Come-back of phenanthridine and phenanthridinium derivatives in the 21st century Lidija-Marija Tumir, Marijana Radić Stojković and Ivo Piantanida* Review Open Access Address: Beilstein J. Org. Chem. 2014, 10, 2930–2954. Laboratory for Study of Interactions of Biomacromolecules, Division of doi:10.3762/bjoc.10.312 Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, PO Box 180, HR-10002 Zagreb, Croatia Received: 17 July 2014 Accepted: 21 November 2014 Email: Published: 10 December 2014 Ivo Piantanida* -
[email protected] This article is part of the Thematic Series "Nucleic acid chemistry". * Corresponding author Guest Editor: H.-A. Wagenknecht Keywords: ds-DNA and ds-RNA binding; intercalation; minor groove binding; © 2014 Tumir et al; licensee Beilstein-Institut. nucleic acids; organic synthesis; phenanthridine; phenanthridinium License and terms: see end of document. Abstract Phenanthridine derivatives are one of the most intensively studied families of biologically active compounds with efficient DNA binding capability. Attracting attention since DNA structure discovery (1960s), they were early recognized as a symbol of DNA intercalative binding, for many decades applied as gold-standard DNA- and RNA-fluorescent markers (ethidium bromide), probes for cell viability (propidium iodide), but also “ill-famed” for various toxic (genotoxic) and mutagenic effects. After two decades of low interest, the discovery of phenanthridine alkaloids and new studies of antiparasitic/antitumor properties of phenanthridine derivatives resulted in the strong increase of the scientific interest about the turn of this century. Here are summarized phenanthri- dine-related advances in the 21st century (2000-present period) with emphasis on the supramolecular interactions and bioorganic chemistry, as well as novel or improved synthetic approaches.