Marine Actinobacteria As a Source of Compounds for Phytopathogen Control: an Integrative Metabolic-Profiling / Bioactivity and Taxonomical Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
341388717-Oa
ORIGINAL RESEARCH published: 16 May 2017 doi: 10.3389/fmicb.2017.00877 Streptomyces colonosanans sp. nov., A Novel Actinobacterium Isolated from Malaysia Mangrove Soil Exhibiting Antioxidative Activity and Cytotoxic Potential against Human Colon Cancer Cell Lines Jodi Woan-Fei Law 1, Hooi-Leng Ser 1, Acharaporn Duangjai 2, 3, Surasak Saokaew 1, 3, 4, Sarah I. Bukhari 5, Tahir M. Khan 1, 6, Nurul-Syakima Ab Mutalib 7, Kok-Gan Chan 8, Edited by: Bey-Hing Goh 1, 3* and Learn-Han Lee 1, 3* Dongsheng Zhou, Beijing Institute of Microbiology and 1 Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Epidemiology, China Malaysia, 2 Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand, 3 Center of Health Reviewed by: Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand, 4 Andrei A. Zimin, Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan University, Phitsanulok, 5 6 Institute of Biochemistry and Thailand, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, Department of 7 Physiology of Microorganisms (RAS), Pharmacy, Absyn University Peshawar, Peshawar, Pakistan, UKM Medical Molecular Biology Institute, UKM Medical Centre, 8 Russia University Kebangsaan Malaysia, Kuala Lumpur, Malaysia, Division of Genetics and Molecular Biology, Faculty of Science, Antoine Danchin, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia Institut de Cardiométabolisme et Nutrition (ICAN), France Streptomyces colonosanans MUSC 93JT, a novel strain isolated from mangrove forest *Correspondence: Bey-Hing Goh soil located at Sarawak, Malaysia. The bacterium was noted to be Gram-positive and [email protected] to form light yellow aerial and vivid yellow substrate mycelium on ISP 2 agar. -
DAFTAR PUSTAKA Abidin, Z. A. Z., A. J. K. Chowdhury
160 DAFTAR PUSTAKA AKTINOMISETES PENGHASIL ANTIBIOTIK DARI HUTAN BAKAU TOROSIAJE GORONTALO YULIANA RETNOWATI, PROF. DR. A. ENDANG SUTARININGSIH SOETARTO, M.SC; PROF. DR. SUKARTI MOELJOPAWIRO, M.APP.SC; PROF. DR. TJUT SUGANDAWATY DJOHAN, M.SC Universitas Gadjah Mada, 2019 | Diunduh dari http://etd.repository.ugm.ac.id/ Abidin, Z. A. Z., A. J. K. Chowdhury, N. A. Malek, and Z. Zainuddin. 2018. Diversity, antimicrobial capabilities, and biosynthetic potential of mangrove actinomycetes from coastal waters in Pahang, Malaysia. J. Coast. Res., 82:174–179 Adegboye, M. F., and O. O. Babalola. 2012. Taxonomy and ecology of antibiotic producing actinomycetes. Afr. J. Agric. Res., 7(15):2255-2261 Adegboye, M.,F., and O. O. Babalola. 2013. Actinomycetes: a yet inexhausative source of bioactive secondary metabolites. Microbial pathogen and strategies for combating them: science, technology and eductaion, (A.Mendez-Vila, Ed.). Pp. 786 – 795. Adegboye, M. F., and O. O. Babalola. 2015. Evaluation of biosynthesis antibiotic potential of actinomycete isolates to produces antimicrobial agents. Br. Microbiol. Res. J., 7(5):243-254. Accoceberry, I., and T. Noel. 2006. Antifungal cellular target and mechanisms of resistance. Therapie., 61(3): 195-199. Abstract. Alongi, D. M. 2009. The energetics of mangrove forests. Springer, New Delhi. India Alongi, D. M. 2012. Carbon sequestration in mangrove forests. Carbon Management, 3(3):313-322 Amrita, K., J. Nitin, and C. S. Devi. 2012. Novel bioactive compounds from mangrove dirived Actinomycetes. Int. Res. J. Pharm., 3(2):25-29 Ara, I., M. A Bakir, W. N. Hozzein, and T. Kudo. 2013. Population, morphological and chemotaxonomical characterization of diverse rare actinomycetes in the mangrove and medicinal plant rhizozphere. -
Polyphasic Classification of the Gifted Natural Product Producer Streptomyces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC © Van der Aart, L.T., Nouioui, I., Kloosterman, A., Igual, J.M., Willemse, J., Goodfellow, M., van Wezel, J.P. 2019. The definitive peer reviewed, edited version of this article is published in International Journal of Systematic and Evolutionary Microbiology, 69, 4, 2019, http://dx.doi.org/10.1099/ijsem.0.003215 Polyphasic classification of the gifted natural product producer Streptomyces roseifaciens sp. nov. Lizah T. van der Aart 1, Imen Nouioui 2, Alexander Kloosterman 1, José Mariano Ingual 3, Joost Willemse 1, Michael Goodfellow 2, *, Gilles P. van Wezel 1,4 *. 1 Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands 2 School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK. 3 Instituto de Recursos Naturales y Agrobiologia de Salamanca, Consejo Superior de Investigaciones Cientificas (IRNASACSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain 4: Department of Microbial Ecology, Netherlands, Institute of Ecology (NIOO-KNAW) Droevendaalsteeg 10, Wageningen 6708 PB, The Netherlands *Corresponding authors. Michael Goodfellow: [email protected], Tel: +44 191 2087706. Gilles van Wezel: Email: [email protected], Tel: +31 715274310. Accession for the full genome assembly: GCF_001445655.1 1 Abstract A polyphasic study was designed to establish the taxonomic status of a Streptomyces strain isolated from soil from the QinLing Mountains, Shaanxi Province, China, and found to be the source of known and new specialized metabolites. Strain MBT76 T was found to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces . -
Actinobacteria and Myxobacteria Isolated from Freshwater Snails and Other Uncommon Iranian Habitats, Their Taxonomy and Secondary Metabolism
Actinobacteria and Myxobacteria isolated from freshwater snails and other uncommon Iranian habitats, their taxonomy and secondary metabolism Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Nasim Safaei aus Teheran / Iran 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 24.02.2021 mündliche Prüfung (Disputation) am: 20.04.2021 Druckjahr 2021 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Safaei, N. Mast, Y. Steinert, M. Huber, K. Bunk, B. Wink, J. (2020). Angucycline-like aromatic polyketide from a novel Streptomyces species reveals freshwater snail Physa acuta as underexplored reservoir for antibiotic-producing actinomycetes. J Antibiotics. DOI: 10.3390/ antibiotics10010022 Safaei, N. Nouioui, I. Mast, Y. Zaburannyi, N. Rohde, M. Schumann, P. Müller, R. Wink.J (2021) Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran. Int J Syst Evol Microbiol (IJSEM). DOI: 10.1099/ijsem.0.004625 Tagungsbeiträge Actinobacteria and myxobacteria isolated from freshwater snails (Talk in 11th Annual Retreat, HZI, 2020) Posterbeiträge Myxobacteria and Actinomycetes isolated from freshwater snails and -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. -
Investigating the Relationship Between Amphotericin B and Extracellular
Investigating the relationship between amphotericin B and extracellular vesicles produced by Streptomyces nodosus By Samuel John King A thesis submitted in partial fulfilment of the requirements for the degree of Master of Research School of Science and Health Western Sydney University 2017 Acknowledgements A big thank you to the following people who have helped me throughout this project: Jo, for all of your support over the last two years; Ric, Tim, Shamilla and Sue for assistance with electron microscope operation; Renee for guidance with phylogenetics; Greg, Herbert and Adam for technical support; and Mum, you're the real MVP. I acknowledge the services of AGRF for sequencing of 16S rDNA products of Streptomyces "purple". Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. ……………………………………………………..… (Signature) Contents List of Tables............................................................................................................... iv List of Figures .............................................................................................................. v Abbreviations .............................................................................................................. vi Abstract ..................................................................................................................... -
INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively. -
The Roles of Streptomyces and Novel Species Discovery
Review Article Progress in Microbes and Molecular Biology A Review on Mangrove Actinobacterial Diversity: The Roles of Streptomyces and Novel Species Discovery Jodi Woan-Fei Law1,2, Priyia Pusparajah1, Nurul-Syakima Ab Mutalib3, Sunny Hei Wong4, Bey-Hing Goh5*, Learn-Han Lee1* 1Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia 2Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China 3UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, University Kebangsaan Malaysia, Kuala Lum- pur, Malaysia 4Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong 5Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, Malaysia Abstract : In the class Actinobacteria, the renowned genus Streptomyces comprised of a group of uniquely complex bacteria that capable of synthesizing a great variety of bioactive metabolites. Streptomycetes are noted to possess several special qual- ities such as multicellular life cycle and large linearized chromosomes. The significant contribution of Streptomyces in mi- crobial drug discovery as witnessed through the discovery of many important antibiotic drugs has undeniably encourage the exploration of these bacteria from different environments, especially the mangrove environments. This review emphasizes on the genus Streptomyces and reports on the diversity of actinobacterial population from mangroves at different regions of the world as well as discovery of mangrove-derived novel Streptomyces species. Overall, the research on diversity of Actinobac- teria in the mangrove environments remains limited. -
Gordonia Bronchialis Type Strain (3410)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Gordonia bronchialis type strain (3410). Permalink https://escholarship.org/uc/item/4c00p3q7 Journal Standards in genomic sciences, 2(1) ISSN 1944-3277 Authors Ivanova, Natalia Sikorski, Johannes Jando, Marlen et al. Publication Date 2010-01-28 DOI 10.4056/sigs.611106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:19-28 DOI:10.4056/sigs.611106 Complete genome sequence of Gordonia bronchialis type strain (3410T) Natalia Ivanova1, Johannes Sikorski2, Marlen Jando2, Alla Lapidus1, Matt Nolan1, Susan Lu- cas1, Tijana Glavina Del Rio1, Hope Tice1, Alex Copeland1, Jan-Fang Cheng1, Feng Chen1, David Bruce1,3, Lynne Goodwin1,3, Sam Pitluck1, Konstantinos Mavromatis1, Galina Ovchin- nikova1, Amrita Pati1, Amy Chen4, Krishna Palaniappan4, Miriam Land1,5, Loren Hauser1,5, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, Patrick Chain1,3, Elizabeth Saunders1,3, Cliff Han1,3, John C. Detter1,3, Thomas Brettin1,3, Manfred Rohde6, Markus Göker2, Jim Bristow1, Jona- than A. Eisen1,7, Victor Markowitz4, Philip Hugenholtz1, Hans-Peter Klenk2, and Nikos C. Kyrpides1* 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Nikos C. -
Isolation and Characterization of Streptomyces Sp. NMF76 with Potential Antimicrobial Activity from Mangrove Sediment, Red Sea, Egypt
Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(6): 479 – 495 (2020) www.ejabf.journals.ekb.eg Isolation and characterization of Streptomyces sp. NMF76 with potential antimicrobial activity from mangrove sediment, Red Sea, Egypt. Nayer M. Fahmy National Institute of Oceanography and Fisheries, Egypt. Author email: [email protected] ARTICLE INFO ABSTRACT Article History: Streptomyce sp. NMF76 was isolated from mangrove sediment at the Received: Sept. 15, 2020 Egyptian Red Sea coast by serial dilution method and identified based on Accepted: Oct. 4, 2020 morphological and biochemical properties as well as 16s rDNA sequence Online: Oct. 7, 2020 analysis. The culturing parameters maximizing the antimicrobial activity and _______________ the MIC values for the tested pathogens were determined. The ethyl acetate extract was analyzed by GC-MS. Morphological and biochemical Keywords: characteristics and 16s rDNA sequence analysis affiliated the strain to the Streptomyces, Streptomyces genus with accession number, MT0199162. It exhibited the antimicrobial activity, maximum antimicrobial activity when cultured in ISP5 medium containing 3% culturing conditions, NaCl and incubated at 30 ᵒC for 14 days with glycerol and L-asparagine as Red Sea, carbon and nitrogen sources, respectively. The strain exhibited antimicrobial Mangrove, activity against Vibrio damsela, S. aureus, E. fecalis and C. albicans and the GC-MS MIC values were 285,400, 461 and 545 µg/mL, respectively. GC-MS analysis of the extract revealed the presence of Benzene, 1,2,4-trimethyl (21.47 %), 2H- Pyran-3-ol,tetrahydro-2,2,6-trimethyl-6-(4-methyl-3-cyclohexen-1-yl)-, [2S- [2à, 5á (R*) ] ]- (18.35 %) , Benzene, 1-ethyl-3-methyl- (15.76 %), and undecane (9.96 %) as major components. -
Bioactivity Assessment of Indian Origin—Mangrove Actinobacteria Against Candida Albicans
marine drugs Article Bioactivity Assessment of Indian Origin—Mangrove Actinobacteria against Candida albicans J. G. S. Pavan Kumar 1, Ajitha Gomathi 1, Vitor Vasconcelos 2,3,* and K. M. Gothandam 1 ID 1 Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India; [email protected] (J.G.S.P.K.); [email protected] (A.G.); [email protected] (K.M.G.) 2 CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal 3 Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-223401817 Received: 27 December 2017; Accepted: 9 February 2018; Published: 12 February 2018 Abstract: Actinobacteria is found to have a potent metabolic activity against pathogens. The present study reveals the assessment of potent antifungal secondary metabolites from actinobacteria isolated from Indian marine mangrove sediments. The samples were collected from the coastal regions of Muthupet, Andaman and the Nicobar Islands. Identification was carried out using 16S rRNA analysis and biosynthetic genes (Polyketide synthase type I/II and Non-ribosomal peptide synthase) were screened. Actinobacteria were assayed for their antifungal activity against 16 clinical Candida albicans and the compound analysis was performed using gas chromatography-mass spectrometry GC-MS. The 31 actinobacterial strains were isolated and 16S rRNA gene sequencing revealed that this ecosystem is rich on actinobacteria, with Streptomyces as the predominant genus. The PCR based screening of biosynthetic genes revealed the presence of PKS-I in six strains, PKS-II in four strains and NRPS in 11 strains. -
Gordonia Polyisoprenivorans from Groundwater
Brazilian Journal of Microbiology (2006) 37:168-174 ISSN 1517-8382 GORDONIA POLYISOPRENIVORANS FROM GROUNDWATER CONTAMINATED WITH LANDFILL LEACHATE IN A SUBTROPICAL AREA: CHARACTERIZATION OF THE ISOLATE AND EXOPOLYSACCHARIDE PRODUCTION Roberta Fusconi1*; Mirna Januária Leal Godinho1; Isara Lourdes Cruz Hernández1; Nelma Regina Segnini Bossolan2 1Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, São Carlos, SP, Brasil; 2Instituto de Física, Universidade de São Paulo, São Carlos, SP, Brasil Submitted: April 30, 2004; Returned to authors for corrections: June 01, 2005; Approved: February 26, 2006 ABSTRACT A strain of Gordonia sp. (strain Lc), from landfill leachate-contaminated groundwater was characterized by polyphasic taxonomy and studied for exopolysaccharide (EPS) production. The cells were Gram-positive, catalase-positive, oxidase-negative and non-motile. The organism grew both aerobically and, in anoxic environment, in the presence of NaNO3. Rods occured singly, in pairs or in a typical coryneform V-shaped. The organism had morphological, physiological and chemical properties consistent with its assignment to the genus Gordonia and mycolic and fatty acid pattern that corresponded to those of G. polyisoprenivorans DSM 44302T. The comparison of the sequence of the first 500 bases of the 16S rDNA of strain Lc gave 100% similarity with the type strain of Gordonia polyisoprenivorans DSM 44302T. Experiments conducted in anaerobic conditions in liquid E medium with either glucose or sucrose as the main carbon source showed that sucrose did not support the growth of Lc strain and that on glucose the maximum specific growth rate was 0.17h-1, representing a generation time of approximately 4 hours. On glucose, a maximum of total EPS was produced during the exponential phase (126.17 ± 15.63 g l-1).