Arrhythmias and Pregnancy Management of Preexisting and New-Onset Maternal Arrhythmias

Total Page:16

File Type:pdf, Size:1020Kb

Arrhythmias and Pregnancy Management of Preexisting and New-Onset Maternal Arrhythmias Arrhythmias and Pregnancy Management of Preexisting and New-Onset Maternal Arrhythmias Dominique S. Williams, MDa,*, Krasimira Mikhova, MDb, Sandeep Sodhi, MDc KEYWORDS Pregnancy Maternal arrhythmias Arrhythmias Atrial fibrillation Supraventricular tachycardia Ventricular tachycardia Structural heart disease KEY POINTS Women with preexisting arrhythmias are at high risk for recurrent arrhythmias and/or exacerbation arrhythmias with pregnancy. Arrhythmias may present at any time during pregnancy. Higher risk periods include the latter part of the second trimester, third trimester, and peripartum period. New-onset atrial fibrillation and ventricular arrhythmias should prompt evaluation for structural heart disease. BACKGROUND minute, and peripheral vascular resistance declines. These changes are amplified in multiple gestation Arrhythmias are the most common cardiovascular pregnancy, with cardiac output increasing by 60% complication of pregnancy. Hospitalizations due to 70%.2,3 Physiologic changes peak in the second to arrhythmias in pregnancy have increased by trimester, and again in labor and delivery where car- 58% from 2000 to 2012, mainly due to a rise in 1 diac output increases due to “auto transfusion” with atrial fibrillation. This rise is likely due to the in- uterine contractions. Sympathomimetic tone is also crease in pregnancy in women with structural increased due multiple factors including neurohor- heart disease. Arrhythmias may present for the monal changes during pregnancy, and pain and first time in pregnancy, and in women with a his- anxiety during labor and delivery.3,4 tory of arrhythmias, pregnancy may lead to an Cardiac myocytes have estrogen and proges- exacerbation of a previously controlled terone receptors. The downstream effects of es- arrhythmia. Identification and appropriate man- trogen and progesterone on cardiac myocytes is agement of arrhythmias are of utmost importance not well understood, but studies have shown these in order to optimize maternal and fetal health. hormones play a role in repolarization.4 Temporary cardiac remodeling during pregnancy may PATHOPHYSIOLOGY contribute to the development of arrhythmias. Cardiac output increases by 30% to 50% in preg- Atrial enlargement and stretch may create a sub- 5,6 nancy, heart rate increases by 10 to 15 beats per strate for atrial arrythmias. a Cardiovascular Division, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA; b Cardiovascular Division, Electrophysiology, John T. Milliken Department of Internal Medicine, Washington University School of Medi- cine, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA; c Department of Medicine, Cardio- vascular Division, John T. Milliken Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA * Corresponding author. E-mail address: [email protected] Cardiol Clin 39 (2021) 67–75 https://doi.org/10.1016/j.ccl.2020.09.013 0733-8651/21/Published by Elsevier Inc. cardiology.theclinics.com Descargado para Irene Ramírez ([email protected]) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en enero 08, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados. 68 Williams et al PREMATURE BEATS Atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular reentrant tachycardia Premature atrial and ventricular beats are common (AVRT) are the most common subtypes of SVT. in pregnancy, occurring in w59% of pregnancies 7 AVNRT is characterized by dual AV node physi- in one study. Premature beats are often benign ology allowing anterograde and retrograde con- and patient reassurance can be provided. Howev- duction. In AVRT conduction may occur through er, in some patients, premature beats can be asso- the AV node or the accessory pathway. In anti- ciated with structural heart disease and further dromic AVRT, the tachycardia conducts antero- workup and evaluation are prudent. grade down the accessory pathway and Premature ventricular contractions (PVC) may retrograde conduction through the AV node, be an initial presentation of a cardiomyopathy or creating a regular wide complex tachycardia. Anti- lead to the development of a cardiomyopathy. dromic AVRT accounts of 5% to 10% of AVRT.12 PVC burden has been shown to correlate with In patients with SVT, electrocardiograms in si- left ventricular function. Most cases of PVC- nus rhythm are assessed for preexcitation, which induced cardiomyopathy occur in patients with a may be asymptomatic and intermittently present PVC burden of greater than 10% in 24 hours.8 9 on electrocardiogram. Findings of preexcitation Tong and colleagues performed a prospective include a short PR interval less than 120 ms, case control study of 53 pregnancies in 43 women slurred upstroke of the QRS, and QRS prolonga- with a PVC burden of greater than 1%, mean PVC tion greater than 110 ms. Concern arises in pa- burden of 13.9%, and no structural heart disease. tients with preexcited atrial fibrillation that may PVCs presented more commonly in the first degenerate into ventricular fibrillation. Preexcita- trimester. In 25 of 53 pregnancies, beta-blocker tion should be considered in patients with SVT therapy was initiated due to symptoms and/or a who present with syncope or sudden cardiac high burden. Adverse cardiovascular events death. occurred in 11% of pregnancies and included heart failure, and sustained and nonsustained ven- tricular tachycardia. Pregnancies with adverse ATRIAL FIBRILLATION cardiovascular events all had a PVC burden of Atrial fibrillation (AF) is the most common greater than 5%. Adverse fetal events occurred arrhythmia in pregnancy, accounting for 27 per in 13% of pregnancies and included small for 9 100,000 pregnancy hospitalizations for arryth- gestational age and preterm birth. mias.1,13 In a meta-analysis of 7 studies totaling Patients with significant symptoms and pre- 8 301,638 pregnancies, AF incidence was signifi- served systolic function should be reassured. Med- cantly higher in women with structural heart dis- ical therapy for PVCs is indicated for symptoms or in ease compared with women without structural the setting of a reduced left ventricular ejection frac- heart disease (0.3% vs 2.2%).14 tion. First-line therapy with non-dihydropyridine cal- Risk factors for AF in pregnancy are similar to cium channel blockers or beta-blockers, excluding 8 risk factors in the nonpregnant state. Obesity and atenolol, is recommended. age older than 40 significantly increase risk of Premature atrial contractions (PACs) have primar- AF.15 Additional risk factors for AF identified in ily been studied in the nonpregnant population. the Registry of Pregnancy and Cardiac Disease Frequent PACs (>100 beats in 24 hours) have (ROPAC) include congenital heart disease, preex- been shown to increase the risk of new-onset atrial isting history of AF, beta-blocker use before preg- fibrillation, supraventricular tachycardia, and car- nancy, and valvular heart disease.16 diovascular morbidity and mortality in healthy pa- AF in pregnancy is associated with adverse tients and patients with multiple comorbidities. 10,11 maternal and fetal outcomes. Adverse fetal out- including structural heart disease. comes include intrauterine growth restriction, res- piratory distress syndrome, intraventricular SUPRAVENTRICULAR TACHYCARDIA hemorrhage, and higher rates of neonatal intensive care unit admissions. In addition, agents used for Supraventricular tachycardia (SVT) is the second rate control may lead to maternal hypotension most common arrhythmia in pregnancy, occurring and decreased placental perfusion, increasing in 22 per 100,000 pregnancy hospitalizations.1 the risk for preterm labor. Adverse maternal out- SVT may present at any stage of pregnancy, but comes include heart failure and thromboembolic commonly presents in the second trimester. SVT events.15–17 presents with sudden onset of palpitations, which Management of AF is similar to the nonpregnant may be associated with dyspnea, chest discom- state. In the nonpregnant population, trials have fort, or presyncope. not shown a difference in cardiovascular Descargado para Irene Ramírez ([email protected]) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en enero 08, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados. Arrhythmias and Pregnancy 69 outcomes and overall mortality between rate and heart rate with pregnancy. During pregnancy, the rhythm control strategies.18,19 There are no data heart rate increases by 10 to 20 beats per minute available comparing maternal and fetal outcomes but the resting heart rate rarely exceeds greater in a rate control versus rhythm control approach. than 95 beats per minute.28 IST is characterized According to the 2018 European Society of Cardi- by an elevated resting heart rate greater than 100 ology Guidelines, a rhythm control strategy is beats per minute or an average heart rate of preferred for management of AF in pregnancy.20 greater than 90 beats per minute over 24 hours Rhythm control allows for lower doses of rate con- in the absence of secondary causes. Symptoms trolling medications, such as beta-blockers, which of IST include palpitations,
Recommended publications
  • Non Commercial Use Only
    Cardiogenetics 2017; volume 7:6304 Sudden death in a young patient with atrial fibrillation Case Report Correspondence: María Angeles Espinosa Castro, Inherited Cardiovascular Disease A 22-year-old man suffered a sudden Program, Cardiology Department, Gregorio María Tamargo, cardiac arrest without previous symptoms Marañón Hospital, Dr. Esquerdo, 46, 28007, María Ángeles Espinosa, while he was at rest, waiting for a subway Madrid, Spain. Víctor Gómez-Carrillo, Miriam Juárez, train. Cardiopulmonary resuscitation was Tel.: +34.91.586.82.90. immediately started using an Automated E-mail: [email protected] Francisco Fernández-Avilés, External Defibrillation that identified the Raquel Yotti Key words: KCNQ1; mutation; channelopa- presence of ventricular fibrillation and thy; sudden cardiac death; atrial fibrillation. Inherited Cardiovascular Disease delivered a shock. Return of spontaneous Program, Cardiology Department, circulation was achieved after three Contributions: MT, acquisition and interpreta- Gregorio Marañón Hospital, Madrid, attempts, being atrial fibrillation (AF) the tion of data for the work, ensuring that ques- Spain patient’s rhythm at this point (Figure 1). tions related to the accuracy or integrity of any He was admitted to our Cardiovascular part of the work is appropriately investigated Intensive Care Unit and therapeutic and resolved; MAE, conception of the work, hypothermia was performed over a period critical revision of the intellectual content, final approval of the version to be published, Abstract of 24 h. After completing hypothermia, ensuring that questions related to the accuracy rewarming, and another 24 h of controlled of any part of the work is appropriately inves- Sudden cardiac death (SCD) in young normothermia the patient awakened with no tigated and resolved; VG-C, acquisition and patients without structural heart disease is residual neurologic damage.
    [Show full text]
  • Common Arrhythmias Disclosures
    Common Arrhythmias Disclosures • I work for Virginia Garcia Memorial Health Center. • And I am a medical editor for Jones & Bartlett Publishing. Jon Tardiff, BS, PA-C OHSU Clinical Assistant Professor What a 12-Lead ECG can help you do • Diagnose ACS / AMI • Interpret arrhythmias • Identify life-threatening syndromes (WPW, LGL, Long QT synd., Wellens synd., etc) • Infer electrolyte imbalances • Infer hypertrophy of any chamber • Infer COPD, pericarditis, drug effects, and more! Arabic, Somali, Mai Mai, Pashtu, Urdu, ASL, and more! For example… WPW with Atrial Fib 55 66 Wolff-Parkinson-WhiteWPW Graphic synd. Same pt, converted to SR Drs. Wolff, Parkinson, & White 77 Another example: Dr. William Stokes—1800s 71 y.o. man with syncope This patient is conscious and alert! Third Degree Block 9 Treatment: permanent pacemaker 10 Lots of ways to read ECGs… Limitations of a 12-Lead ECG • QRSs wide or narrow? • Is it sinus rhythm or not? • Truly useful only ~40% of the time • Regular or irregular? • If not, is it atrial fibrillation? • Each ECG is only a 10 sec. snapshot • Fast or slow? • BBB? • P waves? • MI? • Serial ECGs are necessary, especially for ACS • Other labs help corroborate ECG findings (cardiac markers, Cx X-ray) • Confounders must be ruled out (LBBB, dissecting aneurysm, pericarditis, WPW, Symptoms: digoxin, LVH, RVH) • Syncope is bradycardia, heart blocks, or VT • Rapid heart beat is AF, SVT, or VT Conduction System Lead II P wave axis …upright in L II II R T P R U Q S …upright in L II R wave axis SA Node AV Node His Bundle BBs Purkinje Fibers 14 13 Q S Normal Sinus Rhythm Triplicate Method: 6-second strip: 6 seconds 300, 150, 100, Count PQRST cycles in a 6 75, 60, 50 second strip & multiply x 10 Quick, easy, sufficient Easy, & more accurate 300 150 100 75 60 6 seconds What is the heart rate? Horizontal axis is time (mS); vertical axis is electrical energy (mV) 16 1.
    [Show full text]
  • Antithrombotic Therapy in Atrial Fibrillation Associated with Valvular Heart Disease
    Europace (2017) 0, 1–21 EHRA CONSENSUS DOCUMENT doi:10.1093/europace/eux240 Antithrombotic therapy in atrial fibrillation associated with valvular heart disease: a joint consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology Working Group on Thrombosis, endorsed by the ESC Working Group on Valvular Heart Disease, Cardiac Arrhythmia Society of Southern Africa (CASSA), Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), South African Heart (SA Heart) Association and Sociedad Latinoamericana de Estimulacion Cardıaca y Electrofisiologıa (SOLEACE) Gregory Y. H. Lip1*, Jean Philippe Collet2, Raffaele de Caterina3, Laurent Fauchier4, Deirdre A. Lane5, Torben B. Larsen6, Francisco Marin7, Joao Morais8, Calambur Narasimhan9, Brian Olshansky10, Luc Pierard11, Tatjana Potpara12, Nizal Sarrafzadegan13, Karen Sliwa14, Gonzalo Varela15, Gemma Vilahur16, Thomas Weiss17, Giuseppe Boriani18 and Bianca Rocca19 Document Reviewers: Bulent Gorenek20 (Reviewer Coordinator), Irina Savelieva21, Christian Sticherling22, Gulmira Kudaiberdieva23, Tze-Fan Chao24, Francesco Violi25, Mohan Nair26, Leandro Zimerman27, Jonathan Piccini28, Robert Storey29, Sigrun Halvorsen30, Diana Gorog31, Andrea Rubboli32, Ashley Chin33 and Robert Scott-Millar34 * Corresponding author. Tel/fax: þ44 121 5075503. E-mail address: [email protected] Published on behalf of the European Society of Cardiology. All rights reserved. VC The Author 2017. For permissions, please email: [email protected]. 2 G.Y.H. Lip 1Institute of Cardiovascular Sciences, University of Birmingham and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Denmark (Chair, representing EHRA); 2Sorbonne Universite´ Paris 6, ACTION Study Group, Institut De Cardiologie, Groupe Hoˆpital Pitie´-Salpetrie`re (APHP), INSERM UMRS 1166, Paris, France; 3Institute of Cardiology, ‘G.
    [Show full text]
  • Atrial Flutter Patient Information
    AF A Atrial flutter patient information Providing information, support and access to established, new or innovative treatments for atrial fibrillation www.afa-international.org Registered Charity No. 1122442 Glossary Antiarrhythmic drugs Drugs used to restore the Contents normal heart rhythm Introduction Anticoagulant A group of drugs which help to thin the blood and prevent AF-related stroke What is atrial flutter? Arrhythmia A heart rhythm disorder What causes atrial flutter? Atrial flutter A rhythm disorder characterised by a rapid but regular atrial rate although not as high as What are the atrial fibrillation symptoms of atrial flutter? A therapy to treat arrhythmias Cardioversion How do I get to which uses a transthoracic electrical shock to revert see the right doctor the heart back into a normal rhythm to treat my atrial flutter? Catheter ablation A treatment by which the small area inside the heart which has been causing atrial What are the risks flutter is destroyed of atrial flutter? Echocardiogram An image of the heart using Diagnosis and echocardiography or soundwave-based technology. treatment An echocardiogram (nicknamed ‘echo’) shows a three-dimensional shot of the heart Treatment of atrial flutter Electrocardiogram (ECG) A representation of the heart’s electrical activity in the form of wavy lines. Drug treatments An ECG is taken from electrodes on the skin surface Stroke prevention The inability (failure) of the heart to Heart failure Non-drug treatments pump sufficient oxygenated blood around the body to meet physiological requirements 2 Introduction Atrial flutter is a relatively common heart rhythm The heart disturbance encountered by doctors, although not and normal as common as atrial fibrillation (AF).
    [Show full text]
  • Unstable Angina with Tachycardia: Clinical and Therapeutic Implications
    Unstable angina with tachycardia: Clinical and therapeutic implications We prospectively evaluated 19 patients with prolonged chest pain not evolving to myocardiai infarction and accompanied with reversible ST-T changes and tachycardia (heart rate >lOO beats/min) in order to correlate heart rate reduction with ischemic electrocardiographic (ECG) changes. Fourteen patients (74%) received previous long-term combined treatment with nifedipine and nitrates. Continuous ECG monitoring was carried out until heart rate reduction and at least one of the following occurred: (1) relief of pain or (2) resolution of ischemic ECG changes. The study protocol consisted of carotid massage in three patients (IS%), intravenous propranolol in seven patients (37%), slow intravenous amiodarone infusion in two patients (lo%), and intravenous verapamil in four patients (21%) with atrial fibrillation. In three patients (16%) we observed a spontaneous heart rate reduction on admission. Patients responded with heart rate reduction from a mean of 126 + 10.4 beats/min to 64 k 7.5 beats/min (p < 0.005) and an ST segment shift of 4.3 k 2.13 mm to 0.89 k 0.74 mm (p < 0.005) within a mean interval of 13.2 + 12.7 minutes. Fifteen (79%) had complete response and the other four (21%) had partial relief of pain. A significant direct correlation was observed for heart rate reduction and ST segment deviation (depression or elevation) (f = 0.7527 and 0.8739, respectively). These patients represent a unique subgroup of unstable angina, in which the mechanism responsible for ischemia is excessive increase in heart rate. Conventional vasodilator therapy may be deleterious, and heart rate reduction Is mandatory.
    [Show full text]
  • Effects of Nifekalant Injected Into the Pericardial Space on the Transmural Dispersion of Repolarization in Pig
    Showa Univ J Med Sci 19(3), 123 135, September 2007 Original Effects of Nifekalant Injected into the Pericardial Space on the Transmural Dispersion of Repolarization in Pig Hiroyuki ITo, Taku ASANO, Youichi KOBAYASHI, Tatsuya ONUKI, Fumito MwosHI, Taka-aki MATSUYAMA, Yoshino MINOURA, Norikazu WATANABE, Mitsuharu KAWAMURA, Kaoru TANNO and Takashl KATAGIRI Abstract: Transmural dispersion of repolarization (TDR) has been implicated in the onset of ventricular arrhythmia. We investigated the effects of nifekalant (NIF) injected into the pericardial space on TDR and T wave in pig. We injected 50 or 100 mg of NIF into the pericardial space of 11 pigs, and measured the effective refractory period (ERP) between the endocardial and epicardial myocardial cells, as well as QT time and QT peak-end as an index of TDR and T waveforms, respectively. TDR decreased from 56•} 10 msec to 44•}8 msec (P < 0.01), 5.1 min after injection of 100 mg of NIF, although the QTc did not change. At a later time, QTc increased from 457 •} 44 msec before injection to 540•}49 msec (P < 0.01) and TDR recovered to the control level. When 50 mg of NIF was injected, the T wave amplitude decreased from 0.433 •}0.301 mV before injection to 0.107•}0.192 mV (P < 0.01) at 10 min after injection ; 100 mg of NIF caused the T wave amplitude to decrease more rapidly, reaching a negative value at 4.5 min after injection. Injecting NIF into the pericardial space altered ERP, QT, and T waveform, and also decreased TDR.
    [Show full text]
  • Respiration Driven Excessive Sinus Tachycardia Treated with Clonidine Matthew Emile Li Kam Wa,1 Patricia Taraborrelli,1 Sajad Hayat,2 Phang Boon Lim1
    Novel treatment (new drug/intervention; established drug/procedure in new situation) BMJ Case Reports: first published as 10.1136/bcr-2016-216818 on 28 April 2017. Downloaded from CASE REPORT Respiration driven excessive sinus tachycardia treated with clonidine Matthew Emile Li Kam Wa,1 Patricia Taraborrelli,1 Sajad Hayat,2 Phang Boon Lim1 1Department of Cardiology, SUMMARY no evidence of dual AV node physiology, accessory Imperial College Healthcare A 26-year-old man presented to our syncope service pathway or inducible supraventricular tachycardia. NHS Trust, London, UK 2Department of Cardiology, with debilitating daily palpitations, shortness of breath, A subsequent permanent pacemaker led to no University Hospitals Coventry presyncope and syncope following a severe viral further episodes of frank syncope. However his and Warwickshire NHS Trust, respiratory illness 4 years previously. Mobitz type II block ongoing debilitating exertional and respiratory- Coventry, UK had previously been identified, leading to a permanent driven palpitations with presyncope remained. pacemaker and no further episodes of frank syncope. Conservative measures including increased fluid Correspondence to Dr Phang Boon Lim, Transthoracic echocardiography, electophysiological study intake and compression stockings had no effect. [email protected] and repeated urine metanepherines were normal. His Trials of medication including fludrocortisone, fle- palpitations and presyncope were reproducible on deep cainide, β blockers and ivabradine were either not Accepted 18 December 2016 inspiration, coughing, isometric hand exercise and tolerated or had no significant effect on his passive leg raises. We demonstrated rapid increases in symptoms. heart rate with no change in morphology on his 12 lead During a simple active stand over 3 min, his ECG.
    [Show full text]
  • Basic Rhythm Recognition
    Electrocardiographic Interpretation Basic Rhythm Recognition William Brady, MD Department of Emergency Medicine Cardiac Rhythms Anatomy of a Rhythm Strip A Review of the Electrical System Intrinsic Pacemakers Cells These cells have property known as “Automaticity”— means they can spontaneously depolarize. Sinus Node Primary pacemaker Fires at a rate of 60-100 bpm AV Junction Fires at a rate of 40-60 bpm Ventricular (Purkinje Fibers) Less than 40 bpm What’s Normal P Wave Atrial Depolarization PR Interval (Normal 0.12-0.20) Beginning of the P to onset of QRS QRS Ventricular Depolarization QRS Interval (Normal <0.10) Period (or length of time) it takes for the ventricles to depolarize The Key to Success… …A systematic approach! Rate Rhythm P Waves PR Interval P and QRS Correlation QRS Rate Pacemaker A rather ill patient……… Very apparent inferolateral STEMI……with less apparent complete heart block RATE . Fast vs Slow . QRS Width Narrow QRS Wide QRS Narrow QRS Wide QRS Tachycardia Tachycardia Bradycardia Bradycardia Regular Irregular Regular Irregular Sinus Brady Idioventricular A-Fib / Flutter Bradycardia w/ BBB Sinus Tach A-Fib VT PVT Junctional 2 AVB / II PSVT A-Flutter SVT aberrant A-Fib 1 AVB 3 AVB A-Flutter MAT 2 AVB / I or II PAT PAT 3 AVB ST PAC / PVC Stability Hypotension / hypoperfusion Altered mental status Chest pain – Coronary ischemic Dyspnea – Pulmonary edema Sinus Rhythm Sinus Rhythm P Wave PR Interval QRS Rate Rhythm Pacemaker Comment . Before . Constant, . Rate 60-100 . Regular . SA Node Upright in each QRS regular . Interval =/< leads I, II, . Look . Interval .12- .10 & III alike .20 Conduction Image reference: Cardionetics/ http://www.cardionetics.com/docs/healthcr/ecg/arrhy/0100_bd.htm Sinus Pause A delay of activation within the atria for a period between 1.7 and 3 seconds A palpitation is likely to be felt by the patient as the sinus beat following the pause may be a heavy beat.
    [Show full text]
  • Genetic Testing for Hereditary Cardiac Disease
    Clinical Appropriateness Guidelines Genetic Testing for Hereditary Cardiac Disease EFFECTIVE MARCH 8, 2021 Appropriate.Safe.Affordable © 2019 AIM Specialty Health 2064-0319 Table of Contents Scope .......................................................................................................................................................... 3 Genetic Counseling Requirement ............................................................................................................... 3 Appropriate Use Criteria.............................................................................................................................. 3 Confirmation/Diagnostic Testing of Affected Individuals .............................................................................. 4 Testing of Asymptomatic Individuals .............................................................................................................. 4 Post-Mortem Testing ........................................................................................................................................ 4 Long QT ............................................................................................................................................................. 5 Dilated Cardiomyopathy .................................................................................................................................. 5 Tests Not Clinically Appropriate .....................................................................................................................
    [Show full text]
  • The Example of Short QT Syndrome Jules C
    Hancox et al. Journal of Congenital Cardiology (2019) 3:3 Journal of https://doi.org/10.1186/s40949-019-0024-7 Congenital Cardiology REVIEW Open Access Learning from studying very rare cardiac conditions: the example of short QT syndrome Jules C. Hancox1,4* , Dominic G. Whittaker2,3, Henggui Zhang4 and Alan G. Stuart5,6 Abstract Background: Some congenital heart conditions are very rare. In a climate of limited resources, a viewpoint could be advanced that identifying diagnostic criteria for such conditions and, through empiricism, effective treatments should suffice and that extensive mechanistic research is unnecessary. Taking the rare but dangerous short QT syndrome (SQTS) as an example, this article makes the case for the imperative to study such rare conditions, highlighting that this yields substantial and sometimes unanticipated benefits. Genetic forms of SQTS are rare, but the condition may be under-diagnosed and carries a risk of sudden death. Genotyping of SQTS patients has led to identification of clear ion channel/transporter culprits in < 30% of cases, highlighting a role for as yet unidentified modulators of repolarization. For example, recent exome sequencing in SQTS has identified SLC4A3 as a novel modifier of ventricular repolarization. The need to distinguish “healthy” from “unhealthy” short QT intervals has led to a search for additional markers of arrhythmia risk. Some overlap may exist between SQTS, Brugada Syndrome, early repolarization and sinus bradycardia. Genotype-phenotype studies have led to identification of arrhythmia substrates and both realistic and theoretical pharmacological approaches for particular forms of SQTS. In turn this has increased understanding of underlying cardiac ion channels.
    [Show full text]
  • An Overview on the Short Qt Interval in Childhood
    Journal of Cardiology & Current Research An Overview on The Short Qt Interval in Childhood Overview on the Topic Editorial The QT interval on the electrocardiogram involves both the electrical depolarization (QRS complex) as the electrical Volume 2 Issue 2 - 2015 change in the length or voltage of the same could have serious Francisco R Breijo-Marquez* repolarization of the ventricles (T wave). Any significant Department of Clinical & Experimental Cardiology, USA alteration in the ECG in which such interval is shortened to its normalconsequences. length; Classically,therefore, it the is a short sign and QT notinterval a symptom. is defined So muchas an *Corresponding author: Francisco R Breijo-Marquez, Department of Clinical & Experimental Cardiology, East so that, there may be patients with such electrical disturbance Boston Hospital, School of Medicine, 02136 Boston, and without showing any symptoms throughout their lives. Massachusetts, USA, Email: The short QT syndrome (SQTS) is the set of symptoms Received: March 02, 2015 | Published: March 04, 2015 presented by a patient who has a shortening of the QT interval on the ECG. It is therefore the set of symptoms and signs, in this case the QT interval shortening. (Whenever we speak of “syndrome”, we mean to the set of symptoms (subjective appreciation) and signs (objective appreciation) observed in any disease. treatment of the same to date [2,3]. This syndrome is a cardiac channelopathy associated with a Currently, there is not any unanimity among different authors on what should be the limits of the length of the QT interval predispositionThe diagnostic to atrial hallmark fibrillation of the condition and sudden remains cardiac a short death.
    [Show full text]
  • Common Types of Supraventricular Tachycardia: Diagnosis and Management RANDALL A
    Common Types of Supraventricular Tachycardia: Diagnosis and Management RANDALL A. COLUCCI, DO, MPH, Ohio University College of Osteopathic Medicine, Athens, Ohio MITCHELL J. SILVER, DO, McConnell Heart Hospital, Columbus, Ohio JAY SHUBROOK, DO, Ohio University College of Osteopathic Medicine, Athens, Ohio The most common types of supraventricular tachycardia are caused by a reentry phenomenon producing acceler- ated heart rates. Symptoms may include palpitations (including possible pulsations in the neck), chest pain, fatigue, lightheadedness or dizziness, and dyspnea. It is unusual for supraventricular tachycardia to be caused by structurally abnormal hearts. Diagnosis is often delayed because of the misdiagnosis of anxiety or panic disorder. Patient history is important in uncovering the diagnosis, whereas the physical examination may or may not be helpful. A Holter moni- tor or an event recorder is usually needed to capture the arrhythmia and confirm a diagnosis. Treatment consists of short-term or as-needed pharmacotherapy using calcium channel or beta blockers when vagal maneuvers fail to halt or slow the rhythm. In those who require long-term pharmacotherapy, atrioventricular nodal blocking agents or class Ic or III antiarrhythmics can be used; however, these agents should generally be managed by a cardiologist. Catheter ablation is an option in patients with persistent or recurrent supraventricular tachycardia who are unable to tolerate long-term pharmacologic treatment. If Wolff-Parkinson-White syndrome is present, expedient referral
    [Show full text]