SSERVI 2015 Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

SSERVI 2015 Annual Report Table of Contents Introduction .......................................................................................................................................................3 SSERVI Central Report ....................................................................................................................................6 Volatiles Regolith & Thermal Investigations Consortium for Exploration and Science (VORTICES) .........17 SSERVI Evolution and Environment of Exploration Destinations (SEEED) ................................................25 Center for Lunar Science and Exploration (CLSE) ........................................................................................36 Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT) ...................................................45 Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) ...........................................54 Field Investigations to Enable Solar System Science and Exploration (FINESSE) .......................................62 Dynamic Response of Environments at Asteroids, the Moon, and Moons of Mars (DREAM2) ...................70 Center for Lunar and Asteroid Surface Science (CLASS) ..............................................................................86 Institute for the Science of Exploration Targets (ISET) ................................................................................102 International Partners ....................................................................................................................................110 Publications ...................................................................................................................................................133 i INTRODUCTION 3 Introduction NASA’s Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the following summary of scientifc, technical and programmatic accomplishments from our second year of operation (February 2015 – February 2016). This report includes leadership activities of the SSERVI Central Offce, the annual reports prepared by each of the nine U.S. teams, and achievements from some of the SSERVI international partners. SSERVI is the third in a series of successful NASA virtual science institutes, following the NASA Astrobiology Institute and the NASA Lunar Science Institute. These organizations bring together competitively selected research teams, allowing the expert scientists and students from pre-existing organizations (primarily academic) to develop collaborations that focus on subjects of interest to NASA. They have proved particularly powerful at addressing cross-disciplinary problems and in attracting students who will become the future leaders in space science. Established in 2013 through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) as an expanded version of the NASA Lunar Science Institute, SSERVI is focused on the Moon, Near-Earth Asteroids, and the moons of Mars. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model offers many opportunities to address strategic research areas on the critical path for human exploration. Collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap. Of the 318 co- Investigators and collaborators that currently comprise SSERVI teams, 33% are students, representing a substantial investment in the next generation of planetary and exploration scientists. NASA SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars (Phobos and Deimos), addressing questions fundamental to these target bodies and their near-space environments. SSERVI can provide scientifc, technical and mission-defning analyses for relevant NASA programs and space missions, as needed. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, and a Central Offce, located at NASA Ames Research Center at Moffett Field, CA. The Central Offce is responsible for the distribution of funds, facilitation of inter-team collaborations, organization of workshops and conferences (virtual as well as in-person), and communication of research results to all stakeholders (NASA Headquarters, the research communities, and the general public). The SSERVI Central Offce is located in Silicon Valley, surrounded by cutting-edge information technology and academic organizations, which helps keep the Institute on the leading edge of innovative, cross-team virtual collaborations. SSERVI currently has ten international partners who interact with the domestic teams on a no-exchange- of-funds basis. Understanding that human and robotic exploration is most successful as an international endeavor, SSERVI domestic and international teams share students and access to facilities to enhance research goals. U.S. teams are competitively selected through a rigorous peer review process of proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, and will be funded for fve years (2014-2019). A smaller overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a frm foundation for any directional changes NASA may require as the CAN-1 teams end their term. 4 In the second year of operation, SSERVI teams published 154 peer-reviewed papers and presented numerous conference papers and presentations. A bibliography of the peer-reviewed SSERVI scientifc publications from January 2015-February 2016 can be found at the end of this document and at http:// sservi.nasa.gov/science-library/ . Additional information, including an extensive video archive of seminars and conferences, is on the Institute’s website at http://sservi.nasa.gov/ . SSERVI uses its technical expertise in communication and collaboration technology to support a variety of workshops and seminars, including facilitating communications involving other NASA Centers and NASA Headquarters. Seminar series conducted by the teams are archived on the SSERVI website and on the individual team websites. A recent example of these can be found at http://sservi.nasa.gov/past- seminars, where a series of seminars on topics relevant to the Martian moon, Phobos, were presented by experts in the feld. Several SSERVI teams joined in the production of this series. SSERVI creates common-use facilities that the Institute makes available to the entire community for relevant research. More about these can be found in the facilities section of this report. Each year the SSERVI Central Offce holds the Exploration Science Forum (ESF), which features scientifc discussions of exploration targets of interest, recent mission results, and in-depth analyses of science and exploration studies. Nearly three hundred people participated in person during the three- day event in July 2015, with more than one hundred others participating online. Bringing several communities together with a healthy mixture of students and seasoned researchers, the forum encourages collaboration and exchange of interdisciplinary research. Students are encouraged to participate and also have the chance to attend the LunarGradCon meeting where they have the opportunity of practicing oral presentations of their research to their peers. All Forum talks are archived at sservi.nasa.gov. Public engagement is an important component of SSERVI’s mission. Each team has an active program, and the SSERVI Central Offce provides overarching communication to the public of the institute’s integrated contributions. We have created unique materials for the visually impaired, and the Lunar Gallery was created to engage a non-scientifc audience. In an effort to bring together people of varied backgrounds and interest, SSERVI teams and the Central Offce also hold several public engagement events throughout the year. In 2015, the SSERVI Central Offce alone spoke to over 11,000 students and their families. SSERVI flls a unique role within NASA in facilitating innovative cross-disciplinary collaborative research. We believe that exploration enables science, and that science is an essential part of NASA’s future human exploration missions. This broad role is refected in the work summarized in this Annual Report. Yvonne Pendleton, Director Greg Schmidt, Deputy Director/Director of International Partnerships 5 SSERVI Virtual Support Virtual Institutes keep NASA on the cutting-edge of collaborative technology and acts as a conduit between new technology and the scientifc community. Communications tools enhance effectiveness of interdisciplinary and collaborative research and training. Institute members engage in inter- and intra-team collaborations, attend seminars, workshops and meetings, primarily in virtual space. SSERVI specializes in the design, development, integration, and production of a multitude of Information Technology components, combining extensive in-house knowledge of current and future industry technological standards to serve our communities. We use a wide array of communication and information technology tools to build and support the SSERVI community, including high-defnition videoconferencing, real-time meeting
Recommended publications
  • Lessons from Recent Flybys
    Real-&me Characterizaon of Hazardous Asteroids: Lessons from Recent Flybys Vishnu Reddy Planetary Science Ins&tute Tucson, Arizona Contributors • Juan Sanchez, Ma Izawa (PSI) • Audrey Thirouin, Nick Moskovitz (Lowell) • Eileen and Bill Ryan (MRO) • Ed Rivera-Valen&n, Patrick Taylor, Jim Richardson (Arecibo) • Stephen Teglar (NAU) • Ed Clous (University of Winnipeg) 2015 TC25 • Oct. 11th 2015 06:56 UTC object (WT19969) discovered by Catalina Sky Survey, Tucson (703) • Oct. 11th 2015 08:09 UTC object followed up by Magdalena Ridge Observatory, New Mexico (H01) • Oct. 11th 2015 15:01 UTC object followed up by Bisei Spaceguard Center, Japan (300) • Oct. 11th 2015 21:12 UTC object followed up by Italian amateurs from Farra d'Isonzo (595) • Oct. 11th 2015 21:52 UTC object (WT19969) is designated 2015 TC25 and MPEC-T61 is issued 2015 TC25 • Absolute Magnitude (H) :29.5; Size: 2-7 meters • Closest approach: Oct. 13, 2015 07:26 UTC • Distance: 111,000 km 2015 TC25 • Characterizaon • Photometry • Spectroscopy • Radar • Science Quesons: • What is the spin rate of the object? • What is the composi&on of the object? 2015 TC25 Discovery Channel Telescope (4.2 meter) Observer: S. Teglar 10.1 hours NASA IRTF (3 meter) Observer: Reddy/Sanchez MRO, (2 meter) Observer: B. Ryan/E. Ryan 2015 TC25 Oct. 12, 2015 22:00 UTC Rotates once 10 hours aer MPEC in 134 seconds • Only 4 NEAs in this size range have lightcurves. • 2015 TC25 has the second fastest rotaon. • 2010 WA rotates once every 30 seconds. 2015 TC25 10.1 hours gemini North (8 meter) NASA IRTF (3 meter) Observer: Mokovitz Observer: Reddy/Sanchez 2015 TC25 goldstone Radar Arecibo Radar 2015 TC25 Rock vs.
    [Show full text]
  • JEM-EUSO: Meteor and Nuclearite Observations
    Exp Astron DOI 10.1007/s10686-014-9375-4 ORIGINAL ARTICLE JEM-EUSO: Meteor and nuclearite observations M. Bertaina A. Cellino F. Ronga The JEM-EUSO· Collaboration· · Received: 22 August 2013 / Accepted: 24 February 2014 ©SpringerScience+BusinessMediaDordrecht2014 Abstract Meteor and fireball observations are key to the derivation of both the inven- tory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capabil- ity. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission. Keywords Meteors Nuclearites JEM-EUSO Space detectors · · · M. Bertaina (!) Dipartimento di Fisica, Universit`adiTorino,INFNTorino,viaP.Giuria1,10125Torino,Italy e-mail: [email protected] A. Cellino (!) INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy e-mail: [email protected] F. Ronga (!) Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Via E.
    [Show full text]
  • Characterization of Temporarily Captured Minimoon 2020 CD₃ By
    Draft version August 13, 2020 Typeset using LATEX preprint style in AASTeX62 Characterization of Temporarily-Captured Minimoon 2020 CD3 by Keck Time-resolved Spectrophotometry Bryce T. Bolin,1, 2 Christoffer Fremling,1 Timothy R. Holt,3, 4 Matthew J. Hankins,1 Tomas´ Ahumada,5 Shreya Anand,6 Varun Bhalerao,7 Kevin B. Burdge,1 Chris M. Copperwheat,8 Michael Coughlin,9 Kunal P. Deshmukh,10 Kishalay De,1 Mansi M. Kasliwal,1 Alessandro Morbidelli,11 Josiah N. Purdum,12 Robert Quimby,12, 13 Dennis Bodewits,14 Chan-Kao Chang,15 Wing-Huen Ip,15 Chen-Yen Hsu,15 Russ R. Laher,2 Zhong-Yi Lin,15 Carey M. Lisse,16 Frank J. Masci,2 Chow-Choong Ngeow,15 Hanjie Tan,15 Chengxing Zhai,17 Rick Burruss,18 Richard Dekany,18 Alexandre Delacroix,18 Dmitry A. Duev,6 Matthew Graham,1 David Hale,18 Shrinivas R. Kulkarni,1 Thomas Kupfer,19 Ashish Mahabal,1, 20 Przemyslaw J. Mroz,´ 1 James D. Neill,1 Reed Riddle,21 Hector Rodriguez,22 Roger M. Smith,21 Maayane T. Soumagnac,23, 24 Richard Walters,1 Lin Yan,1 and Jeffry Zolkower18 1Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, U.S.A. 2IPAC, Mail Code 100-22, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA 3University of Southern Queensland, Computational Engineering and Science Research Centre, Queensland, Australia 4Southwest Research Institute, Department of Space Studies, Boulder, CO-80302, USA 5Department of Astronomy, University of Maryland, College Park, MD 20742, USA 6Division of Physics, Mathematics and Astronomy, California Institute of
    [Show full text]
  • Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
    Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments.
    [Show full text]
  • Arizona-Based Astronomers Characterize One of the Smallest Known Asteroids
    PRESS RELEASE FOR IMMEDIATE RELEASE: 30 November 2016 ***Contact details appear below*** Arizona-based Astronomers Characterize One of the Smallest Known Asteroids A team of astronomers have obtained observations of the smallest asteroid –with a diameter of only two meters (six feet)—ever characterized in detail. The asteroid, named 2015 TC25, is also one of the brightest near-Earth asteroids ever discovered, reflecting 60 percent of the sunlight that falls on it. Discovered by the University of Arizona’s Catalina Sky Survey last October, 2015 TC25 was studied extensively by a team led by Vishnu Reddy, an assistant professor at the University of Arizona's Lunar and Planetary Laboratory. Other participating institutions include Lowell Observatory and Northern Arizona University. The team used four Earth-based telescopes for the study, published this month in The Astronomical Journal. Reddy argues that new observations from the NASA Infrared Telescope Facility and Arecibo Planetary Radar show that 2015 TC25's surface is similar to a rare type of highly reflective meteorite called aubrites. Aubrites consist of very bright minerals, mostly silicates, that formed in an oxygen-free, basaltic environment at very high temperatures. Only one out of every 1,000 meteorites that fall to Earth belong to this class. "This is the first time we have optical, infrared, and radar data on such a small asteroid, which is essentially a meteoroid," said Reddy. "You can think of it as a meteorite floating in space that hasn't hit the atmosphere and made it to the ground—yet." “2015 TC25 is one of the five smallest Near-Earth Objects ever observed to measure rotation rate” says Audrey Thirouin from Lowell Observatory.
    [Show full text]
  • Citizen Science with the Desert Fireball Network
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1178-2, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Fireballs in the Sky: Citizen Science with the Desert Fireball Network Brian Day (1), Phil Bland (2), Renae Sayers (2) (1) NASA Solar System Exploration Research Virtual Institute. NASA Ames Research Center. Moffett Field, CA, USA. ([email protected]) (2) Curtin University. Perth, WA, Australia. ([email protected]) ([email protected]) Abstract Curtin University in Western Australia. It is led by Phil Bland of Curtin University. Fireballs in the Sky is an innovative Australian citizen science program that connects the public with 2. Observatory Design and Network the research of the Desert Fireball Network (DFN). The observatories are fully autonomous intelligent This research aims to understand the early workings imaging systems, capable of operating for 12 months of the solar system, and Fireballs in the Sky invites in a harsh environment without maintenance, and people around the world to learn about this science, storing all imagery collected over that period. Each contributing fireball sightings via a user-friendly observatory uses a 36MP consumer DSLR camera augmented reality mobile app. Tens of thousands of equipped with a fisheye lens providing spatial people have downloaded the app world-wide and precision of approximately one arcminute. The participated in the science of meteoritics. The DSLR is modified with a liquid crystal (LC) shutter. Fireballs in the Sky app allows users to get involved The LC shutter is used to break the fire-ball trail into with the Desert Fireball Network research, dashes for velocity calculation, after triangulation.
    [Show full text]
  • Arxiv:1803.02557V2 [Astro-Ph.EP] 30 Apr 2018
    Draft version May 1, 2018 Typeset using LATEX default style in AASTeX61 THE DINGLE DELL METEORITE: A HALLOWEEN TREAT FROM THE MAIN BELT Hadrien A. R. Devillepoix,1 Eleanor K. Sansom,1 Philip A. Bland,1 Martin C. Towner,1 Martin Cupak,´ 1 Robert M. Howie,1 Trent Jansen-Sturgeon,1 Morgan A. Cox,1 Benjamin A. D. Hartig,1 Gretchen K. Benedix,1 and Jonathan P. Paxman2 1School of Earth and Planetary Sciences, Curtin University, Bentley, WA 6102, Australia 2School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia ABSTRACT We describe the fall of the Dingle Dell (L/LL 5) meteorite near Morawa in Western Australia on October 31, 2016. The fireball was observed by six observatories of the Desert Fireball Network (DFN), a continental scale facility optimised to recover meteorites and calculate their pre-entry orbits. The 30 cm meteoroid entered at 15.44 km s−1, followed a moderately steep trajectory of 51◦ to the horizon from 81 km down to 19 km altitude, where the luminous flight ended at a speed of 3.2 km s−1. Deceleration data indicated one large fragment had made it to the ground. The four person search team recovered a 1.15 kg meteorite within 130 m of the predicted fall line, after 8 hours of searching, 6 days after the fall. Dingle Dell is the fourth meteorite recovered by the DFN in Australia, but the first before any rain had contaminated the sample. By numerical integration over 1 Ma, we show that Dingle Dell was most likely ejected from the main belt by the 3:1 mean-motion resonance with Jupiter, with only a marginal chance that it came from the nu6 resonance.
    [Show full text]
  • Catching Shooting Stars
    PARTNER INSTITUTION PROJECT LEADER @curtin.edu.au SYSTEM XXX TIME ALLOCATED 00 HOURS AREA OF SCIENCE XXX APPLICATIONS USED xx Freshly found 4.5 billion year old meteorite. Credit_Jonathan Paxman, Desert Fireball Network CATCHING SHOOTING STARS Discovering and retrieving newly fallen meteorites can help researchers understand the early workings of the solar system and the origins of our planetary system – including Earth. Over the last fifty years, research attempts to retrieve newly fallen meteorites have met with limited success. Professor Phil Bland, from Curtin University’s Faculty of Science and Engineering, is now leading a team of researchers in a collaborative effort using innovative methodology and supercomputing to achieve results. The Desert Fireball Network (DFN) project uses a network of cameras to detect meteorites or “fireballs” as they fall in the Australian desert. Using the world-class infrastructure at Pawsey Supercomputing Centre, the DFN team stores vast amounts of data and completes trajectory and modelling simulations. The research team can then calculate where a meteorite falls to retrieve, analyze, and trace it back to the parent body in the solar system from where it came. 2016 DESERT FIREBALL NETWORK THE CHALLENGE In November 2015, an 80-kilogram meteor that had been moving at 50 thousand kilometres per hour entered the atmosphere. It created a fireball that streaked across the sky; becoming what some of us refer to as a shooting star. The meteorite then dropped into a remote area of South Australia as a 1.6 kilogram of mottled rock. The Desert Fireball Network had caught the event on camera.
    [Show full text]
  • The Desert Fireball Network: a New Era for Space Science in Australia
    The Australian Desert Fireball Network: A new era for planetary science P. A. Bland1,2,3,5, G. K. Benedix2, A. W. R. Bevan*5, K. T. Howard2, P. Spurný4, L. Shrbený1,4, M. C. Towner1, I. A. Franchi6 G. Deacon5, J. Borovička4, D. Vaughan7, R. M. Hough8. 1IARC, Department of Earth Science & Engineering, Imperial College London, SW7 2AZ, UK. 2IARC, Dept. Mineralogy, Natural History Museum, London SW7 5BD, UK. 3Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia. 4Astronomical Institute of the Academy of Sciences, Fričova 298, CZ-251 65 Ondřejov Observatory, Czech Republic. 5Department of Earth and Planetary Sciences, Western Australian Museum, Locked Bag 49 Welshpool DC, WA 6986, Australia., Perth, WA 6845, Australia. 6PSSRI, Open University, Walton Hall, Milton Keynes MK7 6AA, UK. 7PO BOX 187, Nedlands, Perth, WA 6909, Australia. 8 CSIRO Earth Science and Resource Engineering, 26 Dick Perry Avenue, Kensington, Western Australia 6151. Corresponding author: [email protected] INTRODUCTION Meteorites are our only direct source of information on the nature of planetary materials in the early Solar System. Most meteorites are believed to be fragments broken from asteroids in solar orbits between Mars and Jupiter, although there are few specific asteroids identified as sources. Other meteorites are fragments from the Moon and Mars. Many asteroidal meteorites have remained virtually unaltered for 4.56 Ga and retain evidence of the earliest formative processes of the Solar System, ranging from pre- solar stellar evolution of the nearby galactic region, to protoplanetary disk formation and the accretion and differentiation of planetesimals and protoplanets.
    [Show full text]
  • The Meteoritical Bulletin, O. 95
    Meteoritics & Planetary Science 44, Nr 3, 1–33 (2009) Abstract available online at http://meteoritics.org The Meteoritical Bulletin, o. 95 Michael K. WEISBERG1, 2*, Caroline SMITH3, 4, Gretchen BENEDIX3, Luigi FOLCO5, Kevin RIGHTER6, Jutta ZIPFEL7, Akira YAMAGUCHI8, and Hasnaa CHENNAOUI AOUDJEHANE9 1Department of Physical Science, Kingsborough Community College and the Graduate School of the City University of New York, 2001 Oriental Blvd., Brooklyn, New York 11235, USA 2Department of Earth and Planetary Science, American Museum of Natural History, Central Park West New York, New York 10024, USA 3Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 4School of Geographical and Earth Science, University of Glasgow, Scotland, G12 8QQ, UK 5Museo Nazionale dell’Antartide, Università di Siena, Via Laterina 8, I-53100 Siena, Italy 6Mailcode KT, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 7Sektion Meteoritenforschung, Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325, Frankfurt am Main, Germany 8Antarctic Meteorite Research Center, National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan 9Université Hassan II Casablanca, Faculté des sciences, Département de Géologie, BP 5366, Mâarif, Casablanca, Morocco *Corresponding author. E-mail: [email protected] (Received 25 February 2009) Abstract–The Meteoritical Bulletin No. 95 reports 1093 (282 non-Antarctic and 801 Antarctic) newly approved meteorite names and their recovery histories, macroscopic descriptions, petrography, mineral compositions and geochemistry. Meteorites reported include lunar meteorites, eucrites, mesosiderites, angrites, ureilites, an acapulcoite, and H, L, LL, R, CO, CM, CK and CV chondrites. Three new falls, the Bunburra Rockhole (Australia) eucrite and the recent (Nov., 2008) Buzzard Coulee (Canada) H4 chondrite, and Tamdakht (Morocco) H5 chondrite are reported.
    [Show full text]
  • Curtin University
    Engagement and Impact 2018 Curtin University CUT02 (ST) - Impact Overview Title (Title of the impact study) Desert Fireball Network: Unearthing the secrets of the solar system Unit of Assessment 02 - Physical Sciences Additional FoR codes (Identify up to two additional two-digit FoRs that relate to the overall content of the impact study.) Socio-Economic Objective (SEO) Codes (Choose from the list of two-digit SEO codes that are relevant to the impact study.) 95 - Cultural Understanding 89 - Information and Communication Services Australian and New Zealand Standard Industrial Classification (ANZSIC) Codes (Choose from the list of two-digit ANZSIC codes that are relevant to the impact study.) 82 - Adult, Community and Other Education 90 - Creative and Performing Arts Activities 57 - Internet Publishing and Broadcasting Keywords (List up to 10 keywords related to the impact described in Part A.) Curtin University Engagement and Impact 2018 PDF Created: 6/03/2019 Page 1 of 7 geology astronomy meteorite smartphone app fireball origins of the universe Sensitivities Commercially sensitive Culturally sensitive Sensitivities description (Please describe any sensitivities in relation to the impact study that need to be considered, including any particular instructions for ARC staff or assessors, or for the impact study to be made publicly available after EI 2018.) Aboriginal and Torres Strait Islander research flag (Is this impact study associated with Aboriginal and Torres Strait Islander content? NOTE - institutions may identify impact studies
    [Show full text]
  • Bunburra Rockhole: Exploring the Geology of a New Differentiated Basaltic Asteroid
    45th Lunar and Planetary Science Conference (2014) 1650.pdf BUNBURRA ROCKHOLE: EXPLORING THE GEOLOGY OF A NEW DIFFERENTIATED BASALTIC ASTEROID. G.K. Benedix1,7, P.A. Bland1,7, J. M. Friedrich2,3, D.W. Mittlefehldt4, M.E. Sanborn5, Q.-Z. Yin5, R.C. Greenwood6, I.A. Franchi6, A.W.R. Bevan7, M.C. Towner1 and Grace C. Perotta2. 1Dept. Applied Geology, Curtin University, GPO Box U1987, Perth, WA, 6845 Australia ([email protected]), 2Dept. Chem., Fordham University, 441 East Fordham Road, Bronx, NY 10458 USA, 3Dept. Earth & Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA, 4NASA/Johnson Space Center, Houston, TX, USA, 5Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA, 6Planetary & Space Sci., The Open University, Milton Keynes, MK7 6AA, UK, 7Western Australia Museum, Locked Bag 49, Welshpool, WA, 6986, Australia. Introduction: Bunburra Rockhole (BR) is the first versity for chemical analysis. Four of these were ana- recovered meteorite of the Desert Fireball Network [1]. lysed for major and trace elements and two for trace It was initially classified as a basaltic eucrite, based on elements only. Two of these subsamples (A/1 and texture, mineralogy, and mineral chemistry [2] but C/A/2) were analysed at UC Davis to investigate the Cr subsequent O isotopic analyses showed that BR’s isotopic systematics. Homogenized powders from the composition lies significantly far away from the HED two chips were dissolved in Parr bombs for a 96 hour group of meteorites (fig. 1) [1]. This suggested that period at 200°C to insure complete dissolution of re- BR was not a piece of the HED parent body (4 Vesta), fractory minerals such as spinel.
    [Show full text]