Oracle® Developer Studio 12.6: GCC Compatibility Guide 2 Compatibility Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Source Code Trees in the VALLEY of THE
PROGRAMMING GNOME Source code trees IN THE VALLEY OF THE CODETHORSTEN FISCHER So you’ve just like the one in Listing 1. Not too complex, eh? written yet another Unfortunately, creating a Makefile isn’t always the terrific GNOME best solution, as assumptions on programs program. Great! But locations, path names and others things may not be does it, like so many true in all cases, forcing the user to edit the file in other great programs, order to get it to work properly. lack something in terms of ease of installation? Even the Listing 1: A simple Makefile for a GNOME 1: CC=/usr/bin/gcc best and easiest to use programs 2: CFLAGS=`gnome-config —cflags gnome gnomeui` will cause headaches if you have to 3: LDFLAGS=`gnome-config —libs gnome gnomeui` type in lines like this, 4: OBJ=example.o one.o two.o 5: BINARIES=example With the help of gcc -c sourcee.c gnome-config —libs —cflags 6: gnome gnomeui gnomecanvaspixbuf -o sourcee.o 7: all: $(BINARIES) Automake and Autoconf, 8: you can create easily perhaps repeated for each of the files, and maybe 9: example: $(OBJ) with additional compiler flags too, only to then 10: $(CC) $(LDFLAGS) -o $@ $(OBJ) installed source code demand that everything is linked. And at the end, 11: do you then also have to copy the finished binary 12: .c.o: text trees. Read on to 13: $(CC) $(CFLAGS) -c $< manually into the destination directory? Instead, 14: find out how. wouldn’t you rather have an easy, portable and 15: clean: quick installation process? Well, you can – if you 16: rm -rf $(OBJ) $(BINARIES) know how. -
Red Hat Enterprise Linux 6 Developer Guide
Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Dave Brolley William Cohen Roland Grunberg Aldy Hernandez Karsten Hopp Jakub Jelinek Developer Guide Jeff Johnston Benjamin Kosnik Aleksander Kurtakov Chris Moller Phil Muldoon Andrew Overholt Charley Wang Kent Sebastian Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Edition 0 Author Dave Brolley [email protected] Author William Cohen [email protected] Author Roland Grunberg [email protected] Author Aldy Hernandez [email protected] Author Karsten Hopp [email protected] Author Jakub Jelinek [email protected] Author Jeff Johnston [email protected] Author Benjamin Kosnik [email protected] Author Aleksander Kurtakov [email protected] Author Chris Moller [email protected] Author Phil Muldoon [email protected] Author Andrew Overholt [email protected] Author Charley Wang [email protected] Author Kent Sebastian [email protected] Editor Don Domingo [email protected] Editor Jacquelynn East [email protected] Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. -
Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model
Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model JONATHAN E. COOK New Mexico State University and ALEXANDER L. WOLF University of Colorado To a great extent, the usefulness of a formal model of a software process lies in its ability to accurately predict the behavior of the executing process. Similarly, the usefulness of an executing process lies largely in its ability to fulfill the requirements embodied in a formal model of the process. When process models and process executions diverge, something significant is happening. We have developed techniques for uncovering and measuring the discrepancies between models and executions, which we call process validation. Process validation takes a process execution and a process model, and measures the level of correspon- dence between the two. Our metrics are tailorable and give process engineers control over determining the severity of different types of discrepancies. The techniques provide detailed information once a high-level measurement indicates the presence of a problem. We have applied our process validation methods in an industrial case study, of which a portion is described in this article. Categories and Subject Descriptors: D.2.6 [Software Engineering]: Programming Environ- ments; K.6.3 [Management of Computing and Information Systems]: Software Manage- ment—software development; software maintenance General Terms: Management Additional Key Words and Phrases: Balboa, process validation, software process, tools This work was supported in part by the National Science Foundation under grants CCR-93- 02739 and CCR-9804067, and the Air Force Materiel Command, Rome Laboratory, and the Defense Advanced Research Projects Agency under Contract Number F30602-94-C-0253. -
Using Restricted Transactional Memory to Build a Scalable In-Memory Database
Using Restricted Transactional Memory to Build a Scalable In-Memory Database Zhaoguo Wang†, Hao Qian‡, Jinyang Li§, Haibo Chen‡ † School of Computer Science, Fudan University ‡ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University § Department of Computer Science, New York University Abstract However, the correctness of the resulting code is complex to reason about and relies on the processor’s (increasingly The recent availability of Intel Haswell processors marks the complex) memory model. transition of hardware transactional memory from research Recently, Intel has shipped its 4th-generation Haswell toys to mainstream reality. DBX is an in-memory database processor with support for Hardware Transactional Mem- that uses Intel’s restricted transactional memory (RTM) to ory [16]. This opens up a third possibility to scaling multi- achieve high performance and good scalability across multi- core software. Instead of relying on fine-grained locking core machines. The main limitation (and also key to practi- and atomic operations, one can synchronize using hardware cality) of RTM is its constrained working set size: an RTM transactions, which offer a programming model that is ar- region that reads or writes too much data will always be guably even more straightforward than mutual exclusion. aborted. The design of DBX addresses this challenge in sev- The promise is that the resulting implementation is much eral ways. First, DBX builds a database transaction layer on simpler and easier-to-understand while still retaining the top of an underlying shared-memory store. The two layers performance benefits of fine-grained locking. use separate RTM regions to synchronize shared memory Does hardware transactional memory actually deliver its access. -
Oracle® Developer Studio 12.5
® Oracle Developer Studio 12.5: C User's Guide Part No: E60745 June 2017 Oracle Developer Studio 12.5: C User's Guide Part No: E60745 Copyright © 2016, 2017, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
Sun SPARC Enterprise® M3000 Server
Sun SPARC Enterprise ® M3000 Server Enabling Enterprise performance and Mission Critical RAS in an ultra dense footprint at an entry-level price < Growing demand for scalability and 24x7 availability coupled with modern economic realities are re-shaping the design of the multi-tiered datacenter. Customers desire products and solutions that reduce their overall cost and complexity by combining low price, better price/performance, improved environmental requirements, system manageability, and increased availability. Now, for the first time, IT organizations can securely, reliably, and eco-efficiently serve millions of new customers and communities with mainframe class reliability in a 2 RU footprint while maintaining their ability to seamlessly scale up with the Sun SPARC Enterprise® M3000 server. Highlights • 1 CPU, 2 RU entry level enterprise Keep pace with expanding needs Power efficient virtualization technologies class server based on the quad-core With its compact, low power consumption and The compact and flexible SPARC Enterprise SPARC64® VII processor native to the lightweight design the SPARC Enterprise M3000 M3000 server delivers greatly improved M-Series portfolio server was architected to help our customers business efficiency and with its high density • Seamless scalability from 1 CPU up to contain existing application fees, deploy new design the M3000 shows a 50 percent reduction 64 CPUs within the same family and business services and consolidate existing in space and power consumption all while without changing the management system distributed systems more cost effectively and doubling the performance when compared to • Advanced virtualization technologies, reliably than ever before. the Sun Fire™ V445 server. In addition, its light methodologies, and services, making Sun weight design avoids rackmount floor-loading SPARC Enterprise® servers ideal for Because it is part of the SPARC Enterprise concerns. -
Using the GNU Compiler Collection (GCC)
Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options ......................... -
Software Analysis Handbook: Software Complexity Analysis and Software Reliability Estimation and Prediction
Technical Memorandum 104799 Software Analysis Handbook: Software Complexity Analysis and Software Reliability Estimation and Prediction Alice T. Lee Todd Gunn (NASA-TM-I04799) SOFTWARE ANALYSIS N95-I1914 Tuan Pham HANDBOOK: SOFTWARE COMPLEXITY Ron Ricaldi ANALYSIS AND SOFTWARE RELIABILITY ESTIMATION AND PREDICTION (NASA. Unclas Johnson Space Center) 96 p G3159 0023056 August 1994 ..0 National Aeronautics and Space Administration Technical Memorandum 104799 Software Analysis Handbook: Software Complexity Analysis and Software Reliability Estimation and Prediction Alice T. Lee Safety, Reliability, & Quaflty Assurance Office Lyndon B. Johnson Space Center Houston, Texas Todd Gunn, Tuan Pham, and Ron Ricaldi Loral Space Information Systems Houston, Texas National Aeronautics and Space Administration Thispublication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390. Summary The purpose of this handbook is to document the software analysis process as it is performed by the Analysis and Risk Assessment Branch of the Safety, Reliability, and Quality Assurance Office at the Johnson Space Center. The handbook also provides a summary of the tools and methodologies used to perform software analysis. This handbook is comprised of two sepa- rate sections describing aspects of software complexity and software reliability estimation and prediction. The body of this document will delineate the background, theories, tools, and analysis procedures of these approaches. Software complexity analysis can provide quantitative information on code to the designing, testing, and maintenance organizations throughout the software life cycle. Diverse information on code structure, critical components, risk areas, testing deficiencies, and opportunities for improvement can be obtained using software complexity analysis. -
Oracle® Developer Studio 12.6
® Oracle Developer Studio 12.6: C++ User's Guide Part No: E77789 July 2017 Oracle Developer Studio 12.6: C++ User's Guide Part No: E77789 Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
The GNOME Desktop Environment
The GNOME desktop environment Miguel de Icaza ([email protected]) Instituto de Ciencias Nucleares, UNAM Elliot Lee ([email protected]) Federico Mena ([email protected]) Instituto de Ciencias Nucleares, UNAM Tom Tromey ([email protected]) April 27, 1998 Abstract We present an overview of the free GNU Network Object Model Environment (GNOME). GNOME is a suite of X11 GUI applications that provides joy to users and hackers alike. It has been designed for extensibility and automation by using CORBA and scripting languages throughout the code. GNOME is licensed under the terms of the GNU GPL and the GNU LGPL and has been developed on the Internet by a loosely-coupled team of programmers. 1 Motivation Free operating systems1 are excellent at providing server-class services, and so are often the ideal choice for a server machine. However, the lack of a consistent user interface and of consumer-targeted applications has prevented free operating systems from reaching the vast majority of users — the desktop users. As such, the benefits of free software have only been enjoyed by the technically savvy computer user community. Most users are still locked into proprietary solutions for their desktop environments. By using GNOME, free operating systems will have a complete, user-friendly desktop which will provide users with powerful and easy-to-use graphical applications. Many people have suggested that the cause for the lack of free user-oriented appli- cations is that these do not provide enough excitement to hackers, as opposed to system- level programming. Since most of the GNOME code had to be written by hackers, we kept them happy: the magic recipe here is to design GNOME around an adrenaline response by trying to use exciting models and ideas in the applications. -
Why and How I Use Lilypond Daniel F
Why and How I Use LilyPond Daniel F. Savarese Version 1.1 Copyright © 2018 Daniel F. Savarese1 even with an academic discount. I never got my money's Introduction worth out of it. At the time I couldn't explain exactly why, but I was never productive using it. In June of 2017, I received an email from someone using my classical guitar transcriptions inquiring about how I Years later, when I started playing piano, I upgraded to use LilyPond2 to typeset (or engrave) music. He was the latest version of Finale and suddenly found it easier dissatisfied with his existing WYSIWYG3 commercial to produce scores using the software. It had nothing to software and was looking for alternatives. He was im- do with new features in the product. After notating eight pressed with the appearance of my transcription of Lá- original piano compositions, I realized that my previous grima and wondered if I would share the source for it difficulties had to do with the idiosyncratic requirements and my other transcriptions. of guitar music that were not well-supported by the soft- ware. Nevertheless, note entry and the overall user inter- I sent the inquirer a lengthy response explaining that I'd face of Finale were tedious. I appreciated how accurate like to share the source for my transcriptions, but that it the MIDI playback could be with respect to dynamics, wouldn't be readily usable by anyone given the rather tempo changes, articulations, and so on. But I had little involved set of support files and programs I've built to need for MIDI output. -
Linux Boot Loaders Compared
Linux Boot Loaders Compared L.C. Benschop May 29, 2003 Copyright c 2002, 2003, L.C. Benschop, Eindhoven, The Netherlands. Per- mission is granted to make verbatim copies of this document. This is version 1.1 which has some minor corrections. Contents 1 introduction 2 2 How Boot Loaders Work 3 2.1 What BIOS does for us . 3 2.2 Parts of a boot loader . 6 2.2.1 boot sector program . 6 2.2.2 second stage of boot loader . 7 2.2.3 Boot loader installer . 8 2.3 Loading the operating system . 8 2.3.1 Loading the Linux kernel . 8 2.3.2 Chain loading . 10 2.4 Configuring the boot loader . 10 3 Example Installations 11 3.1 Example root file system and kernel . 11 3.2 Linux Boot Sector . 11 3.3 LILO . 14 3.4 GNU GRUB . 15 3.5 SYSLINUX . 18 3.6 LOADLIN . 19 3.7 Where Can Boot Loaders Live . 21 1 4 RAM Disks 22 4.1 Living without a RAM disk . 22 4.2 RAM disk devices . 23 4.3 Loading a RAM disk at boot time . 24 4.4 The initial RAM disk . 24 5 Making Diskette Images without Diskettes 25 6 Hard Disk Installation 26 7 CD-ROM Installation 29 8 Conclusions 31 1 introduction If you use Linux on a production system, you will only see it a few times a year. If you are a hobbyist who compiles many kernels or who uses many operating systems, you may see it several times per day.