2020; Published: 10 August 2020 Abstract: The release of melamine and formaldehyde from kitchenware made of melamine resins is still a matter of great concern. To investigate the migration and release behavior of the monomers from melamine-based food contact materials into food simulants and food stuffs, cooking spoons were tested under so-called hot plate conditions at 100 ◦C. Release conditions using the real hot plate conditions with 3% acetic acid were compared with conditions in a conventional migration oven and with a release to deionized water. Furthermore, the kinetics of the release were studied using Arrhenius plots giving an activation energy for the release of melamine of 120 kJ/mol. Finally, a correlation between quality of the resins, specifically the kind of bridges between the monomers, and the release of melamine, was confirmed by CP/MAS 13C-NMR measurements of the melamine kitchenware. Obviously, the ratio of methylene bridges and dimethylene ether bridges connecting the melamine monomers during the curing process can be directly correlated with the amount of the monomers released into food.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Annexure Iii
    ANNEXURE III DETAILS OF PRODUCTION AND MANUFACTURING PROCESS 1. RSF Intermediate Manufacturing process: Check and prepare a clean and dry vessel. Remove oxygen from the vessel with nitrogen flushing. Charge the required quantity of Formaldehyde into the clean vessel, followed by Urea and Glyoxal 40% and diethylene glycol. The temperature is increased to 60-80 C under constant stirring. The process is continued for 5-6 hours. Take sample for quality check and if required specifications are not meet, continue reaction further for 1 hour and again check for quality. If specification is reached fill product in containers, to be used for further formulations of finished product. Chemical Reaction Material Balance Input Output Formaldehyde 0.40 RSF Urea 0.20 Reaction Vessel 1.00 Intermediate Glyoxal 0.40 Total 1.00 Total 1.00 Process Flow Diagram M/S. Dystar India Pvt. Ltd., Plot No. 3002/A,GIDC Ankleshwar, Bharuch (GJ) 2. NFF-T Intermediate Manufacturing process: Check and prepare a clean and dry vessel. Remove oxygen from the vessel with nitrogen flushing. Charge the required quantity of glyoxal 40%and water into the clean vessel under constant stirring. Cool the vessel and add N, N-dimethyl urea until homogenous mixture is achieved. The temperature is maintained below ambient temperature and reaction is further continued for 2-4 hours under catalytic concentration of citric acid. Take sample for quality check and if required specifications are not meet, continue reaction further for 1 hour and again check for quality. If specification is reached fill product in containers, to be used for further formulations of finished product.
    [Show full text]
  • Production and Characterization of Melamine-Formaldehyde Moulding
    International Journal of Advanced Academic Research | Sciences, Technology and Engineering | ISSN: 2488-9849 Vol. 6, Issue 2 (February 2020) PRODUCTION AND CHARACTERIZATION OF MELAMINE- FORMALDEHYDE MOULDING POWDER BY BALOGUN, Ayodeji Timothy REG. NO.: 98/6907EH Department of Chemical Engineering, School of Engineering and Engineering Technology, Federal University of Technology Minna, Nigeria. 26 International Journal of Advanced Academic Research | Sciences, Technology and Engineering | ISSN: 2488-9849 Vol. 6, Issue 2 (February 2020) CHAPTER ONE INTRODUCTION Amino resins are product of polymeric reaction of amino compound with aldehyde especially formaldehyde by a series of addition and condensation reaction. The reaction between formaldehyde and amino compound to form methyl derivatives of the later which on heating condenses to form hard, colourless transparent resin, when cured or heat set, the amino resins are more properly called amino plastics. 1.1 Background to the Study Melamine, the amino group in the production of melamine-formaldehyde is manufactured from coal, limestone and air, we do not indeed use coal as an ingredient but coke, its derivatives. It is obtained together with coal gas and coal tar when bituminous coal is heated in a by-product oven. Lime, another important reactant in the production of melamine is obtained by heating limestone in a kiln to liberate carbon dioxide with nitrogen to form calcium cyan amide which on further reaction with water and acid forms cynamide from which dicyandiamide is obtained by treatment with alkaline. Finally, dicyandiamide is heated with ammonia and methanol to produced melamine. Production of formaldehyde involves the reaction of coke with superheated steam to form hydrogen and carbon monoxide when these two gases are heated under high pressure in the presence of chromic oxide and zinc oxide or some other catalyst, methanol is formed.
    [Show full text]
  • Scientific Documentation
    Scientific Documentation A1378, Aspartame, Powder, NF Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.05 27.July.2020 A1378, Aspartame, Powder, NF Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement EU Fragrance Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement Elemental Impurities Statement Residual Solvents Statement General Label Information – Sample Label General Lot Numbering System Guidance Specification for Aspartame, Powder, NF (A1378) Item Number A1378 Item Aspartame, Powder, NF CAS Number 22839-47-0 Molecular Formula C14H18N2O5 Molecular Weight 294.31 MDL Number Synonyms APM ; N-L-alpha-Aspartyl-L-phenylalanine 1-Methyl Ester Test Specification Min Max ASSAY (DRIED BASIS) 98.0 102.0 % TRANSMITTANCE @430 nm 0.95 SPECIFIC ROTATION [a]D +14.5 to +16.5° LOSS ON DRYING 4.5 % RESIDUE ON IGNITION 0.2 % ELEMENTAL IMPURITIES: LEAD AS REPORTED CADMIUM (Cd) AS REPORTED ARSENIC (As) AS REPORTED MERCURY (Hg) AS REPORTED 5-BENZY-3,6-DIOXO-2-PIPERAZINEACETIC ACID 1.5 % CHROMATOGRAPHIC PURITY
    [Show full text]
  • Chemical Contaminates of Meat and Meat Products Which Threaten Human Health Isam T
    Chemical Contaminates of Meat and Meat Products which Threaten Human Health Isam T. Kadim Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34 Al-Khoud, Muscat, Sultanate of Oman ABSTRACT The priorities, which concern meat and meat products consumption today, are food safety issues and meat quality. Humans around the world are exposed to chemical contaminants during their life time. Among the thousands of existing contaminates, some are persistent and remain in the environment for years. The variation in measurable levels depends mainly on the fact that some are synthesized as industrial products, whereas others are released accidentally, as by-products, or given to animals as growth promoters or as prophylactic or therapeutic agents. The measurement of these contaminants requires a complex procedure including sample extraction, sample clean-up, and physico-chemical analysis after chromatographic separation. Contaminants such as organochlorine pesticides, heavy metals, microbes, melamine, hormones, antibiotic, and other feed additives are often measured in various types of matrices during food safety programs, environmental monitoring, and epidemiological studies. Serious health problems including cancer, kidney diseases, disarray and other diseases in humans might be related to food contaminates. According to the World Health Organization (WHO), 1.8 million people died from diarrhea related diseases in 2005. Children and developing fetuses are generally at greater risk from exposure to different chemicals. A great number of these cases might be attributed to contaminate found on food. More than 90% of human exposure to harmful materials is due to consumption of contaminated food items such as meat, milk and dairy products, as well as fish and derived products.
    [Show full text]
  • Using Fish Brain Biomarkers to Assess the Neurotoxicity of Aspartame Artificial Sweetener
    Journal of the Persian Gulf (Marine Science)/Vol. 9/No. 33/ September 2018/6/35-40 Issue of Second International Conference on Oceanography for West Asia (RCOWA) 2020 Using fish brain biomarkers to assess the neurotoxicity of aspartame artificial sweetener 1 1* 2 Aisan Shirmardani , Aras Rafiee , Babak Moghadasi 1 Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran 2 Department of Natural Resources, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran Abstract Neurotoxins induce undesirable changes in aquatic organisms. This project assessed the effects of 78.15 g/L aspartame on expression changes of two biomarkers of neurotoxicity (glial fibrillary acidic protein-GFAP and myelin basic protein- MBP) in Cyprinus carpio brain tissue. RNA was extracted from brain tissue. The results of qPCR indicated an increase of 2.5 and 4.2 of MBP and GFAP expression. Elevated levels of these biomarkers suggest the probability of aspartame neurotoxicity. Identifying and monitoring nerve damage using biomarkers can make it easier to diagnose injuries earlier than current methods and provide an opportunity to develop future treatments. © 2018 Published by INIOAS Keywords: Aspartame, Biomarker, Common carp, Neurotoxicity, Gene expression 1. Introduction Downloaded from jpg.inio.ac.ir at 12:28 IRST on Sunday October 3rd 2021 Neurotoxins are able to alter the normal activity of the nervous system and utilization of biomarkers of neurotoxicity enables our efficiency and accuracy of diagnosis (Budny, 2015; Iheanacho et al., 2020). Aspartame is a non-saccharide artificial sweetener that its use has increased significantly due to its low cost and low calorie content (Zafar et al., 2017).
    [Show full text]
  • Pharmaceutical Components at Risk for Melamine Contamination
    Guidance for Industry Pharmaceutical Components at Risk for Melamine Contamination U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM) August 2009 Current Good Manufacturing Practice (CGMP) Contains Nonbinding Recommendations Guidance for Industry Pharmaceutical Components at Risk for Melamine Contamination Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave. Silver Spring, MD 20993 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Communications Staff, HFV-12 Center for Veterinary Medicine Food and Drug Administration 7519 Standish Place Rockville, MD 20855 Phone: 240-276-9300 http://www.fda.gov/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM) August 2009 Current Good Manufacturing Practice (CGMP) Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION............................................................................................................. 1 II. BACKGROUND ..............................................................................................................
    [Show full text]
  • LC Paper No. CB(2)1128/19-20(05)
    LC Paper No. CB(2)1128/19-20(05) For discussion on 9 June 2020 LegCo Panel on Food Safety and Environmental Hygiene Results of the Study on Pet Food Products in Hong Kong PURPOSE This paper briefs Members on the results of the Study on Pet Food Products in Hong Kong (the Study). BACKGROUND 2. At present, the supply and use of fodder for food-production animals is subject to control under the Public Health (Animal and Birds) (Chemical Residues) Regulation (Cap. 139N). Pet food in general is not subject to regulation in Hong Kong in respect of its production, import or distribution. Commercial pet food 1 is largely imported from places outside Hong Kong and we are not aware of any major production of pet food locally. 3. In order to assess whether and the extent to which the safety of pet food in Hong Kong is a concern, the Agriculture, Fisheries and Conservation Department (AFCD) commissioned a study in October 2017 by engaging a contractor to collect and test a total of 360 pet food products that were commonly available in the market of Hong Kong. The Study was completed in February 2020. The final report of the Study is available at AFCD’s website2. The details of the Study and the test results are summarised in the following paragraphs – 1 Commercial pet food is usually pre-packaged/processed food available in the market for pet consumption, which may be available in the form of dry food, wet food, semi-moist food, freeze-dried food and frozen food.
    [Show full text]
  • Lancaster Laboratories Melamine Testing Method Offers Greater Sensitivity and Specificity
    Lancaster Laboratories Melamine Testing Method offers greater sensitivity and specificity LANCASTER, Pa. (November 6, 2009) - Lancaster Laboratories, part of Thermo Fisher Scientific, today announced a new method for detecting melamine in pharmaceutical products that uses LC/MS/MS to provide greater sensitivity and specificity over other techniques. Lancaster Laboratories’ new method meets the Food and Drug Administration’s August 2009 guidance, entitled Pharmaceutical Components at Risk for Melamine Contamination, which identifies raw materials that are considered high‐risk for melamine contamination and recommends monitoring of these raw materials for the presence of melamine prior to release into production. Melamine is used in the manufacture of a variety of products, including resin based products (countertops, glues, housewares,etc), cleaning products and industrial cleaners. Melamine has a low acute toxicity and is not readily metabolized.Cyanuric acid, which also has a low acute toxicity, is a structural analogue of melamine and is used in the manufacture of herbicides, dyes, resins and antimicrobial agents. It is also used as a stabilizer and disinfectant in swimming pools and as a component of feed grade biuret (a ruminant feed additive). The combined presence of melamine and cyanuric acid leads to the formation of melamine cyanurate. This compound has low solubility which can lead to the formation of crystals in the kidneys, a condition known to cause renal failure, kidney toxicity and, in some subjects, death. Two recent incidents led the FDA to assess the potential impact of melamine in pharmaceutical products. First, in 2007, numerous deaths and illnesses in both cats and dogs led investigators to discover melamine in both wheat gluten and rice protein used as a pet food thickener.
    [Show full text]
  • Final Report on the “Pet Food Testing Exercise in Hong Kong” for the Agriculture, Fisheries and Conservation Department
    Final report on the pet food testing exercise in Hong Kong (Ref: AFCD/IQ/TS/01/17) Final Report on the “Pet Food Testing Exercise in Hong Kong” for the Agriculture, Fisheries and Conservation Department (Ref: AFCD/IQ/TS/01/17) Prepared by: Eurofins Food Testing Hong Kong Limited Prepared by Eurofins Food Testing Hong Kong Limited for AFCD Page 1 of 72 Final report on the pet food testing exercise in Hong Kong (Ref: AFCD/IQ/TS/01/17) Table of contents 1. Introduction ..................................................................................................... 3 2. Objective .......................................................................................................... 3 3. Methodology .................................................................................................... 3 3.1 Market survey on pet food products sold in Hong Kong ................ 3 3.2 Allocation and selection of pet food samples for analysis .............. 5 4. Scope and methodology of testing ................................................................. 8 4.1 Scope of testing ............................................................................... 8 4.2 Methodology of testing and reporting limits of substances ............. 9 5. Test results of the exercise .............................................................................. 9 5.1 Salmonella ........................................................................................ 9 5.2 Escherichia coli (including O157) ..................................................
    [Show full text]
  • Raising the Bar
    Raising the Bar Choosing Healthy Snack Bars versus Gimmicky Junk Food A REPORT BY THE CORNUCOPIA INSTITUTE | DEC 2017 The Cornucopia Institute wishes to thank the foundations that support our research and the thousands of family farmers and organic advocates who fund this work with their generous donations. The Cornucopia Institute is chartered as a tax-exempt public charity focusing on research and education. Cornucopia aims to empower organic producers, consumers, and wholesale buyers to make discerning marketplace decisions, protecting the credibility of the organic food and farming movement and the value it delivers to society. The Cornucopia Institute P.O. Box 126 Cornucopia, WI 54827 608-425-2000 voice 866-861-2214 fax [email protected] www.cornucopia.org Report design and layout: Draft Horse Studio | drafthorsestudio.com All photos: Adobe Stock. Copyright © 2017, The Cornucopia Institute Contents Executive Summary .............................................................. 1 Major Findings ......................................................................................................... 1 How to find the healthiest snack bars for you and your family ..................................................................... 2 Look for the USDA Organic Label .................................................... 4 Avoid the “Made with” Organic Ingredients Label ........................................ 5 Non-GMO Label ................................................................. 6 Ingredients to Avoid in “Natural” Products
    [Show full text]