Philosophical Problems of Space-Time Theories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Here’S No Speed of Light, So What the Heck Did Michelson Measure?” “What the Humean Should Say About Quantities: a Reply to Bricker”
Hellems Building, Office 282 [email protected] CU Boulder, Dept of Philosophy (215)-262-3126 Boulder, CO 80309 www.zrperry.com Zee R. Perry curriculum vitae Employment 2018–present Center Visiting Scholar Center for the Study of Origins, University of Colorado, Boulder 2018–present Visiting Instructor Department of Philosophy, University of Colorado, Boulder 2016–2018 Andrew W. Mellon Foundation Postdoctoral Associate Department of Philosophy, Rutgers University, New Brunswick Education 2009–2016 Ph.D. in Philosophy, New York University. Dissertation: Physical Quantities: Mereology and Dynamics Committee: Tim Maudlin (chair), Cian Dorr, Hartry Field, Shamik Dasgupta (ex- ternal, Princeton) 2007–2009 B.A. in Philosophy, Rutgers University Summa Cum Laude. 2005–2007 Moravian College Areas of Specialization Metaphysics, Philosophy of Physics Areas of Competence Philosophy of Science, Philosophy of Art, Logic Fellowships and Awards Summer Early Career Researcher Visiting Fellowship, ANU School of Philosophy and Centre 2019 for the Philosophy of the Sciences 2018–present Visiting Scholarship Award (Project: Origins of Measurement), Center for the Study of Origins, CU Boulder 2015–2016 Mellon Dissertation Fellowship, NYU 2015 Student Senator’s Council Conference Funding Travel Award, NYU 2015 Outstanding Teaching Award, NYU 2014 Graduate School of Arts and Sciences Dean’s Student Travel Grant, NYU 2009–2014 MacCracken Fellowship, NYU 1 Publications 2017 “How to be a Substantivalist Without Getting Shifty About It”. Philosophical Issues: Metaphysics. 27, (1). (2017). http://philpapers.org/rec/PERHTB 2017 “What the Humean Should Say about Entanglement” (with Harjit Bhogal). Noûs. 51, (1). (2017). http://philpapers.org/rec/BHOWTH 2015 “Properly Extensive Quantities”. Philosophy of Science. University of Chicago Press. -
Arxiv:2103.15570V2 [Physics.Hist-Ph] 22 Jun 2021 to This Article in Its Purpose and Content
An Analysis of the Concept of Inertial Frame Boris Čulina Department of Mathematics University of Applied Sciences Velika Gorica Zagrebačka cesta 5, 10410 Velika Gorica, Croatia e-mail: [email protected] Abstract. The concept of inertial frame of reference is analysed. It has been shown that this fundamental concept of physics is not clear enough. A definition of inertial frame of reference is proposed which expresses its key inherent property. The definition is operational and powerful. Many other properties of inertial frames follow from the definition or it makes them plausible. In particular, the definition shows why physical laws obey space and time symmetries and the principle of relativity, it resolves the problem of clock synchronization and the role of light in it, as well as the problem of the geometry of inertial frames. keywords: inertial frame of reference, space and time symmetries, the principle of relativity, clock synchronization, physical geometry The concept of inertial frame is a fundamental concept of physics. The opinion of the author is that not enough attention has been paid to such a significant concept, not only in textbooks, but also in the scientific literature. In the scientific literature, many particular issues related to the concept of inertial frame have been addressed, but, as far as the author is aware, a sys- tematic analysis of this concept has not been made. DiSalle’s article [DiS20] in the Stanford Encyclopedia of Philosophy gives an overview of the histori- cal development of the concept of an inertial frame as an essential part of the historical development of physics. -
Paradox Regained? a Brief Comment on Maudlin on Black Hole Information Loss
(Information) Paradox Regained? A Brief Comment on Maudlin on Black Hole Information Loss JB Manchak, James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract We discuss some recent work by Tim Maudlin concerning Black Hole Information Loss. We argue, contra Maudlin, that there is a paradox, in the straightforward sense that there are propositions that appear true, but which are incompatible with one another. We discuss the significance of the paradox and Maudlin's response to it. Keywords: Black holes; Information loss paradox; Kodama-Wald theorem; evaporation event; Global hyperbolicity The black hole information loss paradox (Hawking, 1976) is a widely discussed (putative) puzzle that arises when one attempts to make sense of physicists' expectation that global quantum dynamics will be unitary in light of the postulated phenomenon of black hole evaporation (Hawking, 1974, 1975; Unruh, 1976), which is apparently a consequence of Hawking radiation.1 In a provocative recent manuscript, Tim Maudlin (2017) forcefully argues that \There is no `information loss' paradox." The \solution" to the \paradox", he claims, requires no new physics and indeed, was already available, though not appreciated, in 1975. The appearance of paradox arises only because of persistent errors, both mathematical and conceptual in character, by prominent members of the physics community. There is much to admire in Maudlin's treatment of the subject. We agree, for instance, with his discussion of the (non-)role of \information" in the putative paradox. What is really at issue is predictability, or even better, retrodictability, and not information (at least in the sense of information theory): as we will describe in more detail below, the puzzle concerns whether any specification of data on a particular surface is sufficient to retrodict the physical process by which that data came about. -
Principle of Relativity in Physics and in Epistemology Guang-Jiong
Principle of Relativity in Physics and in Epistemology Guang-jiong Ni Department of Physics, Fudan University, Shanghai 200433,China Department of Physics , Portland State University, Portland,OR97207,USA (Email: [email protected]) Abstract: The conceptual evolution of principle of relativity in the theory of special relativity is discussed in detail . It is intimately related to a series of difficulties in quantum mechanics, relativistic quantum mechanics and quantum field theory as well as to new predictions about antigravity and tachyonic neutrinos etc. I. Introduction: Two Postulates of Einstein As is well known, the theory of special relativity(SR) was established by Einstein in 1905 on two postulates (see,e.g.,[1]): Postulate 1: All inertial frames are equivalent with respect to all the laws of physics. Postulate 2: The speed of light in empty space always has the same value c. The postulate 1 , usually called as the “principle of relativity” , was accepted by all physicists in 1905 without suspicion whereas the postulate 2 aroused a great surprise among many physicists at that time. The surprise was inevitable and even necessary since SR is a totally new theory out broken from the classical physics. Both postulates are relativistic in essence and intimately related. This is because a law of physics is expressed by certain equation. When we compare its form from one inertial frame to another, a coordinate transformation is needed to check if its form remains invariant. And this Lorentz transformation must be established by the postulate 2 before postulate 1 can have quantitative meaning. Hence, as a metaphor, to propose postulate 1 was just like “ to paint a dragon on the wall” and Einstein brought it to life “by putting in the pupils of its eyes”(before the dragon could fly out of the wall) via the postulate 2[2]. -
Reconstructing William Craig Explanation of Absolute Time Based on Islamic Philosophy
Reconstructing William Craig Explanation of Absolute Time Based on Islamic Philosophy M. S. Kavyani (1), H. Parsania (2), and H. Razmi (3) Department of Philosophy of Physics, Baqir al Olum University, 37185-787, Qom, I. R. Iran. (2) Permanent Address: Department of Social Sciences, Tehran University, Tehran, I. R. Iran. (3) Permanent Address: Department of Physics, University of Qom, Qom, I. R. Iran. (1) [email protected] (2) [email protected] (3) [email protected] Abstract After the advent of the theory of special relativity, the existence of an absolute time in nature was rejected in physics society. In recent decades, William Craig has endeavored to offer an interpretation of empirical evidences corresponding to theory of relativity with the preservation of an absolute time. His strategy is based on two viewpoints including dynamical theory of time and the Eminent God’s temporal being. After considering and criticizing these two viewpoints, using the well-known overall substantial motion of nature in Islamic philosophy and thus the realization of a general time for all the nature, we have tried to reconstruct Craig argument for an absolute time. Although Craig has considered some evidences from modern physics reasoning on an absolute time, the special advantage of the approach considered here is in this fact that it connects better the existing gap between the metaphysics and the physics of the argument. Keywords: Absolute time; Theory of relativity; William Craig; The dynamical time theory; Islamic Philosophy; Nature overall substantial motion; General time Introduction In classical mechanics, the absolute universal time was considered as the measure of the events chronology and a parameter for determining their priority, posteriority, and simultaneity. -
II Physical Geometry and Fundamental Metaphysics
! 1 II Physical Geometry and Fundamental Metaphysics CIAN DORR Final version: Thursday, 16 September 2010 I. Tim Maudlin’s project sets a new standard for fruitful engagement between philosophy, mathematics and physics. I am glad to have a chance to be part of the conversation. I think we can usefully distinguish two different strands within the project: one more conceptual, the other more straightforwardly metaphysical. The conceptual strand is an attempt to clarify certain concepts, such as continuity, connectedness, and boundary, which are standardly analysed in terms of the topological concept of an open set. The metaphysical strand is a defence of a hypothesis about the geometric aspects of the fun- damental structure of reality—the facts in virtue of which the facts of physical geometry are what they are. What I have to say mostly concerns the metaphysical side of things. But I will begin by saying just a little bit about the conceptual strand. II. In topology textbooks, expressions like ‘continuous function’, ‘connected set of points’, and ‘boundary of a set of points’ are generally given stipulative definitions, on a par with the definitions of made-up words like ‘Hausdorff’ (the adjective) and ‘paracompact’. But as Maudlin emphasises, the former expressions can be used to express concepts of which we have enough of an independent grip to make it reasonable to wonder whether the topological definitions are even extensionally adequate. And he argues quite persuasively that we have no reason to believe that they are. The most important and general argu- ment concerns the live epistemic possibility that physical space is discrete, for example by ! 2 containing only finitely many points. -
Relationalism About Mechanics Based on a Minimalist Ontology of Matter
Relationalism about mechanics based on a minimalist ontology of matter Antonio Vassallo,∗ Dirk-André Deckert,† Michael Esfeld‡ Accepted for publication in European Journal for Philosophy of Science This paper elaborates on relationalism about space and time as motivated by a minimalist ontology of the physical world: there are only matter points that are individuated by the distance relations among them, with these re- lations changing. We assess two strategies to combine this ontology with physics, using classical mechanics as example: the Humean strategy adopts the standard, non-relationalist physical theories as they stand and interprets their formal apparatus as the means of bookkeeping of the change of the distance relations instead of committing us to additional elements of the on- tology. The alternative theory strategy seeks to combine the relationalist ontology with a relationalist physical theory that reproduces the predictions of the standard theory in the domain where these are empirically tested. We show that, as things stand, this strategy cannot be accomplished without compromising a minimalist relationalist ontology. Keywords: relationalism, parsimony, atomism, matter points, ontic structural realism, Humeanism, classical mechanics Contents 1 From atomism to relationalism about space and time 2 2 From ontology to physics: two strategies 11 ∗Université de Lausanne, Faculté des lettres, Section de philosophie, 1015 Lausanne, Switzerland. E- arXiv:1609.00277v1 [physics.hist-ph] 1 Sep 2016 mail: [email protected] †Ludwig-Maximilians-Universität -
Newtonian Space-Time
L1lCU .. l.HC I..i.~UU Ul 411 LU •••..)C .lU,)I.~1.lJ.LLol.L.LI".Uu..) ,)t'IA •••.••,•.) u.I...J.y v....I.UUU6.l..L1." V.L u.~ ...1...1••.• 10cIIs Of all pQHible eVeJlts; it is called "sp:l.ce-time." (3) The instant.l!!::ousthree-dimensional spaces, which so far as (2) goes are entirely separ.lte, form p:lrt of a luger connected, structure: sp:lce-time is, intrinsicallr, :z fOllr-dimensional real affine space-that is, it possesses a a notion of "str:light line," having the same properties in respect of inter- section (and. so also parallelism) as in a Euclidean space of four di- y REMARKS TODAY AND TO};!OR.~.OW WILL BE BASED UPON A RATHER mensions. (The stmight lines of space-time are to be thought of as repre- lengthy paper, written witl1severl1 simultaneous objectives: senting all F{)ssibleuniform rectilinear lIIotiollS.2) Moreover, the natural M. (I) To cast light upon the issues involved in a celebrated pass:lge of intel- projection of space-time upon T (assigning to every possible event its lectu:ll history, and incidentally to clarify some of the purely historical cir- "epoch" or "date") is an :lffine mapping; :lnd the Euclide:ln structures of cumstances; the insontar.eous spaces :lre compatible with their :lffine structures as the ( 2) By elucidating those is'sues, to help furnish insight on related questions of fibersof this ffi3.pping. current interest; The technicalities of this :l.ccountneed not too much concern those to whom they (3) To promote an attitude tow:lrd philosophical questions that was a prevalent :lreunfa.miliar; but it is important to remark that the structure required by (3), one in the seventeenth century, th3.tseems to me sound and admirable, and which I shall refer to as the "kinematical connection" of space-time, and which th:lt seems not to be prewaLenttoday. -
Credence—And Chance—Without Numbers (And with the Euclidean Property)
Credence—and Chance—Without Numbers (and with the Euclidean Property) Tim Maudlin NYU and John Bell Institute Abstract Accounts of both rational credence and of objective chance have always confronted difficulties associated with events that are assigned “probability zero” by the usual Kolmogorov probability function used to model the situation. One sort of solution recommends extending the number field used to represent credences and chance to the surreals or hyperreals. But the correct solution—the solution that always respects the Euclidean property—is to eliminate numbers from the fundamental representation of credence and chance altogether in favor of a system of relations. This solution also sheds light on other paradoxes, such as the Banach-Tarski paradox and the St. Petersburg paradox. The Problem (?) Suppose that an infinitely sharp dart is thrown at a circular dartboard in such a way that each individual point might be hit: nothing would prevent the dart from landing there. In other words, suppose that a point is randomly chosen from a disk in such a way that every point might be chosen. Let two of these points be labeled p and q. Here are some propositions about credence and chance that every rational person should accept. First, the proposition that either p or q will be chosen is strictly more credible—more rationally believable—than the proposition that p will be hit. If someone did not believe the former more firmly or to a higher degree than the latter then we would have no idea how to make sense of their state of belief. We can illustrate our bewilderment by appeal to practical rationality. -
Can Spacetime Help Settle Any Issues in Modern Philosophy?∗
Can Spacetime Help Settle Any Issues in Modern Philosophy?∗ Presented at the Issues in Modern Philosophy Conference at NYU November 10-11 2006 Nick Huggett Philosophy, UIC December 7, 2006 1 Introduction Deciding what to talk about in this paper was a challenge; perhaps contemporary phi- losophy offers no more possible topics to choose from than any of the individual figures considered over these two days, but what to present that might connect the historical pa- pers with contemporary philosophy? How to say something that might be informative and substantive and useful to an audience which likely comes from a historical background? One option was to discuss philosophical issues concerning contemporary spacetime physics – quantum gravity and string theory say. While that approach might show something of how philosophy continues to engage with emerging science, the danger is that attempts to relate such issues to historical concerns will be forced. I’ve opted instead to discuss a few influential ideas about how twentieth century math- ematics and philosophy can help understand and resolve early modern questions about the nature of space and time. In part I’ll be offering a map of the issues; I’ll be covering quite a lot of ground in a small time, but presumably it’s not entirely new to this audience. To be substantive as well as informative, I want to engage with the ideas I discuss. In particular, (i) I want to explore the limits of the mathematical theory of spacetime (more generally, differential geometry) as an analytical tool for interpreting early modern thought. -
Newton and Leibniz on Space and Time
Newton and Leibniz on Space and Time Jeremy Safran and Jack Kissel Introduction • Can you explain the concept of motion without the notion of space and/or time? – Both Leibniz and Newton’s theories of space and time are rooted in observations of change (e.g. motion). • What is space and time? Are they real substances in the world? Can a single object or event have an absolute space or time, or do space and time rely on relational properties between multiple objects or events? A Few Definitions • Relativism - Leibniz’s theory on space and time • Absolutism – Newton’s theory on space and time • Plenum – a space every part of which is full of matter, which included air and ether • Void – space that contains no matter • Sensory organs – the tools with which we perceive the world. • Sensorium – the seat of sensation where an organism experiences and interprets the environment within which it lives Relativism • First, what are space and time? Are they real substances in the world or simply relational properties between objects and events? • “I hold space to be something merely relative… as an order of coexistences, as time is an order of successions” (Leibniz, L111.4, AW 297b). • For example: If the entire universe were moved 3 inches or 3 seconds from where it actually is, nothing in the universe would change in any significant (relative) way Absolutism • “Absolute space, in its own nature, without relation to anything external, always remains similar and immovable” (Newton, AW 285) • Humans can only observe relative space and time, but absolute space and time must presuppose the relative. -
The Universe Be (Before Einstein)
ACTIVITY ONE: NOVEMBER 7 THE UNIVERSE B.E. (BEFORE EINSTEIN) On November 7, 2014, Interstellar, a saga of courage, sacrifice, desperation and hope, will challenge moviegoers to think about the radical ways a changing Earth and the need to address its changes might challenge our daily ACTIVITY OVERVIEW: ACTIVITY GUIDELINES lives and the concepts that shape our existence. This film explores the often-startling aspects of the fabric of the universe, as understood by modern scientists. Interstellar will introduce you to scientific concepts that may These thought-provoking supplemental activities are designed to introduce the concept of relativity, and to give boggle your mind. In order to understand and appreciate those concepts, become familiar with the scientific ideas students a broader and deeper understanding of some of the fascinating science behind Interstellar. Use these activities introduced in these activities. as an introduction to the movie and its concepts, and then see the movie together (talk to your PTA!) or have students see the movie with their families and friends before embarking on post-movie discussions about the intriguing concepts and questions the movie raises. PART 1 It’s helpful to know how scientists understood motion through space for hundreds of years. Things like time ACTIVITY ONE: ACTIVITY TWO: ACTIVITY THREE: and distance were absolute: the same everywhere for THE UNIVERSE B.E. (BEFORE EINSTEIN) IT’S ALL RELATIVE CONCEPTUAL CLOCKS On November 7, 2014, Interstellar, a saga of courage, sacrifice, desperation and hope, will challenge moviegoers The universe we know and as depicted in Interstellar has a history of changed and challenging scientific understandings.