Metagenomics-Based Tryptophan Dimer Natural Product Discovery and Development Pipeline Fang-Yuan Chang

Total Page:16

File Type:pdf, Size:1020Kb

Metagenomics-Based Tryptophan Dimer Natural Product Discovery and Development Pipeline Fang-Yuan Chang Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2015 Metagenomics-Based Tryptophan Dimer Natural Product Discovery and Development Pipeline Fang-Yuan Chang Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Chang, Fang-Yuan, "Metagenomics-Based Tryptophan Dimer Natural Product Discovery and Development Pipeline" (2015). Student Theses and Dissertations. Paper 276. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. METAGENOMICS-BASED TRYPTOPHAN DIMER NATURAL PRODUCT DISCOVERY AND DEVELOPMENT PIPELINE A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Fang-Yuan Chang June 2015 © Copyright by Fang-Yuan Chang 2015 METAGENOMICS-BASED TRYPTOPHAN DIMER NATURAL PRODUCT DISCOVERY AND DEVELOPMENT PIPELINE Fang-Yuan Chang, Ph.D. The Rockefeller University 2015 Most microbial natural product discovery programs rely on the growth of bacteria in the laboratory, yet it is now well established that the vast majority of bacteria in the environment have not been cultured, particularly from the diverse soil microbiota. By extracting DNA directly from soil samples to construct large archived environmental DNA (eDNA) libraries, thousands of genomes from both cultured and as yet uncultured bacteria can be simultaneously screened for gene clusters encoding natural products of interest. Several natural products with pharmaceutically relevant biological activity arise from the dimerization of tryptophans, such as staurosporine, rebeccamycin, and violacein. To discover novel tryptophan dimers (TDs), we have designed a metagenomics-based TD natural product discovery and development pipeline that consists of seven steps: 1) soil eDNA extraction; 2) eDNA library construction; 3) homology-based screening; 4) bioinformatics analysis; 5) heterologous expression; 6) characterization of compounds and their biosynthesis; 7) target identification. Using a degenerate primer set that targets the CPA synthase gene, one of the conserved genes of tryptophan dimer biosynthesis, we screened the equivalent of ~1 million (over 1 tera base pairs) bacterial genomes from the eDNA libraries, resulting in the discovery of 14 unprecedented TD gene clusters, almost tripling the number of TD gene clusters that have previously been characterized. Using heterologous expression strategies that involve 1) shuttling of pathways into diverse bacterial hosts, 2) overexpression of positive transcriptional regulator, 3) synthetic refactoring of complete pathways, and 4) co-expression of deficient biosynthetic genes, we successfully expressed nine of the 14 gene clusters. This led to the functional characterization of three novel TD families (i.e. indolotryptoline, carboxy-indolocarbazole, and bisindolylmaleimide), consisting of 15 novel natural products (e.g. BE-54017s, borregomycins, erdasporines) with therapeutically relevant bioactivities (e.g. antitumor, antibacterial). Linking biologically active natural products to their cellular targets remains a challenging and critical process in the development of therapeutic agents and small-molecule probes, especially for cytotoxic agents that might serve as anticancer agents. Using multidrug resistance-suppressed (MDR-sup) fission yeast resistant mutant screening, the molecular target of the indolotryptoline family of TD was identified and validated to be the proteolipid subunits of vacuolar H+-ATPase (V-ATPase) at a putative binding site that is distinct from the previously described V-ATPase inhibitors. Together, we demonstrate the utility of this pipeline in the isolation, characterization, and development of novel natural products from the soil bacterial metagenome. Acknowledgments I would especially like to thank the following people for their support: Jeffrey Craig, Paula Calle, Melinda Ternei, and Shigehiro Kawashima as collaborators for my thesis research; Dr. Sean Brady as my thesis advisor; Dr. Tarun Kapoor and Dr. Howard Hang as my thesis committee members; Dr. Jef Boeke as my thesis external committee member, the rest of the members of the Brady laboratory including Hala Iqbal, Louis Cohen, Alex Milshteyn, Hahk-Soo Kang, Zachary Charlop-Powers, Kipchirchir Bitok, John Biggins, Jeremy Owen, Boojala Reddy, Debjani Chakraborty, Jonette Suiter, Jeffrey Kim, Ryan King, Jacob Banik, Zhiyang Feng, John Bauer, and Michael Clarke-Pearson; my Rockefeller classmates including James Letts, Frej Tulin, Jeff Liesch, Maria Maldonado, Mingzi Zhang, Teresa Davoli, and Jabez Bak; members of the Kapoor laboratory including Sarah Wacker, Lei Tan, Anupam Patgiri, Tommaso Cupido, Corynn Kasap, and Lynn Bidermann; members of the Nurse laboratory, including Atanas Kaykov and Jun Funabiki; and my family, James, Anna, and Sha-mei Chang. iii Table of Contents Table of Contents ............................................................................................................. iv List of Figures .................................................................................................................. vii List of Tables .................................................................................................................... xi List of Abbreviations ...................................................................................................... xii Chapter 1: Introduction and background ...................................................................... 1 1.1 Bacterial natural products and their applications ....................................... 1 1.2 Limitations of traditional natural product discovery .................................. 3 1.3 Metagenomics-based natural product discovery ......................................... 4 1.4 Phenotype- versus homology-based screening ............................................. 6 1.5 Tryptophan dimer natural products ........................................................... 10 1.6 Tryptophan dimer discovery and development pipeline ........................... 11 Chapter 2: Screening for tryptophan dimer biosynthetic gene clusters .................... 14 2.1 Divergent biosynthesis of TDs ...................................................................... 14 2.2 Target homology region for TD screening .................................................. 16 2.3 Construction of eDNA libraries ................................................................... 19 2.4 Screening for eDNA-derived TD gene clusters ........................................... 23 2.5 Bioinformatics analysis of TD gene clusters ............................................... 25 Chapter 3: Characterization of novel tryptophan dimer classes ................................ 31 3.1 Heterologous expression strategies .............................................................. 31 3.2 Group E TD class: indolotryptoline – BE-54017 ....................................... 37 3.3 Group E TD class: indolotryptoline – borregomycins ............................... 47 3.4 Group F TD class: carboxy-indolocarbazole .............................................. 59 iv 3.5 Group B TD class: bisindolylmaleimide ..................................................... 66 3.6 Expansion of bacterial TD biosynthetic scheme ........................................ 74 Chapter 4: Investigation of tryptophan dimer’s mode of action ................................ 78 4.1 Resistant mutant screening .......................................................................... 78 4.2 MDR-sup fission yeast as model organism ................................................. 79 4.3 Indolotryptoline as subject for mode of action study ................................ 80 4.4 Mutations conferring indolotryptoline resistance ...................................... 81 4.5 V-ATPase proteolipid subunit as putative target of indolotryptoline ...... 85 4.6 Putative indolotryptoline binding site in V-ATPase .................................. 88 4.7 Summary of MDR-sup S. pombe resistant mutant screening ................... 91 Chapter 5: Discussions ................................................................................................... 93 5.1 Conclusions and future directions ............................................................... 93 5.2 CPA-guided analysis of metagenomic TD biodiversity ............................. 96 5.3 Violacein reporter-based screening of TD gene clusters ........................... 98 5.4 Synthetic biology in heterologous natural product expression ............... 102 5.5 Metagenomic toolbox for natural product analog biosynthesis ............. 107 Chapter 6: Materials and methods .............................................................................. 110 Appendix ........................................................................................................................ 132 Appendix 1: Tryptophan dimer gene cluster annotation .............................. 132 Appendix 2: Compound spectral data summary ........................................... 140 Appendix 3: 1-D NMR spectra ........................................................................ 148 Appendix 4: KinaseProfiler results ................................................................
Recommended publications
  • 341388717-Oa
    ORIGINAL RESEARCH published: 16 May 2017 doi: 10.3389/fmicb.2017.00877 Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines Jodi Woan-Fei Law 1, Hooi-Leng Ser 1, Acharaporn Duangjai 2, 3, Surasak Saokaew 1, 3, 4, Sarah I. Bukhari 5, Tahir M. Khan 1, 6, Nurul-Syakima Ab Mutalib 7, Kok-Gan Chan 8, Edited by: Bey-Hing Goh 1, 3* and Learn-Han Lee 1, 3* Dongsheng Zhou, Beijing Institute of Microbiology and 1 Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Epidemiology, China Malaysia, 2 Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand, 3 Center of Health Reviewed by: Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand, 4 Andrei A. Zimin, Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan University, Phitsanulok, 5 6 Institute of Biochemistry and Thailand, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of 7 Physiology of Microorganisms (RAS), Pharmacy, Absyn University Peshawar, Peshawar, Pakistan, UKM Medical Molecular Biology Institute, UKM Medical Centre, 8 Russia University Kebangsaan Malaysia, Kuala Lumpur, Malaysia, Division of Genetics and Molecular Biology, Faculty of Science, Antoine Danchin, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia Institut de Cardiométabolisme et Nutrition (ICAN), France Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest *Correspondence: Bey-Hing Goh soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and [email protected] to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar.
    [Show full text]
  • DAFTAR PUSTAKA Abidin, Z. A. Z., A. J. K. Chowdhury
    160 DAFTAR PUSTAKA AKTINOMISETES PENGHASIL ANTIBIOTIK DARI HUTAN BAKAU TOROSIAJE GORONTALO YULIANA RETNOWATI, PROF. DR. A. ENDANG SUTARININGSIH SOETARTO, M.SC; PROF. DR. SUKARTI MOELJOPAWIRO, M.APP.SC; PROF. DR. TJUT SUGANDAWATY DJOHAN, M.SC Universitas Gadjah Mada, 2019 | Diunduh dari http://etd.repository.ugm.ac.id/ Abidin, Z. A. Z., A. J. K. Chowdhury, N. A. Malek, and Z. Zainuddin. 2018. Diversity, antimicrobial capabilities, and biosynthetic potential of mangrove actinomycetes from coastal waters in Pahang, Malaysia. J. Coast. Res., 82:174–179 Adegboye, M. F., and O. O. Babalola. 2012. Taxonomy and ecology of antibiotic producing actinomycetes. Afr. J. Agric. Res., 7(15):2255-2261 Adegboye, M.,F., and O. O. Babalola. 2013. Actinomycetes: a yet inexhausative source of bioactive secondary metabolites. Microbial pathogen and strategies for combating them: science, technology and eductaion, (A.Mendez-Vila, Ed.). Pp. 786 – 795. Adegboye, M. F., and O. O. Babalola. 2015. Evaluation of biosynthesis antibiotic potential of actinomycete isolates to produces antimicrobial agents. Br. Microbiol. Res. J., 7(5):243-254. Accoceberry, I., and T. Noel. 2006. Antifungal cellular target and mechanisms of resistance. Therapie., 61(3): 195-199. Abstract. Alongi, D. M. 2009. The energetics of mangrove forests. Springer, New Delhi. India Alongi, D. M. 2012. Carbon sequestration in mangrove forests. Carbon Management, 3(3):313-322 Amrita, K., J. Nitin, and C. S. Devi. 2012. Novel bioactive compounds from mangrove dirived Actinomycetes. Int. Res. J. Pharm., 3(2):25-29 Ara, I., M. A Bakir, W. N. Hozzein, and T. Kudo. 2013. Population, morphological and chemotaxonomical characterization of diverse rare actinomycetes in the mangrove and medicinal plant rhizozphere.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Bioprospecção De Actinobactérias Associadas À Esponja Marinha Aplysina Fulva: Isolamento, Caracterização E Produção De Compostos Bioativos
    Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Bioprospecção de actinobactérias associadas à esponja marinha Aplysina fulva: isolamento, caracterização e produção de compostos bioativos Fábio Sérgio Paulino da Silva Tese apresentada para obtenção do título de Doutor em Ciências. Área de concentração: Microbiologia Agrícola Piracicaba 2015 Fábio Sérgio Paulino da Silva Licenciado em Ciências Biológicas Bioprospeção de actinobactérias associadas à esponja marinha Aplysina fulva: isolamento, caracterização e produção de compostos bioativos Orientador: Prof. Dr. ITAMAR SOARES DE MELO Tese apresentada para obtenção do título de Doutor em Ciências. Área de concentração: Microbiologia Agrícola Piracicaba 2015 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP Silva, Fábio Sérgio Paulino da Bioprospecção de actinobactérias associadas à esponja marinha Aplysina fulva: isolamento, caracterização e produção de compostos bioativos / Fábio Sérgio Paulino da Silva. - - Piracicaba, 2015. 159 p. : il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”. 1. Metabólitos secundários 2. Fungicidas 3. Pythium aphanidermatum 4. Phytophthora capsici 5. Magnaporthe grisea 6. Algicida 7. Selenastrum capricornutum 8. Herbicida 9. Pré- emergência 10. Agrostis stolonifera 11. Taxonomia polifásica 12. Bioprospecção I. Título CDD 589.92 S586B “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 Dedico Aos meus pais, aos meus irmãos, a minha companheira
    [Show full text]
  • The Roles of Streptomyces and Novel Species Discovery
    Review Article Progress in Microbes and Molecular Biology A Review on Mangrove Actinobacterial Diversity: The Roles of Streptomyces and Novel Species Discovery Jodi Woan-Fei Law1,2, Priyia Pusparajah1, Nurul-Syakima Ab Mutalib3, Sunny Hei Wong4, Bey-Hing Goh5*, Learn-Han Lee1* 1Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia 2Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China 3UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, University Kebangsaan Malaysia, Kuala Lum- pur, Malaysia 4Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong 5Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia Abstract : In the class Actinobacteria, the renowned genus Streptomyces comprised of a group of uniquely complex bacteria that capable of synthesizing a great variety of bioactive metabolites. Streptomycetes are noted to possess several special qual- ities such as multicellular life cycle and large linearized chromosomes. The significant contribution of Streptomyces in mi- crobial drug discovery as witnessed through the discovery of many important antibiotic drugs has undeniably encourage the exploration of these bacteria from different environments, especially the mangrove environments. This review emphasizes on the genus Streptomyces and reports on the diversity of actinobacterial population from mangroves at different regions of the world as well as discovery of mangrove-derived novel Streptomyces species. Overall, the research on diversity of Actinobac- teria in the mangrove environments remains limited.
    [Show full text]
  • Fungal Suppressive Activities of Selected Rhizospheric Streptomyces Spp
    FUNGAL SUPPRESSIVE ACTIVITIES OF SELECTED RHIZOSPHERIC STREPTOMYCES SPP. ISOLATED FROM HYLOCEREUS POLYRHIZUS KAMALANATHAN RAMACHANDARAN FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2014 FUNGAL SUPPRESSIVE ACTIVITIES OF SELECTED RHIZOSPHERIC STREPTOMYCES SPP. ISOLATED FROM HYLOCEREUS POLYRHIZUS KAMALANATHAN RAMACHANDARAN DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2014 ABSTRACT Actinomycetes, mainly Streptomyces spp., have been extensively studied as potential biocontrol agents against plant pathogenic fungi. This study was aimed at isolating and screening Streptomyces strains from rhizosphere soils of Hylocereus polyrhizus collected in Kuala Pilah for potential in vitro antifungal activity. A total of 162 putative strains of actinomycetes was isolated from moist-heat treated soil plated on starch- casein-nitrate agar, humic-acid-vitamin agar and raffinose-histidine agar. Based on the ability to produce abundant aerial mycelium, 110 strains were categorised as Streptomycete-like. Seven main groups based on aerial mycelium colour observed in this study were grey (41.4%), white (37.7%), brown (8.0%), orange (4.3%), yellow (4.3%), green (2.5%) and black (1.9%). Three pathogenic fungi, namely, Fusarium semitactum, Fusarium decemcellulare and Fusarium oxysporum were isolated from the diseased stem regions of Hylocereus polyrhizus. The actinomycetes were screened for in vitro antagonistic activity against the isolated pathogenic fungi. In the qualitative screening, 23 strains were able to inhibit at least one of the three pathogenic fungi. In the quantitative screening, three strains, C17, C68 and K98, showed the highest antagonistic activity (70-89%) against all the fungal pathogens.
    [Show full text]
  • In Newly Isolated Streptomyces Mangrovisoli Sp. Nov
    ORIGINAL RESEARCH published: 20 August 2015 doi: 10.3389/fmicb.2015.00854 Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Hooi-Leng Ser1, Uma D. Palanisamy1, Wai-Fong Yin2, Sri N. Abd Malek3, Kok-Gan Chan2,Bey-HingGoh1* and Learn-Han Lee1* 1 Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, 2 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 3 Biochemistry Program, Institute of Biological Sciences, Faculty of Science, Edited by: University of Malaya, Kuala Lumpur, Malaysia Wen-Jun Li, Sun Yat-Sen University, China T Reviewed by: AnovelStreptomyces, strain MUSC 149 was isolated from mangrove soil. A polyphasic James A. Coker, approach was used to study the taxonomy of MUSC 149T, which shows a range of University of Maryland University College, USA phylogenetic and chemotaxonomic properties consistent with those of the members Jeremy Dodsworth, of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was California State University LL-diaminopimelic acid. The predominant menaquinones were identified as MK9(H8) San Bernardino, USA and MK9(H6). Phylogenetic analysis indicated that closely related strains include *Correspondence: T Learn-Han Lee and Streptomyces rhizophilus NBRC 108885 (99.2% sequence similarity), S. gramineus Bey-Hing Goh, NBRC 107863T (98.7%) and S. graminisoli NBRC 108883T (98.5%). The DNA–DNA Biomedical Research Laboratory, T Jeffrey Cheah School of Medicine relatedness values between MUSC 149 and closely related type strains ranged from and Health Sciences, Monash 12.4 ± 3.3% to 27.3 ± 1.9%.
    [Show full text]
  • Genomic Insights Into the Evolution of Hybrid Isoprenoid Biosynthetic Gene Clusters in the MAR4 Marine Streptomycete Clade
    UC San Diego UC San Diego Previously Published Works Title Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. Permalink https://escholarship.org/uc/item/9944f7t4 Journal BMC genomics, 16(1) ISSN 1471-2164 Authors Gallagher, Kelley A Jensen, Paul R Publication Date 2015-11-17 DOI 10.1186/s12864-015-2110-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Gallagher and Jensen BMC Genomics (2015) 16:960 DOI 10.1186/s12864-015-2110-3 RESEARCH ARTICLE Open Access Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade Kelley A. Gallagher and Paul R. Jensen* Abstract Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites.
    [Show full text]
  • Anhang Alignment Dissertation Sebastian Günther
    DNA Microarray-Technologie zur Klassifizierung von Actinomyceten der Gattung Kitasatospora Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller- Universität Jena Von Apotheker Sebastian Günther geboren am 31.07.1976 in Leinefelde Jena, Juli 2004 Abkürzungsverzeichnis Abkürzungsverzeichnis A Ampere Abb. Abbildung A. bidest. bidestilliertes Wasser ATP Adenosintriphosphat ATCC American Type Culture Collection bp Basenpaare bzw. beziehungsweise ca. circa CCD Charge-Coupled Device cDNA complementary DNA d. h. das heißt DNA Desoxyribonucleinsäure DMF Dimethylformamid DMSO Dimethylsulfoxid dNTP Desoxynucleosid-5´-triphosphat DSMZ Deutsche Sammlung Mikroorganismen und Zelllinien DSM Deutsche Sammlung Mikroorganismen Nummer E. coli Escherichia coli EDTA Ethylendiamintetraessigsäure EDV Elektronische Datenverarbeitung engl. englisch et al. et alii: und andere Ethidiumbromid 3,8-Diamino-5-ethyl-6-phenylphenanthridiumbromid Exp. Experiment Fa. Firma g Gramm h Stunde(n) HAc Essigsäure HKI Hans-Knöll-Institut für Naturstoff-Forschung e.V., Jena IFO Institute For Fermentation, Osaka, Japan IMET Ehemaliges Institut für Mikrobiologie und Experimentelle Therapie, Jena IPTD Isopropyl-ß-d-thiogalactopyranosid ITS Internal Transcribed Spacer JCM Japan Collection Of Microorganisms, Wako-shi, Japan K. Kitasatospora Kap. Kapitel S. Günther I Abkürzungsverzeichnis kb Kilobasen KoAc Kaliumacetat Konz. Konzentration l Liter LAF Laminar Air Flow LB-Medium Luria-Bertani-Medium Lit. Literatur, Quellenangabe LBA-Medium Luria-Bertani-Ampicillin-Medium Lsg. Lösung M molar (mol/l) MCS multi cloning site (multiple Klonierungsstelle) min Minute mA Milli- (1x10-3) Ampere ml Milli- (1x10-3) Liter µl Mikro- (1x10-6) Liter mm Milli- (1x10-3) Meter µm Mikro- (1x10-6) Meter mM mili(1x10-3) molar m/m Masse pro Masse MOPS 3-Morpholinopropansulfonsäure m/v Masse pro Volumen N normal NaAc Natriumacetat nm Nano- (1x10-9) Meter Nr.
    [Show full text]
  • Streptomyces Halophytocola Sp. Nov., an Endophytic Actinomycete Isolated from the Surface-Sterilized Stems of a Coastal Halophyte Tamarix Chinensis Lour
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 2770–2775 DOI 10.1099/ijs.0.047456-0 Streptomyces halophytocola sp. nov., an endophytic actinomycete isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour. Sheng Qin,1 Guang-Kai Bian,1 Tomohiko Tamura,2 Yue-Ji Zhang,1 Wen-Di Zhang,1 Cheng-Liang Cao1 and Ji-Hong Jiang1 Correspondence 1The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sheng Qin Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China [email protected] 2NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation, 2-5-8 Ji-Hong Jiang Kazusakamatari, Kisarazu, Chiba 292-0818, Japan [email protected] A novel actinomycete, designated KLBMP 1284T, was isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour. collected from the city of Nantong, Jiangsu Province, east China. The strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Analysis of the 16S rRNA gene sequence of strain KLBMP 1284T revealed that the strain formed a distinct clade within the phylogenetic tree based on 16S rRNA gene sequences and the highest sequence similarity (99.43 %) was to Streptomyces sulphureus NRRL B-1627T. 16S rRNA gene sequence similarity to other species of the genus Streptomyces was lower than 97 %. Based on DNA–DNA hybridization values and comparison of morphological and phenotypic data, KLBMP 1284T could be distinguished from the closest phylogenetically related species, Streptomyces sulphureus NRRL B-1627T. Thus, based on these data, it is evident that strain KLBMP 1284T represents a novel species of the genus Streptomyces, for which the name Streptomyces halophytocola sp.
    [Show full text]
  • Exploitation of Underused Streptomyces Through a Combined Metabolomics-Genomics Workflow to Enhance Natural Product Diversity
    BURNS, J. 2020. Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity. Robert Gordon University [online], PhD thesis. Available from: https://openair.rgu.ac.uk Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity. BURNS, J. 2020 The author of this thesis retains the right to be identified as such on any occasion in which content from this thesis is referenced or re-used. The licence under which this thesis is distributed applies to the text and any original images only – re-use of any third-party content must still be cleared with the original copyright holder. This document was downloaded from https://openair.rgu.ac.uk Exploitation of underused Streptomyces through a combined metabolomics-genomics workflow to enhance natural product diversity Joshua Burns A thesis submitted in partial fulfilment of the requirements of the Robert Gordon University for the degree of Doctor of Philosophy This research programme was carried out in collaboration with NCIMB Ltd. May 2020 ACKNOWLEDGEMENTS IV LIST OF ABBREVIATIONS V ABSTRACT XI 1 INTRODUCTION 3 1.1 An overview of modern microbial antibiotic discovery 3 1.2 Rise of antimicrobial resistance 22 1.3 Streptomyces and specialised metabolism 28 1.4 Antimicrobial discovery using Streptomyces 37 1.5 Thesis aim 45 2 METABOLOMIC SCREENING OF S. COELICOLOR A3(2) 51 2.1 Introduction 51 2.2 Materials and Methods 60 2.3 Results and Discussion 71 2.4 Conclusions 93 3 METABOLOMICS-BASED PROFILING AND SELECTION OF UNEXPLOITED STREPTOMYCES STRAINS 97 3.1 Introduction 97 3.2 Materials and Methods 101 3.3 Results and Discussion 108 3.4 Conclusions 132 4 CHARACTERISATION OF THE S.
    [Show full text]
  • Genome-Based Taxonomic Classification of the Phylum
    ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences
    [Show full text]