Egg Size and Early Nestling Growth in the Snow Petrel ’

Total Page:16

File Type:pdf, Size:1020Kb

Egg Size and Early Nestling Growth in the Snow Petrel ’ The Condor91:345-35 I 0 The CooperOrnithological Society 1995 EGG SIZE AND EARLY NESTLING GROWTH IN THE SNOW PETREL ’ TROND AMUNDSEN Department of Zoology, Universityof Trondheim, N-7055, Dragvoll, Norway Abstract. I studiedegg size variation, and the influenceof eggsize on early nestling growth,in SnowPetrels Pagodroma nivea breedingat Svarthamaren,Dronning Maud Iand, Antarctica(71 ”53’S, 5”lO’E). Egg sizes ranged from 36.4 to 52.1 cm3, with a mean of 44.9 cm). Hatching occurredduring 16-24 January,with a median hatching date of 20 January. Egg size had a significant effect on the body mass of hatchlings, explaining 30% of the variation in body massof nestlingshatched within the last 24 hr, and 581 of the body mass variation of nestlingsweighed while still slightly wet. An experiment, which included swap- ping of eggsbetween nests, together with analysesof non-manipulated nests, revealed an effect of eggsize on nestlingbody massesat agesof two and four days. From the experiment, no effect of maternal quality as expressedby her egg size could be found. At an age of four days, 40% of the nestlingswere left alone in the nest by their parents. Nestlingsnot attended by a parent at this age were significantly lighter than were those with parental company. Parents that had left their young by the time these were four days old may have been poor quality birds, as indicated by the tendency for such birds to have laid smaller eggsthan had those still tending their young at the same nestling age. Key words: Antarctica;breeding synchrony; egg size; hatchling size: nestlinggrowth; Pa- godroma nivea; parental quality. INTRODUCTION kirch 1990, Thompson and Hale 199 1, Sydeman Within individual bird species,egg size may vary and Emslie 1992), supporting the idea that egg considerably (Grant 1982, Greig-Smith et al. size reflects parental quality. Recently, a few 1988). This variation has both a genetic (Boag experimental studies aimed at separating effects and van Noordwijk 1987, Lessells et al. 1989) of egg size per se, and of parental quality, have and an environmental component (Price et al. found an effect of egg size at early nestling ages 1988). A number of studies have indicated that (Amundsen and Stokland 1990, Reid and Boers- a benefit is gained by laying large eggs. Firstly, ma 1990, Magrath 1992). These studiesalso have large eggs tend to result in large hatchlings, as demonstrated growth (Amundsen and Stokland has been demonstrated for many species (e.g., 1990, Magrath 1992) and survival (Bolton 199 1, Parsons 1970, Nolan and Thompson 1978, Fur- but see Meathrel et al. 1993) to be influenced by ness 1983, Stokland and Amundsen 1988, Grant parental quality (as expressedby the size of eggs 199 1, review by Williams 1994). Secondly, nest- laid). Taking the results of thesestudies together, lings hatching from large eggstend to grow faster (1) egg size seems in general to reflect parental (Schifferli 1973, Williams 1980) and/or to have quality, and (2) parental quality seems to be a a higher survival rate (Davis 1975, Howe 1976, more important determinant of nestling devel- Thomas 1983) than small-egg nestlings. Since opment than is egg size in itself. these general trends have been based primarily The aim of the present study was to analyze on descriptive studies, the apparent effect of egg the variation in egg size of Snow Petrels Pago- size could either be due to egg size per se, or to drama nivea, and its relationship to nestling parental quality, the latter being reflected in the growth during the early nestling phase. This was size of eggslaid (Amundsen and Stokland 1990, done primarily by analyzing descriptive data, but Williams 1994). Several studies have demon- was also based on a small scale, egg-swapping strated egg size to be positively related to ma- experiment. Snow Petrels brood and guard their ternal age (Wiggins 1990, Croxall et al. 1992, chicks during the first few days after hatching Weimerskirch 1992) or experience (Weimers- (Mougin 1968, 1975) probably until the chicks have developed a thermoregulatory capacity. Clearly, a trade-off exists between brooding/ I Received23 August1994. Accepted 9 January1995. guarding the chick, and foraging at sea. This is 13451 346 TROND AMUNDSEN particularly pronounced at inland colonies. Here, of breeding synchrony. In four nests, however, I present results on the relationship between the nestlings were so small when found (< 40 g) nestling growth and parental attendance, and also that they almost certainly had hatched on that explore potential determinants of the attendance day. These were included in analyses of nestling patterns. growth relative to egg size. In a few cases,nests were not visited on the STUDY AREA AND METHODS exact nestling ages (two and four days old), but The study was carried out at Svarthamaren on the preceding and following days. In such (71”53’S, 5”10’E), Dronning Maud Land, Ant- cases I have estimated the body mass on days arctica, during 1O-24 January 1994. At Svartha- two and four, respectively, as the mean of the maren, about 500 pairs (Mehlum et al. 1988), or masses when one day younger, and when one more (own observations), of Snow Petrels breed, day older (i.e., assuming linear growth). mostly underneath boulders, or in crevices. The I further carried out a small-scale experiment colony is situated in the Miihlig-Hoffmann aimed at separating the effectsof egg size per se, mountain range, about 200 km from the conti- and of parental quality, on nestling growth. Based nental ice shelf. Snow Petrels breeding at Svar- on the first 66 nests found, I divided the nests thamaren thus have to fly at least 400 km during into three egg size categories.Eggs belonging to each feeding trip (Mehlum et al. 1988). the lower 33 percentile were termed “small,” During 10, 11 and 17 January, I searchedfor those in the 33-67 percentile “middle-sized,” and accessible nests within a sub-plot of the Snow thoseabove the 67 percentilewere termed “large.” Petrel breeding area. I measured the length and I then swappedlarge and small eggsbetween nests. breadth of each egg found (to the nearest 0.01 Hatching and subsequent growth were recorded mm, using a digital caliper). Egg volume was in four nests with small eggsswapped for other calculated from the formula: Volume (cm3) = small eggs(S/S), four with small eggssubstituted 0.0005 1 x Length x Breadth2(Hoyt 1979). Nests with large ones (S/L), five with large eggsswapped with eggs showing signs of hatching (egg shell for other large eggs (L/L), and four with large cracking or punctured) were visited daily, mostly eggs swapped for small ones (L/S). Nests with in the evening (20:00-24:00 hours). The hatching middle-sized eggs,and also some with large or date could therefore be recorded, and any nest- small eggs,were not manipulated. lings hatched since the previous visit weighed (to Statistical tests are two-tailed except when the nearest 0.1 g, using a Pesola spring balance). stated otherwise. Means are reported + one stan- I noted whether the hatchlings were dry, or dard deviation (SD). whether they were slightly wet or scruffy; the RESULTS latter indicating that they had only hatched with- in the last few hours. I visited the nests once EGG SIZE more when the nestlings were two days old, and, The mean length of the 113 eggsmeasured was for a smaller sample of nests,also when the nest- 56.5 -t 2.2 mm (range 5 1.0-62.3) and the mean lings were four days old. The smaller sample at breadth of the eggswas 39.5 -t 1.0 mm (range agefour days was due to the fact that, as members 36.5-4 1.8). Eggvolume, as calculated from mea- of the 1993-l 994 Norwegian Antarctic Research surements of breadth and length of the eggs(see Expedition, we had to leave Svarthamaren on 24 the Material and Methods section), had a mean January. of 44.9 + 2.9 cm3 (range 36.4-52.1). I found no During the period when I was recording hatch- correlation between the length and breadth of ling body mass and early nestling growth (18-24 individual eggs(r = 0.008, n = 113, NS). January), I also searchedfor additional nests to include in the study. Most nests found during TIMING OF HATCHING this period still had unhatched eggs, and these Hatching occurred between 16 and 24 January were measured in the same way as were the eggs (n = 64), with a median hatching date of 20 in nests found earlier. Some nests, however, did January. Additionally, five nestscontained intact contain hatched chicks at the time of the first eggs that were either infertile, or hatched later visit, with body massesranging from 32.8 to 79.1 than 24 January. Hatching was highly synchro- g. The hatching dates of these chicks were esti- nous: 84% of the eggshatched during the five- mated from growth data for chicks of known age. day period 18-22 January. Including only nests These data were primarily used in the analysis with directly observed (not estimated) hatching SNOW PETREL EGG SIZE 341 50 , (a)r=0.55 0 - 45- N=37 p < 0.001 00 40. t 36 38 40 42 44 46 48 50 .-F 41 42 43 44 45 46 47 48 Egg volume (cm3) FIGURE 1. Relationship betweenegg volume and hatchlingbody massof Snow Petrelsbreeding at Svartha- maren, Dronning Maud Land, Antarctica: (a) hatched within the last 24 hr, (b) wet or scruffy, i.e., hatched within the last few hours. dates, I found no relationship between egg vol- data for recently hatched nestlings (wet or scruf- ume and hatching date (r = 0.05, n = 37, NS).
Recommended publications
  • Management Plan for Antarctic Specially Protected Area No
    Measure 2 (2005) Annex E Management Plan for Antarctic Specially Protected Area No. 120 POINTE-GÉOLOGIE ARCHIPELAGO, TERRE ADÉLIE Jean Rostand, Le Mauguen (former Alexis Carrel), Lamarck and Claude Bernard Islands, The Good Doctor’s Nunatak and breeding site of Emperor Penguins 1. Description of Values to be Protected In 1995, four islands, a nunatak and a breeding ground for emperor penguins were classified as an Antarctic Specially Protected Area (Measure 3 (1995), XIX ATCM, Seoul) because they were a representative example of terrestrial Antarctic ecosystems from a biological, geological and aesthetics perspective. A species of marine mammal, the Weddell seal (Leptonychotes weddelli) and various species of birds breed in the area: emperor penguin (Aptenodytes forsteri); Antarctic skua (Catharacta maccormicki); Adélie penguins (Pygoscelis adeliae); Wilson’s petrel (Oceanites oceanicus); giant petrel (Macronectes giganteus); snow petrel (Pagodrama nivea), cape petrel (Daption capense). Well-marked hills display asymmetrical transverse profiles with gently dipping northern slopes compared to the steeper southern ones. The terrain is affected by numerous cracks and fractures leading to very rough surfaces. The basement rocks consist mainly of sillimanite, cordierite and garnet-rich gneisses which are intruded by abundant dikes of pink anatexites. The lowest parts of the islands are covered by morainic boulders with a heterogenous granulometry (from a few cm to more than a m across). Long-term research and monitoring programs of birds and marine mammals have been going on for a long time already (since 1952 or 1964 according to the species). A database implemented in 1981 is directed by the Centre d'Etudes Biologiques de Chize (CEBC-CNRS).
    [Show full text]
  • Part 4 Appendices
    Part 4 Appendices HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 139 Appendix 1. Proclamation of Heard Island and McDonald Islands Marine Reserve 140 MANAGEMENT PLAN HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 141 142 MANAGEMENT PLAN Appendix 2. Native Fauna of the HIMI Marine Reserve Listed Under the EPBC Act Scientific Name Common Name Birds recorded as breeding Aptenodytes patagonicus king penguin S Catharacta lonnbergi subantarctic skua S Daption capense cape petrel S Diomeda exulans wandering albatross V S M B J A Diomeda melanophrys black–browed albatross S M B A Eudyptes chrysocome southern rockhopper penguin S Eudyptes chrysolophus macaroni penguin S Larus dominicanus kelp gull S Macronectes giganteus southern giant petrel E S M B A Oceanites oceanicus Wilson’s storm petrel S M J Pachyptila crassirostris fulmar prion S Pachyptila desolata Antarctic prion S Pelecanoides georgicus South Georgian diving petrel S Pelecanoides urinatrix common diving petrel S Phalacrocorax atriceps (e) Heard Island cormorant V S Phoebetria palpebrata light mantled sooty albatross S M B A Pygoscelis papua gentoo penguin S Sterna vittata Antarctic tern V S Non–breeding birds Catharacta maccormicki south polar skua S M J Diomedea epomophora southern royal albatross V S M B A Fregetta grallaria white–bellied storm petrel S Fregetta tropica black–bellied storm petrel S Fulmarus glacialoides southern fulmar S Garrodia nereis grey–backed storm petrel S Halobaena caerulea blue petrel V S Macronectes halli northern giant petrel V S M B A Pachyptila belcheri
    [Show full text]
  • Petrelsrefs V1.1.Pdf
    Introduction I have endeavoured to keep typos, errors, omissions etc in this list to a minimum, however when you find more I would be grateful if you could mail the details during 2017 & 2018 to: [email protected]. Please note that this and other Reference Lists I have compiled are not exhaustive and are best employed in conjunction with other sources. Grateful thanks to Killian Mullarney and Tom Shevlin (www.irishbirds.ie) for the cover images. All images © the photographers. Joe Hobbs Index The general order of species follows the International Ornithologists' Union World Bird List (Gill, F. & Donsker, D. (eds.) 2017. IOC World Bird List. Available from: http://www.worldbirdnames.org/ [version 7.3 accessed August 2017]). Version Version 1.1 (August 2017). Cover Main image: Bulwer’s Petrel. At sea off Madeira, North Atlantic. 14th May 2012. Picture by Killian Mullarney. Vignette: Northern Fulmar. Great Saltee Island, Co. Wexford, Ireland. 5th May 2008. Picture by Tom Shevlin. Species Page No. Antarctic Petrel [Thalassoica antarctica] 12 Beck's Petrel [Pseudobulweria becki] 18 Blue Petrel [Halobaena caerulea] 15 Bulwer's Petrel [Bulweria bulweri] 24 Cape Petrel [Daption capense] 13 Fiji Petrel [Pseudobulweria macgillivrayi] 19 Fulmar [Fulmarus glacialis] 8 Giant Petrels [Macronectes giganteus & halli] 4 Grey Petrel [Procellaria cinerea] 19 Jouanin's Petrel [Bulweria fallax] 27 Kerguelen Petrel [Aphrodroma brevirostris] 16 Mascarene Petrel [Pseudobulweria aterrima] 17 Parkinson’s Petrel [Procellaria parkinsoni] 23 Southern Fulmar [Fulmarus glacialoides] 11 Spectacled Petrel [Procellaria conspicillata] 22 Snow Petrel [Pagodroma nivea] 14 Tahiti Petrel [Pseudobulweria rostrata] 18 Westland Petrel [Procellaria westlandica] 23 White-chinned Petrel [Procellaria aequinoctialis] 20 1 Relevant Publications Beaman, M.
    [Show full text]
  • Order PROCELLARIIFORMES: Albatrosses
    Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 64, 78-79 & 81-82. Order PROCELLARIIFORMES: Albatrosses, Petrels, Prions and Shearwaters Checklist Committee (1990) recognised three families within the Procellariiformes, however, four families are recognised here, with the reinstatement of Pelecanoididae, following many other recent authorities (e.g. Marchant & Higgins 1990, del Hoyo et al. 1992, Viot et al. 1993, Warham 1996: 484, Nunn & Stanley 1998, Dickinson 2003, Brooke 2004, Onley & Scofield 2007). The relationships of the families within the Procellariiformes are debated (e.g. Sibley & Alquist 1990, Christidis & Boles 1994, Nunn & Stanley 1998, Livezey & Zusi 2001, Kennedy & Page 2002, Rheindt & Austin 2005), so a traditional arrangement (Jouanin & Mougin 1979, Marchant & Higgins 1990, Warham 1990, del Hoyo et al. 1992, Warham 1996: 505, Dickinson 2003, Brooke 2004) has been adopted. The taxonomic recommendations (based on molecular analysis) on the Procellariiformes of Penhallurick & Wink (2004) have been heavily criticised (Rheindt & Austin 2005) and have seldom been followed here. Family PROCELLARIIDAE Leach: Fulmars, Petrels, Prions and Shearwaters Procellariidae Leach, 1820: Eleventh room. In Synopsis Contents British Museum 17th Edition, London: 68 – Type genus Procellaria Linnaeus, 1758. Subfamilies Procellariinae and Fulmarinae and shearwater subgenera Ardenna, Thyellodroma and Puffinus (as recognised by Checklist Committee 1990) are not accepted here given the lack of agreement about to which subgenera some species should be assigned (e.g.
    [Show full text]
  • Importance of Ice Algal Production for Top Predators: New Insights Using Sea-Ice Biomarkers
    Vol. 513: 269–275, 2014 MARINE ECOLOGY PROGRESS SERIES Published October 22 doi: 10.3354/meps10971 Mar Ecol Prog Ser FREEREE ACCESSCCESS Importance of ice algal production for top predators: new insights using sea-ice biomarkers A. Goutte1,2,*, J.-B. Charrassin1, Y. Cherel2, A. Carravieri2, S. De Grissac2, G. Massé1,3 1LOCEAN/IPSL — UMR 7159 Centre National de la Recherche Scientifique/Université Pierre et Marie Curie/ Institut de Recherche pour le Développement/Museum National d’Histoire Naturelle, 75005 Paris, France 2Centre d’Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, UPR 1934, 79360 Beauvoir sur Niort, France 3Centre National de la Recherche Scientifique and Université Laval, UMI 3376, Takuvik, Québec G1V 0A6, Canada ABSTRACT: Antarctic seals and seabirds are strongly dependent on sea-ice cover to complete their life history. In polar ecosystems, sea ice provides a habitat for ice-associated diatoms that en - sures a substantial production of organic matter. Recent studies have presented the potential of highly branched isoprenoids (HBIs) for tracing carbon flows from ice algae to higher-trophic-level organisms. However, to our knowledge, this new method has never been applied to sub-Antarctic species and Antarctic seals. Moreover, seasonal variations in HBI levels have never been investi- gated in Antarctic predators, despite a likely shift in food source from ice-derived to pelagic organic matter after sea-ice retreat. In the present study, we described HBI levels in a community of seabirds and seals breeding in Adélie Land, Antarctica. We then validated that sub-Antarctic seabirds had lower levels of diene, a HBI of sea-ice diatom origin, and higher levels of triene, a HBI of phytoplanktonic origin, compared with Antarctic seabirds.
    [Show full text]
  • Draft Revised Management Plan for Rookery Islands Antarctic Specially Protected Area No
    DRAFT REVISED MANAGEMENT PLAN FOR ROOKERY ISLANDS ANTARCTIC SPECIALLY PROTECTED AREA NO. 102 WILKES LAND, EAST ANTARCTICA Introduction The Rookery Islands (Map A) were originally designated as Specially Protected Area No. 2, in accordance with the Agreed Measures for the Conservation of Antarctic Fauna and Flora, through Recommendation IV-II (1966), after a proposal by Australia. The Area was originally designated on the grounds that the Rookery Islands contain breeding colonies of all six bird species resident in the Mawson area, two of which, the southern giant petrel (Macronectes giganteus) and the Cape petrel (Daption capensis), occur nowhere else in the region, and that it is of scientific importance to safeguard this unusual assemblage of six species and to preserve a sample of the habitat. A revised description and management plan for the Area was adopted by Recommendation XVII-2 (1992) to accord with the revised format for Area Descriptions and Management Plans of Article 5 of Annex V of the Protocol on Environmental Protection to the Antarctic Treaty, adopted under Recommendation XVI-10 (1991). In accordance with Resolution XX -5 (1996) the site was redesignated and renumbered as Antarctic Specially Protected Area (ASPA) No. 102. This revised Management Plan reaffirms the scientific values of the original designation. 1. Description of Values to be Protected The Rookery Islands are a group of small islands and rocks in the western part of Holme Bay, lying to the north of the Masson and David Ranges in Mac. Robertson Land, East Antarctica, at 67°36'36.7" S and 62°32'06.7" E.
    [Show full text]
  • Southern Giant Petrels Macronectes Giganteus Starve to Death While on the Antarctic Continent
    111 SOUTHERN GIANT PETRELS MACRONECTES GIGANTEUS STARVE TO DEATH WHILE ON THE ANTARCTIC CONTINENT J.C.S. CREUWELS1,2, J.S. STARK3,W. PETZ4& J.A. VAN FRANEKER1 1Alterra–Texel, Marine and Coastal Zone Research, PO Box 167, 1790 AD Den Burg, The Netherlands ([email protected]) 2Department of Marine Biology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands 3Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia 4Institute of Zoology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria Received 3 July 2003, accepted 8 September 2003 Procellariiforms are seabirds with life histories characterised by a cycle takes about 180 days, which constrains the birds to start long lifespan, deferred sexual maturity, a single egg clutch and low breeding early in the summer season. On the Antarctic continent annual reproductive output (Hamer et al. 2002). Such long-lived egg laying starts in the second half of October (Mougin 1968, species will invest more in longevity than in fecundity, according to Johnstone et al. 1973), at a time when weather conditions may still life-history theory (Stearns 1992, Weimerskirch 1999). Thus, in be very unfavourable. We report the recovery of three banded adult poor breeding conditions, procellariiforms are expected to give up Southern Giant Petrels on their breeding grounds in the Antarctic their breeding effort to increase their lifetime reproductive success that died while incubating their eggs. (Ollason & Dunnet 1988, Wooller et al. 1989, Erikstad et al. 1998). For example, it has been shown that several species will abandon Three banded Southern Giant Petrels were found dead on Dewart their egg when body reserves are reduced to critical levels Island (66°23′S, 110°17′E), one of the three Frazier Islands, (Chaurand & Weimerskirch 1994, Tveraa et al.
    [Show full text]
  • Densities of Antarctic Seabirds at Sea and the Presence of the Krill Eupha Usia Superba
    DENSITIES OF ANTARCTIC SEABIRDS AT SEA AND THE PRESENCE OF THE KRILL EUPHA USIA SUPERBA BRYAN S. OBST Departmentof Biology,University of California,Los Angeles, California 90024 USA ABSTRACT.--Theantarctic krill Euphausiasuperba forms abundant,well-organized schools in the watersoff the AntarcticPeninsula. Mean avian densityis 2.6 timesgreater in waters where krill schoolsare present than in waters without krill schools.Seabird density is a good predictorof the presenceof krill. Seabirddensity did not correlatewith krill density or krill schooldepth. Disoriented krill routinely were observedswimming near the surface above submergedschools, providing potential prey for surface-feedingbirds. Responsesof seabird speciesto the distribution of krill schoolsvaried. The small to me- dium-sizeprocellariiform species were the best indicatorsof krill schools;large procellari- iforms and coastalspecies were poor indicators.Pygoscelis penguins occurredat high den- sitiesonly in the presenceof krill schools.These responses are consistentwith the constraints imposedby the metabolicrequirements and reproductivestrategies of eachof thesegroups. Krill schoolswere detectednear the seasurface throughout the day. Correlationsbetween seabirddensity and the presenceof krill during daylight hourssuggest that diurnal foraging is important to the seabirdsof this region. Received19 December1983, accepted4 December 1984. RELATIVELY little is known about the factors birds depend on directly or indirectly for food influencing the distribution of seabirdsin the (Haury et al. 1978). These observationssuggest marine habitat. The past decade has produced that relatively small-scalephenomena, such as a number of studiesattempting to correlatepat- local concentrationsof prey, may be of major terns of avian abundance and distribution with importance in determining the patterns of sea- physical featuresof the oceansuch as currents bird distribution within the broad limits set by and convergences,water masses,and temper- featuresof the physical ocean.
    [Show full text]
  • Foods of the South Polar Skua Catharacta Maccormicki at Ardery Island, Windmill Islands, Antarctica
    Polar Biol 2001) 24: 59±61 Ó Springer-Verlag 2001 SHORT NOTE S. C. Baker á C. Barbraud Foods of the South Polar skua Catharacta maccormicki at Ardery Island, Windmill Islands, Antarctica Accepted: 3 June 2000 Abstract South Polar skuas Catharacta maccormicki) includes clis, both steep and gentle slopes, and areas of breed on ArderyIsland in the absence of a local morainic boulder slopes. breeding population of Adelie penguins Pygoscelis In manyother Antarctic areas, feeding during the adeliae). Assessment was made of the food remains in breeding season bySouth Polar skuas, and hence their skua feeding territories in 1995/1996. The diet of South selection of breeding location, is largelydependent on Polar skuas largelyconsisted of fulmarine petrel species Adelie penguin rookeries in combination with avail- which bred on ArderyIsland. Southern fulmar Fulma- abilityof food at sea Young 1963; MuÈ ller-Schwarze and rus glacialoides) remains were the predominant prey MuÈ ller-Schwarze 1973; Trillmich 1978; Hull et al. 1994; items found, and skuas appeared to feed preferentially Norman et al. 1994). Ecklund 1961) estimated that at on this species. least 95% of skua nesting habitats in the Windmill Island group are close to Adelie penguin rookeries. The absence of breeding populations of Adelie penguins on ArderyIsland allows investigation of skua feeding where other bird species are likelyto be predominant in their Introduction diet. Other studies that have investigated the diet of skuas remote from Adelie penguin populations have ArderyIsland occurs in the Arderyand Odbert Island found food items of importance to be snow petrels SpeciallyProtected Area, Windmill Island group, near Zipan and Norman 1993), southern fulmars and CaseyStation 66 °22¢S, 110°27¢E), Antarctica.
    [Show full text]
  • Long-Term Contrasted Responses to Climate of Two Antarctic Seabird Species
    Ecology, 86(11), 2005, pp. 2889±2903 q 2005 by the Ecological Society of America LONG-TERM CONTRASTED RESPONSES TO CLIMATE OF TWO ANTARCTIC SEABIRD SPECIES STEPHANIE JENOUVRIER,1 CHRISTOPHE BARBRAUD, AND HENRI WEIMERSKIRCH Centre d'Etudes Biologiques de ChizeÂ, Centre National de la Recherche Scienti®que, F-79360 Villiers en Bois, France Abstract. We examined the population dynamics of two Antarctic seabirds and the in¯uence of environmental variability over a 40-year period by coupling the estimation of demographic parameters, based on capture±recapture data, and modeling, using Leslie ma- trix population models. We demonstrated that the demographic parameters showing the greatest contribution to the variance of population growth rate were adult survival for both species. Breeding success showed the same contribution as adult survival for Emperor Penguins, whereas the proportion of breeders had the next stronger contribution for Snow Petrels. The sensitivity of population growth rate to adult survival was very high and the adult survival variability was weak for both species. Snow Petrel males survived better than females, whereas Emperor Penguin males had lower survival than females. These differ- ences may be explained by the different investment in breeding. Emperor Penguin adult survival was negatively affected by air temperature during summer and winter for both sexes; male survival was negatively affected by sea ice concentration during summer, autumn, and winter. On the other hand, there was no effect of environmental covariates on Snow Petrel adult survival. The Emperor Penguin population has declined by 50% because of a decrease in adult survival related to a warming event during a regime shift in the late 1970s, whereas Snow Petrels showed their lowest numbers in 1976, but were able to skip reproduction.
    [Show full text]
  • Maine Omithologt 19
    19 136 SHORT COMMUNICATIONS Maine Omithologt AN ANTARCTICFULMARFULMARUS GLACULOIDE.S FEEDING ON LAND F. GENEVOIS & O. CHASTEL Centred'Etndes Biologiques de Chiz6,Centre National de la RechercheScientifique, 79 3 60 Beauv oi r/Niort, France Received10 May 1991,accepted 16August 1991 Antarctic Fulnar was observed Of the 95 species of the seabird family On 27 June 1990 an of a Gentoo Penguin Procellariidae (Jouanin & Mougin 1979) only the feeding on land on a carcass base of Port-aux-francais, two giant petrels Mauonectes spp. and the Snow flgoscelis papua near the in the large bay of the Petrel Pagodroma niveu have been reportcd to feed 15 km from the open sea Iles Kerguelen. The bird was on land. In this note, we add this previously Morbihan Gull penguin on the full length of the unexpected technique to the repertoire of another, standing near the wings, and was accompanied the Antarctic Fulmar Fulmarus glacialoides,one of tarsus with eKended Petrels Mauonectes halli. The the fulmarine petrels, a group of taxonomically by Northern Giant feeding technique, the related speciesexhibiting scavengingbehaviour. two species used the same point of entry to the carcasebeing the flippers. The feeding habit usually recorded for this group is place around the "surface seizing" while floating or swimming Agonistic interactions took Antarctic Fulmar was (Harper et al. 1985). The two sibling species of carcaseand, even though the the displays of the giant petrels are predators and take carrion at sea more timorous and sensitive to 1983),it was faster to take or on land (Johnstone 1977, Hunter 1983) and the giant petrels (see Hunter move off to feed at sea.
    [Show full text]
  • Threats to Seabirds: a Global Assessment 2 3 4 Authors: Maria P
    1 Threats to seabirds: a global assessment 2 3 4 Authors: Maria P. Dias1*, Rob Martin1, Elizabeth J. Pearmain1, Ian J. Burfield1, Cleo Small2, Richard A. 5 Phillips3, Oliver Yates4, Ben Lascelles1, Pablo Garcia Borboroglu5, John P. Croxall1 6 7 8 Affiliations: 9 1 - BirdLife International. The David Attenborough Building, Pembroke Street Cambridge CB2 3QZ UK 10 2 - BirdLife International Marine Programme, RSPB, The Lodge, Sandy, SG19 2DL 11 3 – British Antarctic Survey. Natural Environment Research Council, High Cross, Madingley Road, 12 Cambridge CB3 0ET, UK 13 4 – Centre for the Environment, Fishery and Aquaculture Science, Pakefield Road, Lowestoft, NR33, UK 14 5 - Global Penguin Society, University of Washington and CONICET Argentina. Puerto Madryn U9120, 15 Chubut, Argentina 16 * Corresponding author: Maria Dias, [email protected]. BirdLife International. The David 17 Attenborough Building, Pembroke Street Cambridge CB2 3QZ UK. Phone: +44 (0)1223 747540 18 19 20 Acknowledgements 21 We are very grateful to Bartek Arendarczyk, Sophie Bennett, Ricky Hibble, Eleanor Miller and Amy 22 Palmer-Newton for assisting with the bibliographic review. We thank Rachael Alderman, Pep Arcos, 23 Jonathon Barrington, Igor Debski, Peter Hodum, Gustavo Jimenez, Jeff Mangel, Ken Morgan, Paul Sagar, 24 Peter Ryan, and other members of the ACAP PaCSWG, and the members of IUCN SSC Penguin Specialist 25 Group (Alejandro Simeone, Andre Chiaradia, Barbara Wienecke, Charles-André Bost, Lauren Waller, Phil 26 Trathan, Philip Seddon, Susie Ellis, Tom Schneider and Dee Boersma) for reviewing threats to selected 27 species. We thank also Andy Symes, Rocio Moreno, Stuart Butchart, Paul Donald, Rory Crawford, 28 Tammy Davies, Ana Carneiro and Tris Allinson for fruitful discussions and helpful comments on earlier 29 versions of the manuscript.
    [Show full text]