Compatibility Mode Support for L4ka::Pistachio/AMD64
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Building a SAN-Less Private Cloud with IBM Powervm and IBM Powervc
Front cover Building a SAN-less Private Cloud with IBM PowerVM and IBM PowerVC Javier Bazan Lazcano Stephen Lutz Redpaper International Technical Support Organization Building a SAN-less Private Cloud with IBM PowerVM and IBM PowerVC July 2018 REDP-5455-02 Note: Before using this information and the product it supports, read the information in “Notices” on page v. Third Edition (July 2018) This edition applies to Version 1, Release 4, Modification 1 of IBM Cloud PowerVC Manager for Software-Defined Infrastructure V1.1 (product number 5765-VCD). © Copyright International Business Machines Corporation 2017, 2018. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . .v Trademarks . vi Preface . vii Authors. vii Now you can become a published author, too! . viii Comments welcome. viii Stay connected to IBM Redbooks . viii Chapter 1. Architecture of a software-defined infrastructure solution with IBM Power Systems servers and IBM PowerVC . 1 1.1 Software-defined infrastructure . 2 1.2 The motivation behind software-defined infrastructure . 2 1.3 Use cases . 4 1.3.1 Use case 1: Building a storage area network-less cloud . 4 1.3.2 Use case 2: Building an iSCSI-backed cloud . 5 1.3.3 More use cases. 5 1.4 Rack topologies and components . 6 1.4.1 Starter cloud . 7 1.4.2 Mini cloud . 8 1.4.3 Rack scale . 9 1.4.4 Storage/management switches. 10 1.4.5 Data switches . 10 1.4.6 Network nodes . -
SYSCALL, IRET ● Opportunistic SYSRET Failed, Do IRET
entry_*.S A carefree stroll through kernel entry code Borislav Petkov SUSE Labs [email protected] Reasons for entry into the kernel ● System calls (64-bit, compat, 32-bit) ● Interrupts (NMIs, APIC, timer, IPIs... ) – software: INT 0x0-0xFF, INT3, … – external (hw-generated): CPU-ext logic, async to insn exec ● Architectural exceptions (sync vs async) – faults: precise, reported before faulting insn => restartable (#GP,#PF) – traps: precise, reported after trapping insn (#BP,#DB-both) – aborts: imprecise, not reliably restartable (#MC, unless MCG_STATUS.RIPV) 2 Intr/Ex entry ● IDT, int num index into it (256 vectors); all modes need an IDT ● If handler has a higher CPL, switch stacks ● A picture is always better: 3 45sec guide to Segmentation ● Continuous range at an arbitrary position in VA space ● Segments described by segment descriptors ● … selected by segment selectors ● … by indexing into segment descriptor tables (GDT,LDT,IDT,...) ● … and loaded by the hw into segment registers: – user: CS,DS,{E,F,G}S,SS – system: GDTR,LDTR,IDTR,TR (TSS) 4 A couple more seconds of Segmentation ● L (bit 21) new long mode attr: 1=long mode, 0=compat mode ● D (bit 22): default operand and address sizes ● legacy: D=1b – 32bit, D=0b – 16bit ● long mode: D=0b – 32-bit, L=1,D=1 reserved for future use ● G (bit 23): granularity: G=1b: seg limit scaled by 4K ● DPL: Descriptor Privilege Level of the segment 5 Legacy syscalls ● Call OS through gate descriptor (call, intr, trap or task gate) ● Overhead due to segment-based protection: – load new selector + desc into -
Browsers Supported
System and Browser Requirements for Online Bill Pay (Revised June, 2013) The following list describes systems and browsers that are classified as “Supported” and “Allowed” for PayLynx online bill pay. While the billpay application functions properly with other browser and platform combinations, PSCU recommends only those on the following list: Microsoft Windows: Windows 8: Supported - IE 10*, Firefox & Chrome – Current Stable Release Allowed - JAWS 14, IE 9* Windows 7: Supported - IE 9*, Firefox & Chrome – Current Stable Release Allowed – IE 10, JAWS 14.0 * Internet Explorer 9 supported when used in Compatibility Mode http://windows.microsoft.com/en-US/internet-explorer/use-compatibility-view#ie=ie-9 Macintosh: OS X 10.7 – Safari 6.x, Allowed - Firefox & Chrome – Current Stable Release OS X 10.6 – Safari 6.x, Allowed - Firefox & Chrome – Current Stable Release Browser Notes: • JavaScript – is required for the application to function optimally. • Cookies – the browser must be set to allow cookies and/or explicitly allow 3rd party cookies. • Screen Resolution – 800 x 600 VGA or higher • Windows Display Properties Settings – should be 96 dpi (Windows default) • Browser Text Size – should be Medium Blocked Browsers: The following browsers are programmatically blocked from use: • Microsoft Windows – CompuServe, Netscape • Macintosh – Microsoft IE Macintosh Screen Capture: • Apple/Shift/3 – Captures the entire screen • Apple/Shift/4 – Click and drag the pointer and release mouse button to capture a portion of the screen. Links for Browsers: • Microsoft http://windows.microsoft.com/en-US/windows/products/internet-explorer • Apple http://www.apple.com/downloads/ • Mozilla http://www.mozilla.org/products/firefox/ • Google http://www.google.com/chrome/ • JAWS http://sales.freedomscientific.com/ProductInfo.aspx?productid=340014-001 Browser Category Definitions: • Supported – All functionality of the product has been tested and successfully meets functional and design requirements. -
X86 Memory Protection and Translation
2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Logical Diagram Binary Memory x86 Memory Protection and Threads Formats Allocators Translation User System Calls Kernel Don Porter RCU File System Networking Sync Memory Device CPU Today’s Management Drivers Scheduler Lecture Hardware Interrupts Disk Net Consistency 1 Today’s Lecture: Focus on Hardware ABI 2 1 2 COMP 790: OS Implementation COMP 790: OS Implementation Lecture Goal Undergrad Review • Understand the hardware tools available on a • What is: modern x86 processor for manipulating and – Virtual memory? protecting memory – Segmentation? • Lab 2: You will program this hardware – Paging? • Apologies: Material can be a bit dry, but important – Plus, slides will be good reference • But, cool tech tricks: – How does thread-local storage (TLS) work? – An actual (and tough) Microsoft interview question 3 4 3 4 COMP 790: OS Implementation COMP 790: OS Implementation Memory Mapping Two System Goals 1) Provide an abstraction of contiguous, isolated virtual Process 1 Process 2 memory to a program Virtual Memory Virtual Memory 2) Prevent illegal operations // Program expects (*x) – Prevent access to other application or OS memory 0x1000 Only one physical 0x1000 address 0x1000!! // to always be at – Detect failures early (e.g., segfault on address 0) // address 0x1000 – More recently, prevent exploits that try to execute int *x = 0x1000; program data 0x1000 Physical Memory 5 6 5 6 1 2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Outline x86 Processor Modes • x86 -
Using Older Software in Windows 8 Or Windows 10
Using older software in Windows 8 or Windows 10 The first thing to try is Compatibility Mode: right-click on the program file [programname].exe and click Properties. You will see a dialog with several tabs. Click the Compatibility tab. Click the check box that says: Run this program in compatibility mode for: Then use the drop down to select a different operating system. If this doesn’t solve the problem, try: The installation and running of some of our railroad programs (e.g., 3D Railroad Concept & Design) requires that a CD be in your CD/DVD drive. If you purchase a download of the program, unpack the files and burn them to a CD. Place the CD in your drive and proceed to install the program. Windows 10 may require you to run the program as administrator; right-click on the exe file and select to run as administrator. If you wish to have the program run automatically as administrator, follow any of these links and make the suggested adjustments to set it to run automatically as administrator: http://www.cnet.com/how-to/always-run-a-program-in-administrator-mode-in- windows-10/ http://www.howtogeek.com/187086/ask-htg-how-can-i-set-an-application-to-always- run-in-administrator-mode/ http://www.tekrevue.com/tip/always-run-as-administrator/ If this doesn’t solve the problem, try: Look through the information below, search the internet for such terms as “How to Enable Hyper-V in Windows 8 –Pro” and “running older programs in Windows 8.” The following information has been obtained from the Microsoft site here: http://support.microsoft.com/kb/2724115 And from here: http://www.lockergnome.com/news/2012/09/06/windows-8-xp- mode/ We also suggest this site: http://www.windows8update.com/2011/12/06/enabling- hyper-v-in-windows-8/ http://www.eightforums.com/tutorials/6832-compatibility-mode-use-windows-8- a.html We make no claims as to the suitability, safety or success of using these methods with our legacy products. -
Virtual Memory in X86
Fall 2017 :: CSE 306 Virtual Memory in x86 Nima Honarmand Fall 2017 :: CSE 306 x86 Processor Modes • Real mode – walks and talks like a really old x86 chip • State at boot • 20-bit address space, direct physical memory access • 1 MB of usable memory • No paging • No user mode; processor has only one protection level • Protected mode – Standard 32-bit x86 mode • Combination of segmentation and paging • Privilege levels (separate user and kernel) • 32-bit virtual address • 32-bit physical address • 36-bit if Physical Address Extension (PAE) feature enabled Fall 2017 :: CSE 306 x86 Processor Modes • Long mode – 64-bit mode (aka amd64, x86_64, etc.) • Very similar to 32-bit mode (protected mode), but bigger address space • 48-bit virtual address space • 52-bit physical address space • Restricted segmentation use • Even more obscure modes we won’t discuss today xv6 uses protected mode w/o PAE (i.e., 32-bit virtual and physical addresses) Fall 2017 :: CSE 306 Virt. & Phys. Addr. Spaces in x86 Processor • Both RAM hand hardware devices (disk, Core NIC, etc.) connected to system bus • Mapped to different parts of the physical Virtual Addr address space by the BIOS MMU Data • You can talk to a device by performing Physical Addr read/write operations on its physical addresses Cache • Devices are free to interpret reads/writes in any way they want (driver knows) System Interconnect (Bus) : all addrs virtual DRAM Network … Disk (Memory) Card : all addrs physical Fall 2017 :: CSE 306 Virt-to-Phys Translation in x86 0xdeadbeef Segmentation 0x0eadbeef Paging 0x6eadbeef Virtual Address Linear Address Physical Address Protected/Long mode only • Segmentation cannot be disabled! • But can be made a no-op (a.k.a. -
Protected Mode - Wikipedia
2/12/2019 Protected mode - Wikipedia Protected mode In computing, protected mode, also called protected virtual address mode,[1] is an operational mode of x86- compatible central processing units (CPUs). It allows system software to use features such as virtual memory, paging and safe multi-tasking designed to increase an operating system's control over application software.[2][3] When a processor that supports x86 protected mode is powered on, it begins executing instructions in real mode, in order to maintain backward compatibility with earlier x86 processors.[4] Protected mode may only be entered after the system software sets up one descriptor table and enables the Protection Enable (PE) bit in the control register 0 (CR0).[5] Protected mode was first added to the x86 architecture in 1982,[6] with the release of Intel's 80286 (286) processor, and later extended with the release of the 80386 (386) in 1985.[7] Due to the enhancements added by protected mode, it has become widely adopted and has become the foundation for all subsequent enhancements to the x86 architecture,[8] although many of those enhancements, such as added instructions and new registers, also brought benefits to the real mode. Contents History The 286 The 386 386 additions to protected mode Entering and exiting protected mode Features Privilege levels Real mode application compatibility Virtual 8086 mode Segment addressing Protected mode 286 386 Structure of segment descriptor entry Paging Multitasking Operating systems See also References External links History https://en.wikipedia.org/wiki/Protected_mode -
The Evolution of an X86 Virtual Machine Monitor
The Evolution of an x86 Virtual Machine Monitor Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, Pratap Subrahmanyam {agesen, alextg, jeffshel, pratap}@vmware.com ABSTRACT While trap-and-emulate virtualization on mainframes was Twelve years have passed since VMware engineers first virtu- well understood at the time, it was – unsurprisingly – not a alized the x86 architecture. This technological breakthrough design goal for the 4004, whose first application was in fact kicked off a transformation of an entire industry, and virtu- a Busicom calculator [7]. However, as x86 CPUs expanded alization is now (once again) a thriving business with a wide their reach, the case for virtualization gradually emerged. range of solutions being deployed, developed and proposed. There was just one problem, seemingly fundamental: the But at the base of it all, the fundamental quest is still the generally accepted wisdom held that x86 virtualization was same: running virtual machines as well as we possibly can impossible, or at best merely impractical, due to inherited on top of a virtual machine monitor. architectural quirks and a requirement to retain compatibil- ity with legacy code. We review how the x86 architecture was originally virtual- ized in the days of the Pentium II (1998), and follow the This impasse was broken twelve years ago when VMware evolution of the virtual machine monitor forward through engineers first virtualized the x86 architecture entirely in the introduction of virtual SMP, 64 bit (x64), and hard- software. By basing the virtual machine monitor (VMM) ware support for virtualization to finish with a contempo- on binary translation, the architectural features that pre- rary challenge, nested virtualization. -
AMD 64-Bit Technology
Preliminary Information AMD 64-Bit Technology The AMD x86-64™ Architecture Programmers Overview Publication # 24108 Rev: A Issue Date: August 2000 Preliminary Information © 2000 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other applica- tion in which the failure of AMD’s product could create a situation where per- sonal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD logo, x86-64, AMD Athlon, and combinations thereof are trademarks of Advanced Micro Devices, Inc. MMX is a trademark of Intel Corporation. -
IBM Worklight V5.0.6 Technology Overview
IBM Software Technical White Paper WebSphere IBM Worklight V5.0.6 Technology overview IBM Worklight—Overview Contents IBM® Worklight® software helps enable organizational leaders to extend their business to mobile devices. This software provides an open, 1 IBM Worklight—Overview comprehensive and advanced mobile application platform for smart- phones and tablets, helping organizations of all sizes to efficiently 2 IBM Worklight—Components develop, connect, run and manage mobile and omni-channel applications. 3 Development tools Leveraging standards-based technologies and tools, the IBM team has created Worklight software that provides a single integrated platform. 8 Runtime server environment This platform includes a comprehensive development environment, 9 The IBM Worklight Console mobile-optimized runtime middleware, a private enterprise application store and an integrated management and analytics console—all supported 9 IBM Worklight Device by a variety of security mechanisms. Runtime components 10 Security and authentication Develop. The IBM Worklight Studio and the IBM Worklight software mechanisms development kit (SDK) simplify the development of mobile and omni- channel applications (apps) throughout multiple mobile platforms, includ- ing iOS, Android, BlackBerry, Windows 8, Windows Phone and Java ME. The IBM Worklight optimization framework fosters code reuse while delivering rich user experiences that match the styling requirements of each target environment. With such code reuse, IBM Worklight reduces costs of development, reduces time-to-market and provides strong support for your ongoing management efforts. Connect. The IBM Worklight Server architecture and adapter technol- ogy simplifies the integration of mobile apps with back-end enterprise systems and cloud-based services. The IBM Worklight Server is designed IBM Software Technical White Paper WebSphere to fit quickly into your organization’s IT infrastructure and is Console. -
AIX Dec 2004.P65
110 December 2004 In this issue 3 Finding the biggest file in directories on the same filesystem 4 Creating a physical partition map of an hdisk by logical volume 9 AIX console mirroring 11 Using ClamAV 14 Happy 18th birthday AIX 16 Deploying multiple compiler versions on AIX 27 Mirroring tips and techniques in AIX 36 Generating a logo 41 Default user password settings in AIX 47 AIX news © Xephon Inc 2004 AIX Update Published by Disclaimer Xephon Inc Readers are cautioned that, although the PO Box 550547 information in this journal is presented in good Dallas, Texas 75355 faith, neither Xephon nor the organizations or USA individuals that supplied information in this Phone: 214-340-5690 journal give any warranty or make any Fax: 214-341-7081 representations as to the accuracy of the material it contains. Neither Xephon nor the contributing Editor organizations or individuals accept any liability of Trevor Eddolls any kind howsoever arising out of the use of such E-mail: [email protected] material. Readers should satisfy themselves as to the correctness and relevance to their Publisher circumstances of all advice, information, code, Bob Thomas JCL, scripts, and other contents of this journal E-mail: [email protected] before making any use of it. Subscriptions and back-issues Contributions A year’s subscription to AIX Update, When Xephon is given copyright, articles comprising twelve monthly issues, costs published in AIX Update are paid for at the rate $275.00 in the USA and Canada; £180.00 in of $160 (£100 outside North America) per the UK; £186.00 in Europe; £192.00 in 1000 words and $80 (£50) per 100 lines of code Australasia and Japan; and £190.50 elsewhere. -
OSS Alphabetical List and Software Identification
Annex: OSS Alphabetical list and Software identification Software Short description Page A2ps a2ps formats files for printing on a PostScript printer. 149 AbiWord Open source word processor. 122 AIDE Advanced Intrusion Detection Environment. Free replacement for Tripwire(tm). It does the same 53 things are Tripwire(tm) and more. Alliance Complete set of CAD tools for the specification, design and validation of digital VLSI circuits. 114 Amanda Backup utility. 134 Apache Free HTTP (Web) server which is used by over 50% of all web servers worldwide. 106 Balsa Balsa is the official GNOME mail client. 96 Bash The Bourne Again Shell. It's compatible with the Unix `sh' and offers many extensions found in 147 `csh' and `ksh'. Bayonne Multi-line voice telephony server. 58 Bind BIND "Berkeley Internet Name Daemon", and is the Internet de-facto standard program for 95 turning host names into IP addresses. Bison General-purpose parser generator. 77 BSD operating FreeBSD is an advanced BSD UNIX operating system. 144 systems C Library The GNU C library is used as the C library in the GNU system and most newer systems with the 68 Linux kernel. CAPA Computer Aided Personal Approach. Network system for learning, teaching, assessment and 131 administration. CVS A version control system keeps a history of the changes made to a set of files. 78 DDD DDD is a graphical front-end for GDB and other command-line debuggers. 79 Diald Diald is an intelligent link management tool originally named for its ability to control dial-on- 50 demand network connections. Dosemu DOSEMU stands for DOS Emulation, and is a linux application that enables the Linux OS to run 138 many DOS programs - including some Electric Sophisticated electrical CAD system that can handle many forms of circuit design.