Genetic Programs in Human and Mouse Early Embryos Revealed by Single-Cell RNA Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Programs in Human and Mouse Early Embryos Revealed by Single-Cell RNA Sequencing UCLA UCLA Previously Published Works Title Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Permalink https://escholarship.org/uc/item/4n1561d1 Journal Nature, 500(7464) ISSN 0028-0836 Authors Xue, Zhigang Huang, Kevin Cai, Chaochao et al. Publication Date 2013-08-01 DOI 10.1038/nature12364 Peer reviewed eScholarship.org Powered by the California Digital Library University of California LETTER doi:10.1038/nature12364 Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing Zhigang Xue1*, Kevin Huang2*, Chaochao Cai2, Lingbo Cai3, Chun-yan Jiang3, Yun Feng1, Zhenshan Liu1, Qiao Zeng1, Liming Cheng1, Yi E. Sun1, Jia-yin Liu3, Steve Horvath2 & Guoping Fan2 Mammalian pre-implantation development is a complex process Intriguingly, cluster analyses showed that both pronuclear and involving dramatic changes in the transcriptional architecture1–4. zygote (1-cell stage) embryos clustered closely together but away from We report here a comprehensive analysis of transcriptome dynamics oocytes and cleavage embryos, indicating that the 1-cell stage exhibits a from oocyte to morula in both human and mouse embryos, using distinct transcriptome pattern. Comparisons between mature oocytes single-cell RNA sequencing. Based on single-nucleotide variants in and 1-cell embryos identified 149 differentially expressed genes (false human blastomere messenger RNAs and paternal-specific single- discovery rate (FDR) , 5%, .2-fold change), 79 and 70 of which were nucleotide polymorphisms, we identify novel stage-specific mono- up- and downregulated in 1-cell embryos, respectively (Fig. 1c). Inter- allelic expression patterns for a significant portion of polymorphic estingly, approximately half of the upregulated genes remain highly gene transcripts (25 to 53%). By weighted gene co-expression network expressed in 2- and 4-cell stages but are downregulated at the 8-cell analysis5,6, we find that each developmental stage can be delineated stage, whereas the other half is further upregulated at the 8-cell stage concisely by a small number of functional modules of co-expressed (Fig. 1d). By performing similar single-cell RNA-seq in mouse pre- genes. This result indicates a sequential order of transcriptional changes implantation embryos (Supplementary Table 1), we observed 520 trans- in pathways of cell cycle, gene regulation, translation and metabo- cripts that were upregulated in pronuclei compared to mature oocytes lism, acting in a step-wise fashion from cleavage to morula. Cross- (Supplementary Fig. 1), confirming that both human and mouse species species comparisons with mouse pre-implantation embryos reveal exhibit a conserved minor wave of ZGA before the major wave of ZGA that the majority of human stage-specific modules (7 out of 9) are (or EGA). These results indicated that our approach has overall greater notably preserved, but developmental specificity and timing differ abMorula between human and mouse. Furthermore, we identify conserved key 1 members (or hub genes) of the human and mouse networks. These 8-cell 1-cell genes represent novel candidates that are likely to be key in driving 0 mammalian pre-implantation development. Together, the results Zygote Pronucleus –1 Oocyte (3) provide a valuable resource to dissect gene regulatory mechanisms Pronucleus (3) Zygote PCA 2 Zygote (2) underlying progressive development of early mammalian embryos. Oocyte 2-cell (3) Mammalian pre-implantation development involves sequential decay –2 4-cell (4) 2-cell 8-cell (11) of maternally stored RNAs in parallel with massive induction of new 4-cell Morula (3) –3 transcripts from the embryonic genome in a process called zygotic (or 0.4 0.3 0.2 0.1 0 –2 –1 0 1 2 embryonic) genome activation (ZGA or EGA)7–9. However, previous Dissimilarity PCA 1 gene expression profiling of human pre-implantation has been limited 10–13 cd5 by blastomere sample size and quantitation platforms . Recent NS (14616) 14–17 3 advances in single-cell RNA sequencing (RNA-seq) technology ) Up (79) 10 4 Down (70) have provided the unprecedented opportunity to study gene regulation 2 1 in early human embryos under high resolution. We mapped approxi- 3 mately 700 million sequencing reads derived from 33 single cells of 0 multiple stages, ranging from mature oocytes to 8-cell blastomeres. 2 –1 To control the quality of single-cell RNA-seq from technical errors, we 1 –2 1-cell expression (log 1-cell expression focused on libraries (26 out of a total 33, or 79%) that share at least 80% –3 similarity with other libraries derived from identical pre-implantation 0 O P Z 2 4 8 M stages (Supplementary Table 1). In addition, we performed RNA-seq 12 34 5 Oocyte expression (log ) forthreesamplesofindividualmorula embryos. The typical number of 10 detectable genes (reads per kilobase per million (RPKM ) . 0.1) ranged Figure 1 | High-resolution single-cell transcriptome analysis of human pre- approximately from 8,500 to 12,000 genes in individual cells, demon- implantation embryos. a, Unsupervised hierarchical clustering. b, Principal strating that our technique has greater sensitivity and coverage com- component analysis of single blastomere expression patterns for seven stages of pared with previous microarray methods10–13. Unsupervised hierarchal oocytes and pre-implantation embryos. Sister cells from the same 8-cell embryo are highlighted together. The number of samples for each stage are indicated in clustering analysis and principal component analysis revealed that cells the PCA legend in parenthesis as well as in Supplementary Table 1. of different pre-implantation stages form distinct clusters (Fig. 1a, b). c, Scatterplot showing the number of activated (red) and reduced (blue) genes Furthermore, single-cell resolution revealed that blastomeres from the in 1-cell embryos (n 5 5) compared to oocytes (n 5 3). d, Heatmap showing same 8-cell embryo are more similar to each other than blastomeres relative expression patterns of 1-cell activated genes (n 5 79) across all from a separate 8-cell embryo (Fig. 1a, b). pre-implantation stages. NS, not significant. 1Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200065, China. 2Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA. 3State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China. *These authors contributed equally to this work. 29 AUGUST 2013 | VOL 500 | NATURE | 593 ©2013 Macmillan Publishers Limited. All rights reserved RESEARCH LETTER quantitation for identifying gene expression changes between different Notably, the rs3829009 SNP in CDCA2 is a missense variant that stages of pre-implantation development. results in a benign Arg to Ser amino acid change23 (Fig. 2d). As RNA- Single-cell RNA-seq enabled base-resolution scrutiny without con- seq produces base-resolution information for codons, we further founding effects from cell population heterogeneity. In this unique examined the global prevalence of potentially deleterious transcript study, all embryos were derived from intra-cytoplasmic sperm injec- expression. Using multiple single-cells from the same 8-cell embryo, tion of different egg donors with the same sperm donor. Based on the we consistently identified 1,225 homozygous SNP variants, 3.5% of paternal genotype as assayed by exome sequencing of the sperm which are predicted as damaging non-synonymous variants (Sup- donor’s blood sample, we were able to follow the paternal genome in plementary Fig. 5). This result suggests that single-cell RNA-seq would embryos through single-nucleotide polymorphism (SNP) analysis18–20. be a powerful approach for genome-scale screening of potentially We identified paternally or maternally expressed genes either by infer- deleterious variants in embryos. ring phased paternal haplotype information21,22 or by leveraging sites Thus far the analyses focused on individual gene-transcript changes which are paternally homozygous in exome sequencing, but heterozyg- during each transitional stage, but did not reveal the crucial shift of ous in embryo transcripts (Fig. 2a and Supplementary Table 2). In total, gene networks in pre-implantation development. To understand the we determined the parent-of-origin expression for approximately co-expression relationships between genes at a systems level, we per- 850 to 1,400 gene transcripts (or 15–20% of all detected gene transcripts formed weighted gene co-expression network analysis (WGCNA)5,6. per stage). For further validation of allele-specific expression in early This unsupervised and unbiased analysis identified distinct co-expression embryos, we analysed the status of imprinting genes that exhibit known modules corresponding to clusters of correlated transcripts (Fig. 3a). parent-of-origin expression patterns (see Supplementary Text and Notably, 9 out of 25 co-expression modules showed stage-specific Supplementary Figs 2 and 3). Unexpectedly, we found that 53% of 8-cell expression values, that is, these modules are comprised of genes that embryo transcripts and 23% of morula transcripts exhibit monoallelic tend to be overexpressed in a single developmental stage (r . 0.7, maternal expression patterns (Fig. 2b), even though major EGA in P , 1023, Supplementary Fig. 6). human early embryos already occurred during the transition of 4- to
Recommended publications
  • Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma
    cancers Article Novel Gene Fusions in Glioblastoma Tumor Tissue and Matched Patient Plasma 1, 1, 1 1 1 Lan Wang y, Anudeep Yekula y, Koushik Muralidharan , Julia L. Small , Zachary S. Rosh , Keiko M. Kang 1,2, Bob S. Carter 1,* and Leonora Balaj 1,* 1 Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; [email protected] (L.W.); [email protected] (A.Y.); [email protected] (K.M.); [email protected] (J.L.S.); [email protected] (Z.S.R.); [email protected] (K.M.K.) 2 School of Medicine, University of California San Diego, San Diego, CA 92092, USA * Correspondence: [email protected] (B.S.C.); [email protected] (L.B.) These authors contributed equally. y Received: 11 March 2020; Accepted: 7 May 2020; Published: 13 May 2020 Abstract: Sequencing studies have provided novel insights into the heterogeneous molecular landscape of glioblastoma (GBM), unveiling a subset of patients with gene fusions. Tissue biopsy is highly invasive, limited by sampling frequency and incompletely representative of intra-tumor heterogeneity. Extracellular vesicle-based liquid biopsy provides a minimally invasive alternative to diagnose and monitor tumor-specific molecular aberrations in patient biofluids. Here, we used targeted RNA sequencing to screen GBM tissue and the matched plasma of patients (n = 9) for RNA fusion transcripts. We identified two novel fusion transcripts in GBM tissue and five novel fusions in the matched plasma of GBM patients. The fusion transcripts FGFR3-TACC3 and VTI1A-TCF7L2 were detected in both tissue and matched plasma.
    [Show full text]
  • Product Name: C9orf78 Polyclonal Antibody, ALEXA FLUOR® 647 Conjugated Catalog No
    Product Name: C9orf78 Polyclonal Antibody, ALEXA FLUOR® 647 Conjugated Catalog No. : TAP01-84658R-A647 Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 51759 ISO Type Rabbit IgG Clone N/A Immunogen Range Conjugation ALEXA FLUOR® 647 Subcellular Locations Applications IF(IHC-P) Cross Reactive Species Human, Mouse, Rat Source KLH conjugated synthetic peptide derived from human C9orf78 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background Chromosome 9 consists of about 145 million bases and 4% of the human genome and encodes nearly 900 genes. Considered to play a role in gender determination, deletion of the distal portion of 9p can lead to development of male to female sex reversal, the phenotype of a female with a male X,Y genotype. Hereditary hemorrhagic telangiectasia, which is characterized by harmful vascular defects, is associated with the chromosome 9 gene encoding endoglin protein, ENG. Familial dysautonomia is also associated with chromosome 9 though through the gene IKBKAP. Notably, chromosome 9 encompasses the largest interferon family gene cluster. Chromosome 9 is partnered with chromosome 22 in the translocation leading to the aberrant production of BCR-ABL fusion protein often found in leukemias. The C9orf78 gene product has been provisionally designated C9orf78 pending further characterization. Synonyms bA409K20.3; C9orf78; Chromosome 9 open reading frame 78; CI078_HUMAN; HCA59; Hepatocellular carcinoma associated antigen 59; Hepatocellular carcinoma-associated antigen 59; HSPC220; Uncharacterized protein C9orf78. Storage Aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide. Store at 4°C for 12 months.
    [Show full text]
  • Use of Genomic Tools to Discover the Cause of Champagne Dilution Coat Color in Horses and to Map the Genetic Cause of Extreme Lordosis in American Saddlebred Horses
    University of Kentucky UKnowledge Theses and Dissertations--Veterinary Science Veterinary Science 2014 USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES Deborah G. Cook University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cook, Deborah G., "USE OF GENOMIC TOOLS TO DISCOVER THE CAUSE OF CHAMPAGNE DILUTION COAT COLOR IN HORSES AND TO MAP THE GENETIC CAUSE OF EXTREME LORDOSIS IN AMERICAN SADDLEBRED HORSES" (2014). Theses and Dissertations--Veterinary Science. 15. https://uknowledge.uky.edu/gluck_etds/15 This Doctoral Dissertation is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Veterinary Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Multiple Myeloma Risk Variant at 7P15.3 Creates an IRF4-Binding Site and Interferes with CDCA7L Expression
    ARTICLE Received 7 Jul 2016 | Accepted 19 Oct 2016 | Published 24 Nov 2016 DOI: 10.1038/ncomms13656 OPEN Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression Ni Li1,2, David C. Johnson2, Niels Weinhold3,4, James B. Studd1, Giulia Orlando1, Fabio Mirabella2, Jonathan S. Mitchell1, Tobias Meissner5, Martin Kaiser2, Hartmut Goldschmidt4,6, Kari Hemminki7,8, Gareth J. Morgan3 & Richard S. Houlston1,2 Genome-wide association studies have identified several risk loci for multiple myeloma (MM); however, the mechanisms by which they influence MM are unknown. Here by using genetic association data and functional characterization, we demonstrate that rs4487645 G4T, the most highly associated variant (P ¼ 5.30 Â 10 À 25), resides in an enhancer element 47 kb upstream of the transcription start site of c-Myc-interacting CDCA7L. The G-risk allele, associated with increased CDCA7L expression (P ¼ 1.95 Â 10 À 36), increases IRF4 binding and the enhancer interacts with the CDCA7L promoter. We show that suppression of CDCA7L limits MM proliferation through apoptosis, and increased CDCA7L expression is associated with adverse patient survival. These findings implicate IRF4-mediated CDCA7L expression in MM biology and indicate how germline variation might confer susceptibility to MM. 1 Division of Genetics and Epidemiology, The Institute of Cancer Research, Surrey SM2 5NG, UK. 2 Division of Molecular Pathology, The Institute of Cancer Research, Surrey SM2 5NG, UK. 3 Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA. 4 Department of Internal Medicine V, University of Heidelberg, 69117 Heidelberg, Germany.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Placenta-Derived Exosomes Continuously Increase in Maternal
    Sarker et al. Journal of Translational Medicine 2014, 12:204 http://www.translational-medicine.com/content/12/1/204 RESEARCH Open Access Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy Suchismita Sarker1, Katherin Scholz-Romero1, Alejandra Perez2, Sebastian E Illanes1,2,3, Murray D Mitchell1, Gregory E Rice1,2 and Carlos Salomon1,2* Abstract Background: Human placenta releases specific nanovesicles (i.e. exosomes) into the maternal circulation during pregnancy, however, the presence of placenta-derived exosomes in maternal blood during early pregnancy remains to be established. The aim of this study was to characterise gestational age related changes in the concentration of placenta-derived exosomes during the first trimester of pregnancy (i.e. from 6 to 12 weeks) in plasma from women with normal pregnancies. Methods: A time-series experimental design was used to establish pregnancy-associated changes in maternal plasma exosome concentrations during the first trimester. A series of plasma were collected from normal healthy women (10 patients) at 6, 7, 8, 9, 10, 11 and 12 weeks of gestation (n = 70). We measured the stability of these vesicles by quantifying and observing their protein and miRNA contents after the freeze/thawing processes. Exosomes were isolated by differential and buoyant density centrifugation using a sucrose continuous gradient and characterised by their size distribution and morphology using the nanoparticles tracking analysis (NTA; Nanosight™) and electron microscopy (EM), respectively. The total number of exosomes and placenta-derived exosomes were determined by quantifying the immunoreactive exosomal marker, CD63 and a placenta-specific marker (Placental Alkaline Phosphatase PLAP).
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Investigation into the role of LSH ATPase in chromatin remodelling Alina Gukova Doctor of Philosophy – University of Edinburgh – 2020 ABSTRACT Chromatin remodelling is a crucial nuclear process affecting replication, transcription and repair. Global reduction of DNA methylation is observed in Immunodeficiency-Centromeric Instability-Facial Anomaly (ICF) syndrome. Several proteins were found to be mutated in patients diagnosed with ICF, among them are LSH and CDCA7. LSH is a chromatin remodeller bearing homology to the members of Sf2 remodelling family. A point mutation in its ATPase lobe was identified in ICF. CDCA7 is a zinc finger protein that was recently found to be crucial for nucleosome remodelling activity of LSH. Several point mutations in its zinc finger domain were described in ICF patients. In vitro and in vivo studies have shown that LSH-/- phenotype demonstrates reduction of global DNA methylation, implying that chromatin remodelling LSH functions may be required for the efficient methyltransferase activity, linking this finding to ICF phenotype.
    [Show full text]
  • Wolf-Hirschhorn Syndrome
    Wolf-Hirschhorn syndrome Author: Dr. Dagmar Wieczorek Creation date: September 2003 Scientific editor: Professor Alain Verloes Institut fur Humangenetik, Universitatsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany. [email protected] Abstract Key words Disease name and synonyms Excluded diseases Diagnostic criteria/ definition Differential diagnosis Frequency Clinical description Management including treatment Etiology Diagnostic methods Genetic counseling Antenatal diagnosis Unresolved questions References Abstract Wolf-Hirschhorn syndrome (WHS) is caused by a deletion of the band 4p16.3 and this deletion may be submicroscopic. The craniofacial phenotype (microcephaly, hypertelorism, prominent glabella, broad and/or beaked nose, short philtrum, micrognathia, downturned corners of the mouth, dysplastic ears, preauricular tags) in combination with mental retardation, seizures, congenital heart defects, genital and renal anomalies is indicative for the diagnosis. A familial translocation is responsible for 5 – 13% of the patients. The remainder of the patients have de novo deletions, usually on the paternal chromosome 4, or de novo translocations in 1.6 %. Submicroscopic deletions require molecular techniques, e.g. microsatellite analysis, or molecular-cytogenetic techniques, e.g. fluorescence in situ hybridisation (FISH), to detect the deletion. Fluorescence in situ hybridisation of the patient and his parents should be performed to confirm/exclude translocations. Recurrence risk is low in de novo deletions and translocations,
    [Show full text]