:: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

ANALYSIS OF CROP PATTERN PLANT AND IRRIGATION WATER NEEDS IN PAUH TINGGI IRIGATION NETWORK PLANNING, PAUH TINGGI VILLAGE, KERINCI DISTRICT,

Acep, HIDAYAT Faculty of Engineering, University Mercu Buana Jakarta, [email protected]

Muhammad Al Reza, HIDAYATULLAH Faculty of Engineering, University Mercu Buana Jakarta, Indonesia [email protected]

ABSTRACT Pauh Tinggi irrigation network planning which has an area of irrigation land of 473 ha. This irrigation plan draws water from the Pauh Tinggi Dam located in the Batanghari Hulu river, Kerinci Regency, Jambi. Population growth which is directly proportional to the increasing necessities of life, one of which is in the food sector, has made the government take the initiative to meet the needs and welfare of the community by opening land into productive areas of rice fields and fields, and making irrigation plans. In making irrigation planning, hydrological and rainfall calculations are needed to be able to make the right cropping system for farmers in Pauh Tinggi Village, Kerinci Regency, Jambi. A calculation of 17 alternative cropping patterns with different types of plant variants and different plans for the initial planting period were carried out by comparing with the mainstay debit factor (Q80). It was found that the cropping pattern is very possible always using the RICE-RICE-CROP cropping pattern. The most efficient and optimal planting pattern is the alternative planting pattern 14 in the form of RICE -RICE-CORN with Netto Field Water Requirements in tertiary plots (NFR tertiary) ranging from 0 - 1.30 ltr / sec / ha with a maximum of 1.30 ltr / sec / ha in January I, while irrigation water needs in the intake (DR intake) range 0 - 1.60 ltr sec / ha with a maximum of 1.60 ltr / sec / ha in January I.

Keywords : Cropping pattern, Pauh Tinggi irrigation network, Mainstay debit, Irrigation Water Needs

INTRODUCTION Irrigation is a human effort in irrigating plants that need water, useful for growing plants to get the benefits. According to The Republic of Indonesia UU No. 7 of 1996 (UU RI No.7 1996) concerning Food, states that food is a basic human need whose fulfillment is the basic right of every Indonesian people in realizing quality human resources to carry out national development. Based on this, the Kerinci Regency Government cleared unused land into productive areas in several villages within its territory. Population growth which is directly proportional to the increasing need for living one of them in the food sector,makes the government take the initiative in meeting the needs and welfare of the community by opening land into productive areas of rice fields and fields, and making irrigation plans. One area in Kerinci Regency that needs hydraulic analysis is the Planning of Pauh Tinggi irrigation network which has an irrigation area of 473 ha. This irrigation plan draws water from the Pauh Tinggi Dam located in the Batanghari Hulu river, Kerinci Regency, Jambi, taking into account the right and best planting patterns for the people of Pauh Tinggi Village, Kerinci Regency, Jambi.

104 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Definition of Irrigation. Irrigation is the business of supplying, regulating, and discharging irrigation water to support agriculture of which typically includes surface irrigation, swamp irrigation, underground water irrigation, pump irrigation, and pond irrigation (Permen PUPERA, 2015) Based on Ministerial Decree No. 32 of 2007, Irrigation is an effort to supply, regulate and dispose of irrigation water to support agriculture which includes surface, swamp, underground water, pumps, and ponds. According to (Gandakoesoema, 1986) in his book explained that irrigation is away and effort to bring in water by making buildings and channels. Then drain and distribute water in the channel to the fields and fields in an orderly manner and dispose of the water that is no longer used into the drain. In the opinion of the expert (Sidharta, 1997) in his book that the purpose of irrigation in an area is to supply and regulate water to support agriculture, from upstream water sources to areas that need water and are distributed technically and systematically

Elements and levels of irrigation networks Based on the way the water flow measurements are arranged and the facilities are complete, the irrigation network can be divided into three levels namely: 1. Simple 2. Technical 3. Technical. (KP 01, 2013)

Hydrological Analysis The hydrological analysis is one part of the whole series in water planning. Hydrological data is a collection of information or facts about hydrological phenomena. Hydrological data is an important information material in carrying out an inventory of potential water sources, utilization and management of appropriate water sources.

Regional Rainfall There are several types of methods that can be used to calculate rainfall in a watershed from the local rainfall record at the rainfall gauge station:

Average Calculation Method The arithmetic means the method is the simplest. This method is usually used for flat areas, with a considerable amount of rainfall and with the assumption that rainfall in the area is uniform (uniform distribution). Formula: Rav = (R1 + R2 + R3 + ... Rn) / n ...... (II.1) Information: Rav = average rainfall (mm) n = number of rain measurement stations R1 ... Rn = the amount of rainfall at each station (mm) (Kurniawan, 2018)

Search of Missing Data Linsley, Kohler and Paulhus (1958) suggest a method called the "Normal Ratio Method" as follows: Dx = 1 / n x Σ [(d / An1) x Anx] dx ……….. (II.2) (Anonym, 2017)

105 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Effective Rainfall Effective rainfall is the amount of rainfall that falls in a certain period during the growth of plants that can effectively meet the needs of plants (can be used by plants) (Sucipto, 2008: 3). Effective rainfall uses the Basic Years method which is calculated by analyzing the formula as follows: Re palawija = 50%. R80 ...... (II.3) Re rice = 70%. R80 ...... (II.4) Re Sugar cane= 60%. R80 ...... (II.5) (Anton , 2014)

Mainstay Rainfall Mainstay rainfall is rainfall that can be relied upon throughout the year. To get this data, the monthly rainfall is totaled, then sorted from the smallest to the largest data. Mainstay discharge is a reliable debit for a certain level of reliability or reliability. For irrigation purposes, reliable discharge is used with a reliability of 80% as stipulated in the Irrigation Planning Criteria (Kementerian PUPR Ditjen Sumber Daya Air, 2017). The mainstay rainfall calculation is done by the formula: R80 = n / 5 + 1 ...... (II.6)

Planting Patterns Planting pattern is the most important way in planting system planning. The purpose of holding a planting system is to set the time, place, type and area of plants in the irrigation area. The purpose of the planting system is to utilize the irrigation water supply as effectively and efficiently as possible so that the plants can grow well.

Plant Coefficients Plant coefficients are given to link evapotranspiration (ETo) with reference plant evapotranspiration (ETtanam) and are used in the Penman formula. The coefficient used must be based on continuous experience (KP 01, 2013)

Table 1. Price of paddy crop coefficient

(KP 01, 2013) Table 2. Price of Palawija plant coefficient

(KP 01, 2013)

106 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Percolation and Seepage (P) The rate of percolation is very dependent on the properties of the soil. Data on percolation will be obtained from soil capability studies. The soil graduation test will be part of this investigation. (KP 01, 2013) Based on the type of soil, the percolation power can be grouped into: 1. Sandy loam with percolation 3-6 mm / day 2. Loam with percolation power of 2-3 mm / day 3. Clay loam with a insulation power of 1-2 mm / day.

Land Preparation For tertiary plots, the recommended time period for land preparation is 1.5 months. If land preparation is mainly carried out with machine tools, a period of one month can be considered. Land preparation. (KP 01, 2013) Calculation of water requirements for land preparation is done by the Van de Goor Zijlstra method. This method is based on water requirements to replace water losses due to evaporation and percolation in paddy fields that have been saturated for 30 days with a height of inundation of 250 mm, if there is a resting area of inundations of 300 mm or 8.33 mm / day. M = E0 + P = 1.1 ET0 + P ...... (II.7) Pd = 〖Me〗 ^ k / (e ^ k-1) ...... (II.8)

Water layer replacement (WLR) After fertilization needs to be scheduled and replace the water layer as needed. Replacement is estimated at 50 mm each month and two months after transplantation (or 3.3 mm / day).

Evapotranspiration Reference (ETo) Reference evapotranspiration (ETo) is the value of evapotranspiration of grass plants that spread over 8-15 cm in height, actively growing with enough water, to calculate the reference evapotranspiration (ETo), several methods can be used, namely: 1. Penman method, 2. the evaporation pan method 3. radiation method, 4. Blaney Criddle and method 5. Penman modification method FAO (Suyono, 2003). Estimating the magnitude of crop evapotranspiration there are several stages that must be carried out, namely suspecting reference evapotranspiration; determine the coefficient of the plant then pay attention to local environmental conditions; such as climate variations at any time, altitude, land area, available groundwater, salinity, irrigation methods, and agricultural cultivation. Some methods for estimating reference evapotranspiration:

Penman Modification Method The method used here is the Penman Modification method. To calculate ET0 using the Penman modification method, the formulas used are: es = 611 exp ((17,27 T)/(237,3+T)) ...... (II.9) ed = es r ...... (II.10) E = B (es – ed) ...... (II.11) 0,102푢 2 B = 푧 2 ...... (II.12) ln 2 푍0

107 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Ln = σT4 (0,56 - 0,092 √ed) (0,1 + 0,9 n/N) … (II.13) St = S0 ( a + (b x n/12,1)) ...... (II.14) Sn = St (1- α) ...... (II.15) Rn = Sn - Ln ...... (II.16) lv = 597,3 – 0,56 T ...... (II.17) En = Rn/(ρw lv) ...... (II.18) ET0 = (βEn+E)/(β+1) ...... (II.19)

Consumptive Water Needs (ETC) Consumptive use is the amount of water used by plants for the photosynthesis of these plants. To calculate the water needs of plants in the form of evapotranspiration used: ETc = Kc. Eto ...... (II.20) Information : Etc = Evapotranspiration of plants (mm / day) Eto = Evapotranspiration of reference plants (mm / day) Kc = Average crop coefficient Source: (Sidharta, 1997)

Mainstay Discharge Mainstay discharge is a reliable debit for a certain level of reliability or reliability. For irrigation purposes, reliable discharge is used with 80% reliability as specified in the Irrigation Planning Criteria. This means that 80% of the possible discharges that occur are greater or equal to the debit, or in other words, the irrigation system may fail once in five years. For the needs of drinking water and industry, higher reliability is required, which is around 90% to 95%. If the river water is used for hydroelectric power generation, very high reliability is needed, which is between 95% to 99% (Kementerian PUPR Ditjen Sumber Daya Air, 2017).

Mainstay Debit Calculation In this study the mainstay discharge analysis using FJ.Mock with the concept of water balance based on the 1973 hydrological cycle. Basically, the FJ Mock method is an analysis of the balance of monthly water discharge based on data on semi-monthly rainfall, evapotranspiration, soil moisture and groundwater storage. Some of them are lost due to evapotranspiration, some of them immediately turn into direct runoffs and some go into the ground or infiltrate. Where infiltration first saturates the surface of the ground then water percolation occurs and comes out as base flow. We can see the dependence between falling rainfall and evapotranspiration, infiltration, and total runoff which is a component of discharge. The data or assumptions used in the FJ Mock calculation are:

A. 10-year Rainfall Data with rainfall stations which are considered to represent the condition of the area. The data needed is: a) d average: 10-year average rainfall b) n: Average number of 10 annual rainy days (Agustin, 2011)

B. Restricted evapotranspiration is actual evapotranspiration by comparing the condition of vegetation and land surface and rainfall frequency. a) Evapotranspiration (ET0) using the Penman Modification method (mm / day) b) Land opening factors used are: - M 0% for land with dense forest - M 10-40% for eroded land - M 30-50% for agricultural land though c) E = ET0 x (m / 20 (18 - n)) ...... (II.21)

108 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

: Number of average monthly rainy days d) Limited evapotranspiration E1 = ET0 - E ...... (II.22)

C. Water Balance / water surplus is rainfall that has experienced evapotranspiration and filled soil storage. Water surplus directly affects the infiltration, percolation and total runoff which are components of the discharge. a) S = R - E1 ...... (II.23) b) Run-Off Storm = 10% x R ...... (II.24) c) Soil Storage (IS) = S - Run Off Storm ...... (II.25) d) Water Surplus = S - Soil Storage ...... (II.26)

D. Run Off and Ground Water Storage a) The coefficient I is found in the table b) Infiltration (I) = Ws x I ...... (II.27) c) The recession factor for groundwater (K) is obtained from the following explanation: • 0.5 For normal or normal rain catchment areas • 0.8 for areas that have a small continuous flow • 0.2 for regions that have a reliable continuous flow d) Groundwater Storage (GS) = (0.5 x I x (1 + K)) + (K x Gsom) ... (II.28) e) ΔGS = GS - Gsom ...... (II.29) f) Base Flow (BF) = Infiltration - ΔGS .... (II.30) g) Direct Run Off (DRO) = Water Surplus - Infiltration ..... (II.31) h) Run Off (RO) = BF + DRO ...... (II.32) i) Watershed Area (km2) = 10000 ha ...... (II.33) j) Mainstay discharge = RO x Watershed x 1000 (m3 / month) ...... (II.34) (Agustin, 2011) The probability of being fulfilled is set at 80% (the possibility that the river discharge is lower than the main discharge is 20%). That possibility uses calculations Q mainstay 80% = (0.8 x Mainstay Debit) / (area DI) ltr / sec / ha .. (II.35) Water balance = Q mainstay 80% - DR intake …… (II.36)

Irrigation Efficiency According in general water losses in irrigation networks can be divided as follows. a. 12.5% - 20% in tertiary channels b. 5% - 10% in the secondary channel c. 5% - 10% in the primary canal (KP 03, 2013) Efficiency in each plot is estimated as follows: • Efficiency values in primary plots ranged from 92.5% - 87.5%. • Efficiency values in secondary plots range from 92.5% - 87.5% • Efficiency values in tertiary plots range from 85% - 77.5%. (KP 01, 2013)

Irrigation Water Needs Irrigation water demand is the amount of water volume needed to meet the needs of evapotranspiration, water loss, water needs for plants by paying attention to the amount of water provided by nature through rain and the contribution of groundwater. (Sidharta, 1997) The need for water in paddy fields for rice is determined by the following factors: 1. how to prepare the land

109 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

2. water requirements for plants 3. percolation and seepage 4. Substitution of water layers, and 5. effective rainfall. The total water demand in a paddy field (GFR) includes factors 1 to 4. The net (net) demand for water in a paddy field (NFR) also takes into account effective rainfall. Calculation of irrigation water needs (NFR) can be done with the formula: Rice NFR = ETC + Pd + P + WLR - Re ...... (II.37) NFR palawija / sugarcane = ETC - Re ...... (II.38) Tertiary channel NFR / DR intake = (NFR (rice / secondary crops)) / Eff ...... (II.39)

Netto Debit To determine the dimensions of the channel, the planned capacity is calculated against the maximum discharge Q = 100% x Maximum. The discharge plan for a channel is calculated using the following general formula (KP 05, 2013) Q netto = (NFR x A) / Eff = (NFR tertiary channel or DR intake) x A ...... (II.40)

RESEARCH METHODOLOGY

Data Collection Methods Secondary data, where this data is obtained not through direct observation in the field. Included in this secondary data classification include supporting literature, graphs, tables and which are closely related to the process of analyzing cropping patterns. This secondary data includes: 1. Hydrological data for Kayu Aro, and Depati Parbo 2. Climatology data of Kayu Aro, and Depati Parbo 3. Topographic map of Kerinci Regency

Research Location

Figure 1. Location of Pauh Tinggi Village

The research location is located in Pauh Tinggi, Kerinci Regency, Jambi. The Pauh Tinggi Irrigation Area has an area of 473 ha of irrigation land, and is divided into 12 tertiary plots. The Pauh Tinggi irrigation area receives water from the dammed Batanghari River. The location of the rain station is located in Kayu Aro, and Depati Parbo. Map coordinates as follows: • Kayu Aro: 01 ° 40 '15 "LS and 101 ° 40' 20" East. • Depati Parbo: 02 ° 05 '00' 'LS and 101 ° 27' 00 '' East

110 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Data Management Stage This irrigation analysis stage includes: a) Identification of problems and criteria b) Secondary data collection c) Analysis of climatological and hydrological data d) Calculation of cropping patterns e) Calculation of plant water requirements, and efficiency f) Calculation of efficiency g) Mainstay debit calculation

Planning Data Each analysis requires data as a settlement to be carried out. The data is processed using the formula in accordance with the Irrigation Planning (KP) Criteria. The supporting data include:

Topographic Map This topographic map is the topographic map of the Kerinci Regency, which was obtained from the Kerinci Regency Public Works Department. The Pauh Tinggi Irrigation Area has an area of 473 ha of irrigation land, and is divided into 12 tertiary plots. The Pauh Tinggi irrigation area receives water from the dammed Batanghari River.

P.67

P.68 1408.405

1410 406 1408 593 1409.827 1408 705 1417 406

1408.432 1408 679 1407 387 1408 688 1409 987 1414.151 1406.605 1410 269 P69 a 1403.381 1410 3401410 211 A=96.63 ha 1409 052 1406.596 1408.354 1409 933 1401 117 1404 646 1409 986 1401 124 1404 536 1403.258 1402 615 1408.324 1403.676 1406.279 d 1401 028 1402.015 Masjid 5 1401.852 a

1407.176

1407.157 1401 041 a 1406 713 P.70 1406 1406 693159 1407 043 1406 183 1400 839 1406 164 1400 924 1401 538 1402 796 SD

1407 9261408 164 1407 579 P.71 1407 874 1408 036 1407 9221408 125

1407 773

1403 789 1403 1404 085 1404

P129

1408.416

1408.258 1401 053 1405 981 1405.899 1405 576 1405 114 4 1404 926 1404.845

1404 057 1402 695 1402

1403.747 715 1402 1403 544 1401 239 a 62 1403 215 1403 867 1405 000 P.107 P.73

P.108 1403 618

1406 004 1406

1406 185 1406

1406 085 1406

1406 056 1406

1406 338 1406

1405.898

1405.867 1405.797

1403 942

1403.821 1403 861 1400 624 1402 128 1403 245 1403 781

P.110 1403.818 1403.414

1403 483 1403

1403 503 1403

d 002 1405

1403.743 168 1405 1406 104 1406

1403.801 546 1410 1400 802 1403.742

1403.723 1405 000 P.74 A=35.32 ha Q=34.36 ltr/s P.112 1403.622 Y + 9 807 234,410

1403.507 1405 000 1418 566 52 1403 930 P.18 P128 1403 871 1398 567 1403.501 P.75 Z + 1406,603 1403.483 1409 871 1401 233 P.114 1404 587 1403.383 1404 426 3 1403.271 1401 573 1402 363 P.76 c 1403 234 1401 811 1403.261 61 1401 174 1403.243 1403.194 a P.116 1403.140 1423.426 1399 524 1400 692 1401 796 1403.0351403 019 1403 636 1413.257 1401 441 P.77 1403.020 1417.629 1406 336

1404 000

1403.008 1403 717 P.17 1410 819 1418.736 b P.118 1402.547 1408 254 1402.260 1407 547 1401 350 1407 P76322 1412.944 1402.278 1405 340 1409 711 1406 281 1406 506 1402.309 1406 175 1406 453 51 P.120 e 1406 075 1401.950 P127 1402 681 1398 954 1401 7491401.764 1406 079 1398 783 1405 000 P.78 1401.777 1401 996 a

1401 749 14051403 456 000 1402.173 1428.201 1401.821 1403 54 1403 459 P.122 1401.810 1403 517 P.16 1422.174 b 1417 569 1401.706 1411 372 1411 182 1399 457 1400 537 1401 896 1401.763 1402 102 1402 697 1402 953 1410 967 d 1408 191 1401.801 1407.807 P.124 1401.745 1401 861 A=19.58 ha Q=19.19 ltr/s 1401.830 P.79 1418.750 P.125 1401.892 b a 1418.549 18 2 1405 041 1401.923 1402 514 1418 011 1404 388 1417 636 1404 232 P.15 1414 780 1399 855 1402.120 1415 190 1415 126 1399 444 1402.12221402 067 1415 028 c 1418 455 1402.143 1401.902 1401 956 a 1402.158 Sal. Sek. Harapan Jaya P.80 1402.000 1402 159 1402.053 1426.294 P.81 1421 652 50 1418 271 1398 863 1400 312 P126 1404 693 1416 291 1404 972 1415 905 1404 523 1398 826 60 1404 075 P.14 1402 576 1405.800 1426.110 P.82 A10 1418 833 1403 439 1406.269 1414.055 1413 897 1415.974 1406 105 1405.849 1414 759 1413 788 1412 137 1405.821 1411 806 1411 883 1401 921 1405.067 1411 875 1405.617 A= 39.17 ha Q=38.38 ltr/s 1403.488 1405.168 1403.723 1405.005 1405 068 1403.511 1404 795

1404 544 P.13 1404.791 1403.655 1399 198 1398 890 1402 196 1402 313 1403 396 1404 763

P.11 1403.201 1403.228 1403.604 1403 491 1405 891 1406 531 1406 697 1410 506 1411.345 1419.224

19 P.83

1404 811

1404 601

P.12 1404 390 1405 276

1399 717 P.10 a

1403.440 1406 311 14041404 877 877 1403.314

1401 957 1 c A9A9

a 14051405 000 000P.9 373 1404

P.9 379 1407

1402 579 725 1407 1402 221 1402 467 1404 631 588 1411 1404 631 1404 933 1404 642 1399 547 1399 128 1399 924 1400 621 14031403 342 342 1404 933 14041404 983 9831404 642 1418.974

1404 639

1406.021

14041404 781 781 1404 639 1406.021

1406.226 P.84

49 1406.226

1405 133 295 1406

b 295 1406

1405 133 1404 633 343 1406

1404 633 343 1406

1409 320 1409

1399 016 1404 971 320 1409

1402 474 1404 971 090 1409 1413 607 1413

14051405 000 000 659 1418

1404 711 59 1404 711 42 59 1404 629 1404 629

P.8 1404 547

1404 547 P.8 P.85 34 1403 222 A8 1410 179 1403 222 A8 41 40 1412 937 aa 1404 613 P.87 44 43 P.73 1404 613 1404.283 1404 482 1407 097 1408 270 1408 445 1413 493 1402 527P125 14041404 1404.283 362 362 1404 482 1407 097 1408 270 1408 445 1413 493 1409 8531410 641 39 1402 527P125 P.86 1407 444

P.86 1409 799 14021402 036 036 14021402 237 237 14031403 867 867 14041404 362 362 1415.899 a b b 1408 682 1406 074 1409 651 14021402 429 429 1405 657 1404 707 1405 823 1402 953 1404 707 a 33 1402 953 1404 594 a 1405 737 1399 748 1404 594 1404 503 P.7 1404 503 P.7 14061406 815 815 1399 703 Q= 31.58 ltr/s P.6P.6 1403.1611403.161 1399 663 A= 32.23 ha 1411 766 1399 607 48 1402.3561402.356 1398 585 P124P124 1403 247 1399 585 c c 1403 247 P.88 a 1399 544 1405.456 32 1399 487 b a 1402 352 1402 352 14021402 845 845 1405.301 1398 419 1399 461 14041404 008 008 1399 510 1400 177 1405.024 1412 533 1400 360 1405.144 1399 405 20 1405 043 1403 469 1403 756 31 1405P.5 000 1404 233 1403.629 1404 233 1404 078 1404 078 a 1403.597 1411 566 1402 367 1403 882 A7A7 1404 526 1404 231 1408 269 A=44.99 ha Q=44.09 ltr/s 1402 367 5858 1403 882 1404 526 1404 231 1404 350 1404 353 b 1403 138 1404 350 1404 f353 1403 138 f P.89 1404.8791405 036 14041404 610 610 1404.935 1404.997 a 1405.057 30 1404.893 1405 226 14041405 328 230 1404 727 1404 648 1404.591 1409 029 d P123 1405 000 d P123 1404.530

1404 738

1404 773 1404 794 14011401 419 419 a 140423 794 P.4 29 14021402 062 062 a A6 23 P.90 A6 1405 000 1404.439 RAWA HUTAN RINGAN 14021402 551 551 d d 1404 851 1408 154 1404 851 1404.666 e e 1402 354 1403 198 14041404 740 740 14041404 037 037 e 1400 157 1400 899 1402 262 1402 354 1403 198 1404 895 1402 262 1405 442 1404 133 c 1405 258 1405 430 1404 491 47 1404 446 1407 669d 1404.403 1398 741 b 1411 597 b 1404.349 b

1404 883 1402 067 1404 825 e 1402 067 1404 944 P.3 1426 842 21 1406 185 1400 461 c c 14011401 628 628 1405a 635 28 A5A5 P.91 1406.428 1405 637 1406 542 1405 095 1406.129 1405 220 1405 112 1405 176 1405 922 1399 812 1400 296 1403 132 1404 321 1405 356 1404 929

P.2 1404 851 1406.008 a a 14021402 074 074 b a Q=38.30 ltr/s 1405 000 a a 1404 901 a P.92 A=39.08 ha 1406.149 1405 659 1404 758 1405 064 1402 422 1404 758 1406 419 1402 422 1405 546 1405.440 1405.416 e 1406.390 1404 965 57 1404 887

b 1404 809 P.1 1404 018

27 1404 821 1404

1404 741821 1404

1404 967 1404

1402 655 1402 293 967 1404

1405 241 241 1405 1405

1405 936 936 1405 1405

1405 578 1405

1401 796 578 1405 a

1399 216 1399 957 1400 421 1401 035 1401 796 1402 259 1407.019

1404 249 141 1406

1405 553 1405 1406.803

1405 672 14061405 478 1404 592 1404 1406 299

Sal. primer1405 841 Pauh741 1404 Tinggi Kanan 1406 755 1405 583 1405 1405 995

P122 1405.840 1406 039 1406

1405 570 1405 1405.760

1406 124 1406

1405 545 1405 1405 196 1405

1406 135 1406

1402 402 493 1405

1405 281 1405

1405 821 1405 1404 523 1404

P.93 412 1405

1405 295 1405

a 799 1405

1405 374 1405

1405 314 1405 1405 894 1405

1405 035 1405 1405 758

1405 382 1405 1405 910 1405

1404 258 263 1405

1404 592 1404 1405 546 1405

1405 197 1405

1404 901 1404

1404 567 1404

P.12 P.12 1404 936 1404

1405 260 1405

1404 757 1404

1405 497 1405 1404 953 1404

A4 242 1405

1404 824 1404 Bendung Pauh tinggi 1405 326 1405

1405 119 1405

a 796 1404 b

1404 152 1404 523 1404

1399 401 1399

P.13

P.13 1406.502

1404 838 1404 1406.403 1405 293 1405

1399 579 1399 1406.070

A=21.83 ha 1403 842 1406 220 1405 743 826 1416

1404 634 1404 1406 157

1405 555

1399 470 1399 1399 815 1399 1405.555

1405.511

1404 653 1404

1399 904 1399 1401 597 P.94 1399 566 1399

P.1

1404 599 1404

1400 269 1400

1399 468 1399 1399 734 1399

1410 593 1410

1404 724 1404 1399 812 1399

1399 548 1399 1400 686 1400 1404 758 1404

1403 718 1403

1404 601 1404 1407 924 1407

1400 204 1400

1399 455 1399 1399 836 1399

1404 765 1404

1399 795 1399 P. 1

1399 533 1399 1400 603 1400

1400 966 1400

1406 197 1406

1404 131 1404 537 1404 1404 567 1404

P.11 P.11

1399 815 1399 1400 187 1400

1399 412 1399

1404 844 1404

1402 124 926 1403

P.0 1399 503 1399

1399 804 1399 1403 300 1403

1400 528 1400 1405 725 1405 1399 496 1399

1400 910 1400 354 1401

1399 654 1399 1404 495 1404

1399 497 1399 1399 796 1399

1400 125 1400 b

1399 932 1399

1403 915 1403

1405 240 1405

1399 857 1399

1403 007 1403 1399 514 1399 1400 597 1400

1401 918 1401

1399 986 1399 1400 934 1400 289 1401 1404 512 1404

1402 848 1402 1401 597 1401 P. 2

1402 090 1402 673 1402

1402 281 1402 492 1402 1399 533 1399 1399 697 1399 1400 096 1400

1405 732 1405

1400 362 1400 1403 904 1403

1399 888 1399

1399 528 1399 1400 624 1400 1404 131 1404

1400 926 1400 1403 722 1403

1401 235 1401 471 1401 1404 486 1404

1401 704 1401 1403 683 1403

1400 103 1400

1399 591 1399 1399 711 1399

1401 812 524 1405

1400 855 1400

1403 896 1403

1399 901 1399

1399 557 1399 1400 601 1400

1400 913 1400 1404 008 1404 419 1404

1401 193 1401 358 1401 1403 619 1403

1401 607 1401 812 1401

1405 268 1405 1412 735 1412

1400 196 1400

1399 386 1399 1399 789 1399

1403 282 1403

1401 074 1401 DEX 1403 924 1403

1403 304 1403

1402 954 1402 1401 901 1401

1399 933 1399 a 1420 021 1420 1399 603 1399 1400 733 1400

1403 006 1403 1400 924 1400 1404 567 1404

1402 521 1402 836 1402 1401 126 1401 293 1401 1403 575 1403

1405 130 1405

1410 127 1410

1402 483 1402 1401 512 1401 804 1401

1417 798 1417 1402 294 1402

1400 202 1400

P.1 P.16

1399 834 1399 1418.232

Sal. sek Pauh238 1403 Tinggi Kanan

1415 006

1401 248 1401 1418 000 1415 936 1415

1403 901 1403 1404 885 1401 809 1401

1402 927 1402

P.2 1403 000 1403 1399 958 1399

1408 622 1408

1401 987 1401 1400 696 1400 1403 752 1403

1414 621 1414 1401 898 1401 1400 861 1400

1402 482 1402 711 1402 1401 099 1401 326 1401 498 1401 1403 526 1403

1402 318 1402 876 1402 1401 796 1401

1402 239 1402 1402 371 1402

1413 584 1413 1402 575 1402 724 1402 1400 289 1400

1402 397 1402

1403 196 1403

1401 437 1401 1403 863 1403

1407 526 1407 1413 021 1413

1401 793 1401 1416.350 1402 905 1402

1403 721 1403

1402 899 1402 1400 720 1400 1400 855 1400 114 1401

1413 547 1413

1402 403 1402 642 1402 1401 354 1401 538 1401 1403 515 1403

1402 285 1402 1402 265 1402 1401 714 1401

1413 196 1413 1403 123 1403 1406 024 1406

1403 817 1403 1415.000

1401 624 1401

1401 858 1401

1412 973 1412 1402 919 1402 1403 219 1403

1402 927 1402 1415.653

1401 205 1401 1400 978 1400 1417 327

1402 202 1402 364 1402 537 1402 1401 420 1401 584 1401 1403 607 1403

1402 103 1402 1401 708 1401

1406 613 1406

1401 784 1401

P.10

1403 098 1403 1414.570 1415 000 1403 799 1403

1403 290 1403 CP.06 1401 833 1401

1401 915 1401 1402 896 1402

1402 657 1402 1402 993 1402

1402 098 1402 1401 289 1401

1402 167 1402 302 1402 236 1402 195 1402 433 1402 1401 458 1401 611 1401 1403 642 1403

1406 592 1406

1402 047 1402 1402 136 1402 1401 693 1401

P.18

P.45

1403 133 1403 1414.702

1401 804 1401

1402 922 1402

P.43

1402 997 1402

1406 373 1406 1401 901 1401 1402 989 1402

1402 510 1402 1401 569 1401 1403 685 1403

1402 238 1402 317 1402 848 1402 1401 689 1401 1401 792 1401 f

1402 237 1402 1415 263

P.4 1402 092 1402 670 1402

P.41 1402 281 1402 493 1402

1403 207 1403 1413 768

1402 957 1402 1401 795 1401

1406 239 1406

P.39

1403 013 1403

1402 655 1402 1403 704 1403

1402 354 1402 392 1402 1401 772 1401

1401 854 1401 c 1402 332 1402 P.1

P.37 e

1403 258 1403 1418 278 1418

1402 899 1402

1401 847 1401 1405.428

P.35 1405.478

1405 5851405 7951405 5681406 3541406 1621405 1406 0601406 1407 339

1403 073 1403 1403 594

1406.584 1406.534 1402 679 1402 1413 930 P.20 1406.693 1402 410 1402 408 1402

1401 883 1401 1423 214

1402 294 1402

1403 203 1403

P121 d 038 1415

1402 933 1402 1401 958 1401

P.33

1403 104 1403

1418 975 1418 1402 711 1402

1402 487 1402 517 1402

1402 310 1402 X + 764 179,717

1413 019 1413 d 197 1416 P.6 P.95

P.22

P.9

P.31

1407 399 d 479 1414 1411 816 1411 1404 286 460 1409

1411 921 1411 a 1412 856 1412

P.24

P.36 P.29

1401 841 P.26

1411 850 1411 P.34

P.28 1412 217 14 P.32 P.30 1410 616

1413 198 1413 1410 236 1410

a a 235 1411

1412 313 1412 1417 057 P.27 1415 000

1414 854 1416.476

P.8 1412501 3801412

Y + 9 806 367,886 1408 078 1414 194 1411 526 1411 1409 362 1409

1410 795 1410

1412 310 1412

1399 957 1400 721 1401 138 1401 747 P.25 1401 958 3 P. 1412 273 1412

1408 627 1408 1410 124 1410

P.10

1401 883 421 1410

P.23

P.11

P.21

P.13

P.17 P.15 P.19 1408 194 1408

1409 897 1409 1409 105 1409 1145 314 1145

1407 429 1407

1407 794 1407

1409 036 1409 1409 729 1409

Z + 1406,905 826 1143 1415 936

18 1411 906 1411

1402 628 1402 1408 839 1408 1411 737 1411 1409 625 1409 1142 297 1142

1402 567 1402

P.2

1408 724 1408 1141 956 1141

16

1407 492 1407

1408 683 1408

1411 941 1411 a 1413 296

d 1411 271 1141 482 1141

45 1405.477 a

1141 226 1141

1405.630 1404 011

1413 7051413 1405 840 1405 P.5

1404 183 768 1410

1414.474

1415 000 1415

21 604 1405 8731415

1405 156 1405

1417 7121417

1399 401 a b 460 1406 12 1410 325 1410

P.7 1406 478 1406

1405 989 1405

1406.094 Sal. primer Pauh TinggiP.6 Kanan b 1404 509 1404 712 1404 756 3 c 1405 38511 1410 554 4 P.

23 1402 031 1404 212 a

P.96 1409 869 1406 630 P.4 c 1401 250 a.jl b 1411 825 1400 698 1402 472 1403 234 1406 721 d

1400 989 1408 843 1409 684 1413 189

1414.061 365 1414 1414.679 540 1415 1418.12

55 b 000 1415

4

1402 600 384 1406 1407 125 1416 529

1406 417 1406

b.jl 5 P. 1405 743 1405

1407 066 14091407 561 1409 657

1405 855 1405 10 a a 846 1406

1406.954 9 P120 1407 145 c 14066 711

1401 905 a 8 1412 097

A2 c 438 1413 1413 780 1413

1408 352 290 1414 1402 137 1407 705 589 1414

1408 122 866 1414

1407 398 7 207 1417 a P.97 c 1407 639 1408 770 1404 303 1405 973

a e 1405 790 1407 469 1415 197 P. 6 P.

1406 476 1406 5

1403 186 291 1406

A=73.09 ha 1402 010 526 1405

1399 823 1400 453 1401 087 1401 196 1402 951 1403 237 1403 621 1404 236 021 1407 b 1406 845 1406 1408 863

1405 652 1405

24 20 807 1406 1405 546

1401 788 758 1413

1404 480 1410 263 483 1414 1413 962 1413

1404 725 397 1414 1417 964 1417

b P.98 1417 562

f 000 1405 1404 589 1404

1403 099 167 1404 P. 7 P.

1405 920 1405 1407 264

1403 384 695 1405 1406 892

1403 316 1403 2 1405 357 1405

1405 466 1405 Masjid 1410 329

25 1407 583 1412 367633 1412 1405.529

1402 074 A=74,70 ha 000 1414

a P.99 1406 547 1405.340 b

1404 275 1417 504 1417

1399 796 1400 196 1400 925 1401 000 1401 796 1402 193 1402 265 1403 248 1405.401 SD

1405 312 1405

43 548 1404

1411 839 1411

1405 396 1405 a 1411 604 1405 521 1405

1403 697 1403

1405 004 1405 1409 647

b c 19 118 1405 P119 8 P.

A1 1405 450 1405 837

a 788 1411 1400 904 658 1413

1402 217 1404 886 b A=13.25 ha 1407 973 1420 115 1403 905 P.100

1402 251 1406L19 010 a Kantor Desa

1413 044 1413

1406 539 1409 126 827 1416

1404 758 1404 1406 350 1411 892 1411 1418 034

d 1412 562 Sal. Sekunder Pauh Tinggi Kiri 41 54 a a

c 688 1415 1405.167 1404 196

26 1405 343 A 1403 143 1405.078 1410 189 1410

1403 255 1403 342 L18 1416 1929 P.

1399 715 383 1413

L21

b.jl 008 1412 1405.039

1402 117 1405 741 1408 209 084 1412 42 1412 545119 1412

1405 050 1405

L20 057 1414

1404 286 1404 1406 751 1414 326

1411 184 1411 1405 200 1405 P. 10 P.

1405 020 562 1412 14 1405 259 1405

1412 495 1412

1411 566 1411

1399 478 1400 362 1400 876 1401 248 1403 788 1404 798 335 1403 d 11 1405 136 1405

1412 114 1412

1410 230 1410

40 072 1412

1404 856 1404 3 12

1412 970 1412

b 798 1412 1405 697 1405

1413 786 1413 1413 601

1405 895 6 125 1412 8

1408 096 176 1410 10 1413 893 1414 666 1414 1405 931 1405

4 5 314 1413 13

1410 176 1410

1400 037 501 1413

a 352 1406

1402 146 1407 980 071 1412

1409 691 1409

7 790 1410 1406 776 1406

a 1410 122 971 1411 1412 342

16 1410 105 1410 158 1413 082 1415

P118 P.101 9 1413 434

1410 524 1410

1401 692 265 1407 1408 741

1406 252 689 1410

P117 248 1413

1412 000 1412

1407 834 1407 1413 425 1413

1412 584 1412

c 957 1413

1402 157 15 366 1408

1415 371 1415

1407 796 1407

1407 160 922 1408 1401 837 1404.415

1406 440 275 1411 1409 287 1409

1404 244 1404 1414 448 1414 1413 170 1413

1403 815 1403

1403.431 1405 210 1405

1405 070 1405

P.11

1402 093 1402

1404 135 1404

1406 697 1406

P.13

1418 253 1418 1406 747 1406

1406 853 1406

1403.965

1403.511

1406 964 1406

d 148 1420

1407 521 1407

1403.354

1403.908

P.1

P.9 1408 196 1408

1408 829 1408

1403 629 1403

a a 311 1409

1406 909 038 1410

1403 739 1403 1406 548

1400 268 1400 692 1401 007 1402 998 1403 997 1403.400

1403 150 1403 b

1403 210 1403.815 1404 759 1404

1406 964 P.5

1404 674 1404 1403 914 1403

1403 997 P.7

1401 746 1401 P.3

c 392 1403

1403.466 1403 960 1403

39 747 1404

1404 587 1404

1402 493 569 1403 1405 582 c

1402 224 1402 1402 569 1402

P.102 9531407 1403.671

1404 206 1404

1400 320 161 1404 L17

1403.772 1407 083

1403 749 1403 1407 021

1402 445 1402

1403 526 1403 1404.093

1403.104

1403 665 1403

1402.370 1403 747 1403 1403.960

1404.072 P.5

1403 708 1403

38 682 1403 1409 899

1403 942 1403 1409 329

1403 656 1403 1402.462 1403.605 1408 835

1401 829 1401

S.Pauh Tinggi 1404.032 1408 269

1400 556 525 1403 1407 832

1403.083 1407 458

P.103 L16 1407 098 1403.578

1400 718 1401 103 1402 096 1402 547 478 1402 1404 036 1406 129 1406 7321406 954

1406 732 1402 740 1402 1403.130

1402 911 1402

P116 P.105

1402 740 1402 1407 877

1403.116 P.104

1403.644 1401 358 1401

1402 658 1402

1403.213

1401 838 166 1403

1403 267 1403

1402.997 1402.539 1403 592 1403

1403 244 1403

1403 421 1403 1403 364 1403

1402 132 1402 e P.106 1403 513 1403 1402.823

37 393 1403 1409 391

1403 492 1403 1409 138 1408 832

1408 434 1408 169

1400 767 1402.856 1402 373 1402 1406 362 1407 754 P.13 1407 512

1407 196 1406 880 P.7

1406 759

36 1402.479 1403 428 1403

1403.452 d

1402 784 1402 1406 880 1402 931 1402

1402 789 1402

1401 227 1403.363

a 276 1401 1409 235

1402 926 1402

1399 815 1403.511 1408 944 P.111

L15 1408 524 P.109

1403.089

1400 362 1400 327 1400 301 1400 297 1400 217 1400 195 1400 167 1400 128 1400

1400 248 1400 1407 188 1408 039

1403.273 1407 799 1402.263 c

1407 526

1402 136 1403.026 1403 234 1403 852

1407 719 1407 348 P.107 1406 173

P114 1403 997 1407 913 1407 267

1402.314 P.9 1407 192 b P.11 d P115 P.108

b 1406 533 1409 472

1401 783 1402.424 1407 814

P.110 f

1401 347 P113 517 1402 1406 211 1408 693 1409 143

1402 888 1402 d 1408 432

1402 546 1402 c 1408 225

1401 313 1401 L14 1408 754 1402 010 414 1402 1407 947 a 1408 225 1408 563 1402 788 1405 704 1407 755 1408 258

1401 599 a 1407 666 1408 102

1402.303 1407 756

d 1406 466 1407 347 286 1407

1407 395 352 1407

b 1407 168 1407 267 479 1407

P112 a 1407 003 1407 169 526 1407 1407 796 1407 1402.263 1405 119

1401 454 1407 708 1407 083

c 136 1408

1408 269 1408 1402 609 1403 350 703 1408

1400 927 45 A=55.86 ha 913 1408

1402 799 1402 b

L1 1405 530 693 1407 1402 815 1402 1403 666P.111 1403 916

a

1401 828 a 961 1402 f 1403 975 P.15 1403 598 1403 1402 933

1402 531 c 1407 098 1407

P.33 268 1404

d b 1406 090 196 1407 1407 302 1407

1405 362 1405

b a 453 1407

P28 1402 278 604 1407

1407 622 1407 1403 856

1402836 1402995

1403267 1405 505 954 1407

1404039 1405477 1408628 988 1402 1405 098 1412396 1415129

1415563

1408 296 1408 1409 824 1409

1401 844 601 1408 c 1403 027 1403

1411 927 1411 1409 016 1409

1401 227 956 1403 1405 262 g c

1403 536 1403 1405 484

1405 406 1405

1403 910 1403 L2 1412 412

1405 442 1405 1404 714 1404 1404 947

1405 267 1405

1405 467 1405 1405 621 1405

P.17

P.51

1405 315 1405

1407 103 1407 b

46 2 483 1405 L7 1405 392 1405 a

1405 298 1405

1405 716 1405 1408 715 1408

1403 542 e 1405 011 506 1405 1406 070 L8 L13 1406 270 1406

1405 460 1405 1407 521 1407

1406 392 1406

1405 752 1405

1410 958 1410

1417 616 539 1407 1406 420 1409 146 1410 990 1405 132 1405 1406 019 1406

1405 463 471 1406

1405 576 1405

1405 806 1405

1402 552 036 1409

1405 367 1405

1406 512 1406 1405 196 1405

1405 917 1405

1405 857 1405

1410 024 1410

3 634 1406

1405 247 1405

1406 908 1406

d 266 1406 1412 368 1412

1406 783 1406

1403 124 P.31 1405 126 614 1405

d 136 1405

1409 361 1409

1407 478 796 1406

1406 921 1406 a 1405 693 1405

P.49

1409 379 031 1405

1412 477 1412 1407 426 1407

1407 854 1407 1406 503 b

1405 728 1405 1405 857 1405

1405 862 1405 1408 763 1408

1408 693 1408 1406 742

1405 743 1405

1406 799 1406

e 781 1405

1409 437 1409 1406 327 1406

1404 959 857 1406 a 1410 038 1410

1404 432 901 1406

1418 047 825 1405

1404 796 038 1407

1405 268 693 1407

1405 906 494 1407 1406 362 1406

1408 119 1408 P.39 c

1406 638 823 1409

1408 305 1408 1409 940

1407 284 f

1408 835 1408

1408 126 462 1407 e P.47

1408 997 1419 067 098 1409 P.37

1406 813 1406 1409 103 1409 1406 643

1411 008 1411 1406 331

h P.41

P.19

P.45 1418 163

1406 582 1406

1406 608 1406 g

1408 134 1408 1406 695 1406

1406 721 1406

P.43 1407 665

f 768 1406 d

1416 505 263 1407 1406 157 1408h 454 1408 532 1408

1408 512 1408

1406 572 1406

1409 721 1409 11L 603 1408

1406 157 1406

1408 695 1408 1412 086 1412

1406 268 1406

L10 724 1408

1406 469 1406

g 1407 440 1407 853 814 1408 L12 1408 927 1408

1418 132 793 1406

1409 036 1409

1407 096 1407

P.35

1409 249 1409

1408 108 1408

1409 515 1409 1409 021

1409 467 1409 a

1411 635 14081411 266 1414 236 1414

1416b 084 902 1407

P.21

P.33 1407 264 1407

1409 153 P.23 1408 888 1408 362 1407 921 1407 852 1407 738

1407 627

1407 352 1407 1407 513

1407 384 1407 1407 368

1407 413 1407

1407 534 1407

1407 693 1407

c 877 1407 1408 263 1408

1409 138 1409

1409 862 1409 P.31 1409 664

1407 694 1407 548 1407

1409 136

1408 813 P.25

1407 463 1407 1408 213

1407 893 1407 496 1407 1407 596

1407 528

1407 454

1407 536 1407 1407 423

1407 382

1407 614 1407

1407 872 1407

1407 953 1407

1408 362 1408

1408 813 1408

1409 396 1409

1407 694 1407 P.29

1407 413 1407

1407 746 1407

1407 523 1407

1407 695 1407

1407 813 1407

1407 903 1407

1408 212 1408

1408 687 1408

1409 035 1409

1409 715 1409

1406 519 1406 a

1407 056 P.27

1410 777 1410

1409 926 1409

1409 005 1409 b 1407 933 1407

1406 458 1406 1413 228

1405 039 1405 c

1404 712 1404 1410 972 1404 208 1404 1403 865 1403 Figure 2. Lay Out Pauh Tinggi Irrigation Network

Table 3. DAS Batanghari River Condition

111 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Table 4. Provinces and Regencies in the DAS Batanghari River

Large SUB DAS Province District Ha Jambi, Bungo, Tebo, Kerinci, Solok, Batanghari 1277947 Sawahlunto, Sijunung, Hulu Barat, Riau Dharmasraya, Indragiri Hulu Batang Jambi 538725 Bungo, Tebo, Kerinci Tebo Batang Merangin, Tebo, Batanghari, Jambi 381329 Tabir Kerinci Batang Batanghari, Sarolangun, Jambi 1281907 Merangin Merangin, Kerinci Kota Jambi, Tebo, Tanjung, Batanghari Jambi 979559 Jabung Timur, Muaro Jambi, Hilir Batanghari

Figure 3. DAS Batanghari area

Data Hidrometri Data Curah Hujan 2 stasiun terdekat dari lokasi perencanaan yaitu Stasiun Depati Parbo, dan Kayu Aro. Periode data yang diperlukan kurang lebih 10 tahun pada tahun 2009 – 2018. Data ini diperoleh dari Dinas Pengairan Kabupaten Kerinci dan Badan Klimatologi dan Geofisika yang berguna untuk menghitung analisa hidrologi.

Data klimatologi Data klimatologi tersebut berasal dari Stasiun Klimatologi Kayu Aro. Periode data yang diperlukan kurang lebih 10 tahun pada tahun 2007– 2016. Data ini diperoleh dari Dinas Pekerjaan Umum Kabupaten Kerinci, dan Badan Meteorologi dan Geofisika (BMKG).

Skema Jaringan Irigasi Meliputi informasi saluran, petak tersier, keterangan luas area sawah,

112 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Figure 4. Flow diagram

RESULTS AND DISCUSSION

Maximum Rainfall and Finding Missing Data Looking for maximum rainfall data for the Depati Parbo and Kayu Aro areas with 2 periods per month. There was missing data in May 2013 in the Depati Parbo area, so searching for lost data was done as follows: dx = 1 / n x Σ [(d / An1) x Anx] dx Calculation of missing data for Depati Parbo rainfall in May 2013 period I: dx = 1/2 x (24 / 25.05) x 29.34 = 14.06 mm / day Calculation of missing data for Depati Parbo rainfall in May 2013 period II: dx = 1/2 x (32 / 33.6) x 27.69 = 13.19 mm / day

113 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Table 5. Searching for Lost Data of Depati Parbo in May 2013, period I and II Curah Hujan Bulan Mei Periode I (mm/ hari) Tahun Depati Parbo Kayu Aro 2018 43,30 100,00 2017 63,70 9,00 2016 30,20 9,50 2015 12,60 17,00 2014 22,80 27,00 2013 - 24,00 2012 27,60 45,00 2011 11,30 0,00 2010 40,00 19,00 2009 12,60 0,00 Rata- Rata 29,34 25,05 Nilai data hilang Depati Parbo 14,057 Curah Hujan Bulan Mei Periode II (mm/ hari) Tahun Depati Parbo Kayu Aro 2018 37,10 34,00 2017 17,80 22,00 2016 30,60 30,00 2015 0,00 5,00 2014 22,00 40,00 2013 - 32,00 2012 15,10 26,00 2011 67,70 48,00 2010 58,90 51,00 2009 0,00 48,00 Rata- Rata 27,69 33,60 Nilai data hilang Depati Parbo 13,185

Then it was obtained in May 2013 in the Depati Parbo area for period I which was 14,057 mm / day and untul period II which was 13,185 mm / day.

Mainstay Rainfall Looking for Rainfall Mainstay monthly 2 periods: R80 = n / 5 + 1 = (10/5) +1 = 3 The smallest data obtained for R80, so the data can be as follows:

CURAH HUJAN ANDALAN R80 PER 2 PERIODE

45,00 39,00 40,00 34,50 33,00 32,00 33,00 35,00 29,00 27,40 26,00 26,30 26,30 30,00 24,20 22,0023,00 22,00 21,7022,80 23,00 25,00 20,00 17,00 20,00 13,70 15,00 15,0015,10

MM/PERIODE 15,00 10,20 10,00 5,00 0,00 I II I II I II I II I II I II I II I II I II I II I II I II JAN FEB MAR APR MEI JUN JUL AGUS SEP OKT NOV DES BULAN

Figure 5. R80 Mainstay Rainfall Graph

In this graph it can be concluded that the mainstay rainfall (R80) which is mostly found in October period 2 with a value of 39.0 mm / period, while the few that are found in July period

114 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

2 with a value of 10.2 mm / period.

Effective Rainfall Effective rainfall using the Basic Years method in the first January period 1 is calculated by the analysis of the formula as follows: R80 = 22.00 (mm / period) / 15 days = 1,467 mm / day Re palawija = 50%. R80 = 50%. 1,467 = 1,006 mm / day Re rice = 70%. R80 = 70%. 1,467 = 1,027 mm / day Re Sugar cane = 60%. R80 = 60%. 1,467 = 1,027 mm / day

Table 6. Effective Rainfall Re Jumlah R80 Re80 Re Padi Re tebu Bulan Palawija Hari (mm/periode) (mm/hari) (mm/hari) (mm/hari) (mm/hari) 15 22,000 1,467 1,027 0,733 0,88 Januari 16 23,000 1,438 1,006 0,719 0,862 15 27,400 1,827 1,279 0,913 1,096 Februari 13 22,000 1,692 1,185 0,846 1,015 15 33,000 2,200 1,540 1,100 1,32 Maret 16 34,500 2,156 1,509 1,078 1,293 15 24,200 1,613 1,129 0,807 0,968 April 15 29,000 1,933 1,353 0,967 1,16 15 17,000 1,133 0,793 0,567 0,68 Mei 16 26,000 1,625 1,138 0,813 0,975 15 21,700 1,447 1,013 0,723 0,868 Juni 15 22,800 1,520 1,064 0,760 0,912 15 20,000 1,333 0,933 0,667 0,8 Juli 16 10,200 0,638 0,446 0,319 0,382 15 13,700 0,913 0,639 0,457 0,548 Agustus 16 26,300 1,644 1,151 0,822 0,986 15 23,000 1,533 1,073 0,767 0,92 September 15 15,000 1,000 0,700 0,500 0,6 15 32,000 2,133 1,493 1,067 1,28 Oktober 16 39,000 2,438 1,706 1,219 1,462 15 33,000 2,200 1,540 1,100 1,32 November 15 26,300 1,753 1,227 0,877 1,052 15 15,000 1,000 0,700 0,500 0,6 Desember 16 15,100 0,944 0,661 0,472 0,566

115 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Figure 5. Effective Rainfall From this graph it can be seen that the effective rainfall for rice (Re-paddy) is the largest, and the effective rainfall for the smallest (Re-cropping). The greatest effective rainfall is in the 20th or October period 2, while the smallest effective rainfall is in the 14th or July period 2.

Calculating Potential Evapotranspiration (ET0) The method used here is the Penman Modification method because the climatology data is quite complete. Here are the results of the count for Evapotranspiration (ET0): Calculate E (Evaporation) from the values sought for ice (saturated water vapor pressure) and ed (water vapor pressure at elevation 2 m above the surface) and value B: es = 611 exp ((17.27 T) / (237.3 + T)) x 22.283) / (237.3 + 22.283)) = 2690.71 Pascal ed = es x r (humidity) = 2690.71 x 92.81% = 2497,336 Pascal = 18.71 mmHg 0,102푢 2 B = 푧 2 ln 2 푍0 = 0.102 x 2 / (ln (5/200)) 2 = 0.023

E = B (es - ed) = 0.023 x (2690.71 - 2497.336) = 4,434 mm / day

Coordinates = 1o40 '15 "LS = (1+ 40/60 + 15/3600) o LS = 1,671 o LS Then calculated St (gross solar radiation absorbed by the earth's surface): St = S0 (a + (b x n / 12.1)) = 885 x (0.29 + (0.42 x 3.388 / 12.1) = 360,721 Calculates Sn (net solar radiation absorbed by the earth's surface) with the formula: Sn = St (1- α) The value of α = 0.20 is taken from the α (Albedo) Table in the form of plant surface type. Sn = 360,721 x (1- 0,20)

116 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

= 288.57 (cal / cm2 / day) Calculate Ln (long wave radiation emitted by the earth) with the formula: Ln = σT4 (0.56 - 0.092 √ed) (0.1 + 0.9 n / N) = 1.17. 10-7 x 295.28 4 x (0.56 - 0.092 √18.71) x (0.1 + 0.9 3.388 / 12.1) = 50,738 (cal / cm2 / day) Calculate lv (latent heat for evaporation) with the formula: lv = 597.3 - 0.56 T = 597.3 - (0.56 x 295,283) = 584,733 (cal / gram) Calculate Rn (net radiation) with the formula: Rn = Sn - Ln = 288.57 - 50,738 = 237,839 (cal / cm2 / day) Calculate En (Evaporation Depth) with the formula: En = Rn / (ρw lv) = 237,839 / (1 x 584,733) = 0.407 (mm / day) Calculate Potential Evapotranspiration (ET0) with the formula: ET0 = (βEn + E) / (β + 1) Β value obtained from Temperature interpolation is 22,283 0C so β with interpolation is 2,496. ET0 = ((2.496 x 0.407) + 4,434) / (2,496 + 1) = 4,172 (mm / day)

Figure 6. Potential Evapotranspiration Graph ET0

This graph shows the rate of evapotranspiration, the largest occurred in September 8,645 mm / day, the smallest occurred in October 3,158 mm / day.

Land preparation Calculation of water requirements for land preparation is done by the Van de Goor Zijlstra method. This method is based on the need for water to replace water losses due to evaporation and percolation in paddy fields that have been saturated for 30 days with a high inundation of 250 mm, or 8.33 mm / day. Calculating land preparation in January. Known in January: Percolation = 2 mm / day Et0 = 4.172 M = E0 + P = 1.1 ET0 + P = 1.1 ET0 + P = (1.1 x 4,172) + 2 = 6,590

117 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Pd = 〖Me〗 ^ k / (e ^ k-1) = (6,590 .2,718〗 ^ (6,590 x 31/250) / (〖2,718〗 ^ (6,590 x 31/250) -1) = (6,590.2,718 ^ 0,817 / (〖2,718〗 ^ 0,817-1) = 11,804 mm / day

Table 7. Land Requirement for Land Preparation (Pd) by Van De Goor and Zijlstra methods Kebutuhan air untuk penyapan lahan ( Metode Van de Door dan Zijlstra ) Bulan No. Perhitungan Satuan Jan Feb Mar Apr Mei Juni Juli Agst Sep Okt Nov Des 1 Eto mm/hari 4,172 4,667 4,552 4,467 3,849 3,358 3,632 4,235 8,645 3,158 4,012 3,830 2 Eo=1,1 x Eto mm/hari 4,590 5,134 5,008 4,913 4,234 3,694 3,996 4,659 9,509 3,474 4,414 4,212 3 P mm/hari 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 4 M =Eo +P mm/hari 6,590 7,134 7,008 6,913 6,234 5,694 5,996 6,659 11,509 5,474 6,414 6,212 5 T hari 31 28 31 30 31 30 31 31 30 31 30 31 6 S mm 250 250 250 250 250 300 250 250 250 250 250 250 7 k = MxT/S 0,817 0,799 0,869 0,830 0,773 0,569 0,743 0,826 1,381 0,679 0,770 0,770 8 e 2,718 2,718 2,718 2,718 2,718 2,718 2,718 2,718 2,718 2,718 2,718 2,718 9 ek 2,264 2,223 2,384 2,292 2,166 1,767 2,103 2,283 3,979 1,971 2,159 2,160 10 ek-1 1,264 1,223 1,384 1,292 1,166 0,767 1,103 1,283 2,979 0,971 1,159 1,160 11 Pd mm/hari 11,804 12,967 12,070 12,263 11,580 13,117 11,431 11,848 15,373 11,110 11,948 11,566

Water Layers Replacement (WLR) After fertilization needs to be scheduled and replace the water layer as needed. Replacement is estimated at 50 mm each month and two months after transplantation (or 3.3 mm / day).

Percolation and Seepage (P) The rate of percolation is very dependent on the properties of the soil. Data on percolation will be obtained from soil capability studies. The soil graduation test will be part of this investigation. (KP 01, 2013) Based on the type of soil in Pauh Tinggi, which is clay loam, the percolation rate is 2 mm / day.

Consumptive Water Needs (ETC) Consumptive use is the amount of water used by plants for the photosynthesis of these plants. In the calculation of consumptive water needs this time used the calculation of the most efficient planting patterns, namely alternative planting patterns 14 in February to I. Etc = Kc. Eto = ((1.3 + 0) / 2) x 4,667 = 3.034mm / day ETc Area Ratio = 1.00 ETc x Area Ratio ETc = 3.034 x 1.00 = 3.034 mm / day Table 8. Consumptive Water Needs (ETc) Bulan Januari Februari Maret April Mei Juni Juli Agustus September Oktober November Desember No Satuan Periode I II I II I II I II I II I II I II I II I II I II I II I II LP Padi unggul 90 hari Bero Jagung 80 hari LP Padi unggul 90 hari 1 Pola Tata Tanam 1,300 0,000 1,200 1,270 1,330 1,300 1,300 0,000 0,500 0,590 0,960 1,050 1,020 0,950 1,200 1,270 1,330 1,300 2 1,300 1,300 0,000 1,200 1,270 1,330 1,300 1,300 0,000 0,500 0,590 0,960 1,050 1,020 0,950 1,200 1,270 1,330 3 Rata- Rata Koefisien Tanaman 1,300 0,650 0,000 0,000 0,600 1,235 1,300 1,315 1,300 0,650 0,000 0,000 0,250 0,545 0,775 1,005 1,035 0,985 0,475 0,000 0,600 1,235 1,300 1,315 4 Evaporasi Potensial (ET0) mm/hr 4,172 4,172 4,667 4,667 4,552 4,552 4,467 4,467 3,849 3,849 3,358 3,358 3,632 3,632 4,235 4,235 8,645 8,645 3,158 3,158 4,012 4,012 3,830 3,830 5 Penggunaan Air Konsumtif (Etc) mm/hr 5,424 2,712 0,000 0,000 2,731 5,622 5,807 5,874 5,004 2,502 0,000 0,000 0,908 1,980 3,282 4,256 8,947 8,515 1,500 0,000 2,407 4,955 4,978 5,036 6 Rasio Luas (Etc) 1,000 1,000 1,000 0,750 0,250 0,250 0,750 1,000 1,000 1,000 1,000 0,750 0,250 0,250 0,750 1,000 1,000 1,000 1,000 0,750 0,250 0,250 0,750 1,000 7 Etc* Rasio Luas mm/hr 5,424 2,712 0,000 0,000 0,683 1,406 4,355 5,874 5,004 2,502 0,000 0,000 0,227 0,495 2,462 4,256 8,947 8,515 1,500 0,000 0,602 1,239 3,734 5,036

118 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Figure 7. Consumptive Water Needs (ETc) Graph This graph shows that the largest rate of ETC consumptive water demand was in September I with a value of 8.94 mm/day, while the lowest was in February, June, and October II with a value of 0.00 mm / day because at that time, and land preparation. As for the greatest ET0 water demand is in September I with a value of 8.6 mm/day, and the smallest in June with a value of 3.3 mm / day.

Irrigation Water Needs and Irrigation Efficiency Calculation of irrigation water needs (NFR) can be done with the formula: NFR Rice = ETC + Pd + P + WLR - Re NFR palawija / sugar cane = ETC - Re ... Tertiary channel NFR / DR intake = (NFR (rice / secondary crops)) / Eff According in general water losses in irrigation networks can be divided as follows. a. 12.5% - 20% in tertiary channels b. 5% - 10% in the secondary channel c. 5% - 10% in the primary canal Efficiency in each plot is estimated as follows:  Efficiency values in primary plots ranged from 92.5% - 87.5%. Taken 90%  Efficiency values in secondary plots ranged from 92.5% - 87.5%. Taken 90%  Efficiency values in tertiary plots range from 85% - 77.5%. Taken 80% In the calculation of irrigation water requirements for rice, the calculation of the most efficient planting pattern is used, which is the alternative planting pattern of 14 in February 1. NFR Rice = (3,034 x 1.0) + (12,967 x 0) + (2.0 x 1.0) + (3,333 x 0.25) - 1,279 = 4.59 mm / day NFR of tertiary rice plots = 4.59 / 0.8 = 5,736 mm / day = 0.664 lt / sec / ha Rice intake DR = 0.664 / (0.9x0.9) = 0.82 lt / sec / ha In the calculation of irrigation water needs for secondary crops used the calculation of the most efficient cropping patterns, namely alternative cropping patterns 14 in August II. NFR of palawija = (3,282 x 1,00) - 1,15 = 1.88 mm / day NFR of tertiary palawija plot = 1.151 / 0.8 = 2,665 mm / day = 0.308 lt / sec / Ha DR intake Rice = 0.308 / (0.9x0.9) = 0.381 lt / sec / ha Table 9. Irrigation Water Needs in Tertiary and Intake Plots

119 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Figure 8. Irrigation Water Needs in Tertiary and Intake Plots

In this graph it can be stated that in February I was the time when the maximum irrigation water needs was tertiary NFR plots = 1.40 ltr / sec / ha and DR intake = 1.72 ltr / sec / ha. Whereas in August II and September I with the results of tertiary NFR plots = -0.02 ltr / sec / ha and DR intake = -0.03 ltr / sec / ha which means surplus water, so that no irrigation is needed.

Mainstay Debit Calculations The data or assumptions used in the FJ Mock calculation are: A. 10-year Rainfall Data with rainfall stations which are considered to represent the condition of the area. The data needed is: a) d average: 10-year average rainfall b) n: Average number of 10 annual rainy days Calculates the average rainfall and the number of 10 yearly average rainy days in the Depati Parbo area in January. D average = (1.22 + 4.55 + 6.51 + 6.01 + 3.94 + 5.45 + 1.57 + 2.65 + 3..89 + 2.88) / 10 = 3.87 mm / day n = (9 + 16 + 20 + 22 + 20 + 16 + 5 + 12 + 16 + 17) / 10 = 15.3

Table 10. Depati Parbo Average Rainfall Rekapitulasi Curah Hujan Rata-Rata pada Bulan (mm/hari) Depati Parbo Jan Feb Mar Apr Mei Jun Jul Agus Sep Okt Nov Des CH rata 3,87 6,22 5,75 6,12 4,35 3,13 3,13 3,63 3,00 4,11 7,18 5,06 Jumlah Hari Hujan 15,30 14,30 16,50 17,80 16,60 11,80 9,50 11,80 12,00 14,90 21,40 19,60 Jumlah Curah Hujan 119,87 174,05 178,32 183,49 134,77 93,76 97,02 112,42 90,02 127,47 215,46 156,93

Calculate average rainfall and number of 10 yearly average rainy days in the Kayu Aro area in January. D average = (0.48 + 5.97 + 4.88 + 1.97 + 6.40 + 6.52 + 2.68 + 7.02 + 8.89 + 7.02) / 10 = 5.18 mm / day n = (2 + 10 + 8 + 10 + 11 + 17 + 6 + 10 + 22 + 10) / 10 = 10.6

120 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Table 11. Kayu Aro Average Rainfall Kayu Aro Rekapitulasi Curah Hujan Rata-Rata pada Bulan (mm/hari) Jan Feb Mar Apr Mei Jun Jul Agus Sep Okt Nov Des CH rata 5,18 5,71 6,79 6,75 5,35 4 3,33 3,44 4,76 7,25 7,5 4,4 Jumlah Hari Hujan 10,6 11,1 14,1 14,1 10,9 8,8 8,9 9,7 10,8 16,1 15,6 11,5 Jumlah Curah Hujan 160,66 159,96 210,41 202,39 165,8 119,98 103,15 106,75 142,65 224,7 224,94 136,5

D average (Kayu Aro + Depati Parbo) = (3.87 + 5.18) / 2 = 4.52 mm / day n (Kayu Aro + Depati Parbo) = (15.3 + 10.6) / 2 = 12.95

Table 12. Average Rainfall of Aro Wood and Parbo Depati

Kayu Aro/ Depati Rekapitulasi Curah Hujan Rata-Rata pada Bulan (mm/hari) Kayu Aro dan Depati Parbo Parbo Jan Feb Mar Apr Mei Jun Jul Agus Sep Okt Nov Des CH rata 4,52 5,96 6,27 6,43 4,85 3,56 3,23 3,54 3,88 5,68 7,34 4,73 Jumlah Hari Hujan 12,95 12,70 15,30 15,95 13,75 10,30 9,20 10,75 11,40 15,50 18,50 15,55 Jumlah Curah Hujan 140,27 167,01 194,37 192,94 150,29 106,87 100,09 109,59 116,34 176,09 220,20 146,72

B. Restricted evapotranspiration is actual evapotranspiration by comparing the condition of vegetation and land surface and rainfall frequency. a) Evapotranspiration (ET0) uses the Penman Modification method (mm / day) with results. b) Land opening factors used are: - M 30-50% for tillage (taken 40%) c) Calculate E in January E = ET0 x (m / 20 (18 - n)) = 4,172 mm / day x (40% / 20 (18 - 12.95)) = 129.34 mm / month x (40% / 20 (18 - 12.95)) = 13.06 mm / month Information: ET0: Evapotranspiration m: The coefficient that depends on the type of cloud and season n: Average number of monthly rainy days d) Limited evapotranspiration E1 = ET0 - E = 129.34 - 13.06 = 116.28 mm / month C. Calculating Water Balance / water surplus in January: a) S = R - E1 = 140.27 - 116.28 = 23.99 mm / month b) Run Off Storm = 10% x R = 10% x 140.27 = 14,027 mm / month c) Soil Storage (IS) = S - Run Off Storm = 23.99 - 14,027 = 9.96 mm / month d) Water Surplus = S - Soil Storage S - Soil Storage = 23.99 - 9.96 = 14.03 mm / month

121 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

IS: Soil Storage Text: Soil Moisture There are two conditions to determine SMS, namely: - SMS = 200 mm / month, if (R-E1)> 0 - SMS = SMS of the previous month + (R - E1), if R - E1 <0 D. Run Off and Ground Water Storage a) The coefficient i is obtained in Table. Run-off coefficient of various catchment conditions (DAS) is 50%: b) Infiltration (I) = Ws x I = 14.03 x 50% = 7.015 mm / month c) The recession factor for groundwater (K) is obtained from the following explanation: - 0.5 For normal or normal rain catchment areas d) Ground water Storage (GS) = (0.5 x I x (1 + K)) + (K x Gsom = 0.5 x 7.01 x (1 + 0.50)) + (0.50 x 12.36) = 11.44 e) ΔGS = GS - Gsom = 11.44 - 12.36 = -0.92 f) Base Flow (BF) = Infiltration - ΔGS = 7,015 - (-0.92) = 7.94 mm / month g) Direct Run Off (DRO) = Water Surplus - Infiltration = 14.03 - 7.01 = 7.015 mm / month h) Run Off (RO) = BF + DRO) = 7.94 + 7,015 = 14.95 mm / month i) Watershed Area (km2) = 12779.47 km2 x 10000 = 1277947 Ha (II.40) j) Mainstay discharge = RO x Watershed x 1000 (m3 / month) = 14.95 x 1277947 x 1000 = 191032930.50 m3 / month = 71.32 m3 / s = 71323.53 lt / sec The probability of being fulfilled is set at 80% (the possibility that the river discharge is lower than the main discharge is 20%). That possibility uses calculation k) Q mainstay 80% = (0.8 x Mainstay Debit) / (area DI) ltr / sec / ha = 0.8 x 71323.53 / 473 = 120.63 liter / sec / ha

122 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Figure 9. Q80 Mainstay Debit Chart

The graph above shows 80% Mainstay Debit for irrigation (Q80) which shows the availability of abundant water and can be used more optimally for community needs other than irrigation in the Pauh Tinggi area with maximum results in November Q80 = 160.31 ltr / sec / ha, and the minimum in August with Q80 = 91.18 liters / sec / ha.

Planting Patterns and Water Balance Planting pattern is the most important way in planting system planning. The purpose of holding a planting system is to set the time, place, type and area of plants in the irrigation area. The purpose of the planting system is to utilize the irrigation water supply as effectively and efficiently as possible so that the plants can grow well. The biggest factor in cropping patterns can be said to be efficient and optimal is if the water needs are fulfilled by a reliable discharge (water balance). The following is the calculation of the water balance in the alternative cropping pattern from January 14 to I. Note: Mainstay 80% Q = 120.63 liter / sec / ha DR intake = 1.60 ltr / sec / ha Water balance = Q mainstay 80% - DR intake = 120.63 - 1.60 = 119.03 ltr / dt.ha (fulfilled) In this final project 17 alternative cropping patterns are made, and based on the water balance, alternative cropping patterns 14 are displayed which are the most efficient and optimal planting system. Other alternative cropping patterns that have been made are attached to the Appendix.

Alternative cropping patterns 14 = Nedeco / Prosida superior rice Nedeco / Prosida superior rice Corn

Netto Debit To determine the dimensions of the channel, the planned capacity is calculated against the maximum discharge Q = 100% x Maximum. The calculated discharge is based on the results of the alternative planting pattern 14 and in January to I. Qnetto = (NFR x A) / Eff = (NFR tertiary channel / DR intake) x A Hope Jaya Jaya Secondary Channel and Irrigation Building BHJ 3 are known with: Tertiary channel NFR = 1.30 ltr / sec / ha A tertiary plot of AK ki = 45 ha A tertiary plot of AK ka = 19.60 ha

123 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

Qt Tertiary Plots AK ki = 1.30 x 45 = 58.33 liter / sec Qt Tertiary plot AK = 1.30 x 19.60 = 25.41 liter / sec Irrigation building BHJ 3 = (58.33 + 25.41) / eff = (58.33 + 25.41) / 0.9 = 93.1 liter / sec Qt sek Harapan Jaya 2 = BHJ 3 = 93.1 liter / sec

Pauh Tinggi Dam is known by: DR intake = 1.60 ltr / sec / ha A total = 473 ha Qnetto DR intake = 1.60 x 473 = 756.95 liter / sec

CONCLUSIONS

From the calculation of irrigation water needs, water availability, and cropping patterns of the Pauh Tinggi Irrigation Area it can be concluded that: 1. Calculation of 17 alternative cropping patterns with different types of plant variants and different initial planting plans by comparing with the existing discharge factor (Q80). It was found that the planting pattern is very possible to always use the PADI- PADI-PALAWIJA planting system because of the abundant water availability. After trying 17 alternative cropping patterns, the most efficient and optimal way is to obtain alternative planting patterns 14 in the form of PADI-PADI-CORN starting with land preparation in October II and February II, planting rice in November II and March II, planting corn in May I , and a land rest period (bero) in May II - June I 2. Based on Alternative Planting Pattern 14 which is the most efficient planting pattern, the amount of irrigation water demand in tertiary plots (NFR tertiary plots) ranges from 0 - 1.30 ltr / sec / ha with a maximum of 1.30 ltr / sec / ha in January I, while the need for irrigation water in the intake (DR intake) ranges from 0 - 1.60 ltr sec / ha with a maximum of 1.60 ltr / sec / ha in January I. While in August II and September to I with NFR results tertiary plot = -0.02 ltr / sec / ha and DR intake = -0.03 ltr / sec / ha which means surplus water, so that no irrigation is needed from the local irrigation. 3. The mainstay discharge available in the Pauh Tinggi Irrigation Network Planning is very abundant with a mainstay discharge of 80% (Q80) for irrigation, the maximum mainstay discharge of 80% (Q80) occurs in November with 160.31 ltr / sec / ha and minimum in August with 91.18 liters / sec / ha. This is understandable because the irrigation channel takes intake from the Batanghari river whose watershed is the second largest in Indonesia. 4. Based on the results of the mainstay discharge above it can be stated that the water balance / water balance between the mainstay discharge Q80 and the need for irrigation water has a large surplus. This can be utilized by the Kerinci Regency government to further optimize the benefits of this abundant water supply to the community. 5. In this irrigation rotation, PT tertiary plot of 1 ki is used. This Tertiary plot has a land area of 53.90 ha divided into three sub-tertiary regions, namely sub-tertiary A 7.67 ha and 8.22 ha, subtersier B 9.65 ha and 9.10 ha, subtersier C 9.81 ha and 9, 45 ha. Obtained If Q is available (65-100)% Q irrigation then the water supply is carried out continuously for 24 hours. If Q is available (30-65)% Q irrigation, then the method of giving water is divided into 3 periods. If Q is available <30% Q irrigation, then the method of giving water is divided into 3 periods in 7 days (168 hours).

Suggestions 1. Further research needs to be done on the value of optimization of irrigation needs for the economic benefit of the community.

124 :: IJIEEB :: ISSN : 2615-2312 (ONLINE) (International Journal of Integrated Education, Engineering Business) ISSN : 2615-1596(PRINTED) Volume 03 Number 02 September 2020 This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License.

2. Development of the Kerinci Regency government can be carried out to optimize the benefits of abundant water availability to the community.

REFERENCES Agustin, Intan Ratri. 2011. KAJIAN PERENCANAAN KETERSEDIAAN AIR UNTUK POLA TANAM DAERAH IRIGASI KAMAL PADA BENDUNGAN SERMO. Jakarta : s.n., 2011. Anonym. 2017. PERENCANAAN PETAK TERSIER PT KA 1 KI PADA DAERAH IRIGASI PAUH TINGGI, KABUPATEN KERINCI, JAMBI. Malang : Poluteknik Negeri Malang, 2017. Anton , Priyonugroho. 2014. Analisis Kebutuhan Air Irigasi (Studi Kasus pada Daerah Irigasi Sungai Air Keban Daerah Kabupaten Empat Lawang), Universitas Sriwijaya. Palembang : s.n., 2014. Gandakoesoema, R. 1986. Irigasi. Bandung : Galang Persada, 1986. Kementerian PUPR Ditjen Sumber Daya Air. 2017. Modul Hidrologi dan Ketersediaan air Pusat Pendidikan dan Pelatihan Sumber Daya Air dan Konstruksi. 2017. KP 01. 2013. Standar Perencanaan Irigasi, Kriteria Perencanaan Bagian Jaringan Irigasi KP-01-09. s.l. : Dep. PU, Dit. Jen. Pengairan, 2013. KP 03. 2013. Standar Perencanaan Irigasi, Kriteria Perencanaan Bagian Jaringan Irigasi KP-01-09. s.l. : Dep. PU, Dit. Jen. Pengairan, 2013. KP 05. 2013. Standar Perencanaan Irigasi, Kriteria Perencanaan Bagian Jaringan Irigasi KP-01-09. s.l. : Dep. PU, Dit. Jen. Pengairan, 2013. Kurniawan, Andrew. 2018. Evaluasi Analisis Hidrologi Perencanaan Bangunan Konsolidasi Dam (KD) 1-1 Sungai Jeneberang, Desa Lonjoboko’, Kecamatan Parangloe, Kabupaten Gowa, Sulawesi Selatan. Jakarta : s.n., 2018. Sidharta, S.K. 1997. Irigasi dan Bangunan Air. Jakarta : Gunadarma, 1997. Suyono, Sosrodarsono. 2003. Hidrologi Untuk Pengairan. Jakarta : Pradanya Paramta, 2003.

125