Bulletin 296

Total Page:16

File Type:pdf, Size:1020Kb

Bulletin 296 Q 11 U563 CRLSSI m\M 5- lllBf»- p: w jmr;'" •- •,-5 iMPiir SMITHSONIAN INSTITUTION MUSEUM OF NATURAL HISTORY For sale by the Superintendent of Documents, U.S. (Government Printing Office Washington, D.C. 20402 - Price $1.25 (paper cover) UNITED STATES NATIONAL MUSEUM BULLETIN 296 The Burrowing Barnacles (Cirripedia: Order Acrothoracica) JACK T. TOMLINSON Department of Marine Biology San Francisco State College SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1969 Publications of the United States National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States Na- tional Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and technology'. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, sep- arate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 296 of the Bulletin series. Frank A. Taylor Director, United States National Museum U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1969 Contents Page History 1 Specimen Deposition 2 Acknowledgments 3 Abbreviations Used in the Figures 4 Methods 4 Orientation 7 Segmentation 8 Common Names 8 The Burrow 9 The Mantle 11 External Mantle Flap in Trypetesa lateralis ... 14 Digestive System and Feeding Mechanisms .... 17 The Cirri 19 FeedingHatoits of Trypetesa lateralis feraalea . 19 Excretory System 21 Muscular System 22 Circulatory and Respiratory Systems 24 Reproductive System 24 The Male 24 Ultrastructure of the Male and Its Sperm ... 25 Embryology and Mating Behavior 27 SexuaUty in the Cirripedia 28 Conjectures on Sexuality 29 Systematics and Characteristics 30 Fossils 134 Undescribed Fossil Species 141 Distribution 143 Key to the Order Acrothoracica 149 Phylogeny 151 Literature Cited 155 Index of Species and Figures 161 The Burrowing Barnacles (Cirripedia: Order Acrothoracica) History The study of the order Acrothoracica began in 1849, when Hancock discovered in shells of the gastropod Fusils and Buccinum a highly modified barnacle which he named Alcippe lampas. Darwin placed Alcippe in the Lepadidae very close to Alepas and Anelasma, although he recognized the great similarity to his Cryptophialus. For the latter he established a new order, the Abdominalia (1854). Noll (1872b) placed Alcippe with Cryptophialus in the Abdominalia. In 1905 Gruvel noticed the misconception upon which the name of Abdom- inalia was based, i.e., the cirri on the terminal segments of the body being of a thoracic nature rather than abdominal appendages, as Darwin had erroneously assumed. Gruvel changed the name Abdom- inalia to Acrothoracica and placed within this new order the genera Alcippe, Cryptophialus, Kochlorine Noll (1872a), and Lithoglyptes Aurivillius (1892). Norman (1903) noticed the synonymy of Alcippe with Blyth's genus of birds and changed the name to Trypetesa, although many subsequent workers failed to notice this. Berndt (1903a, 1903b, 1907b) and Kuhnert (1934) have reported on the anat- omy and development of these animals. Additional genera have been described and named IVeltneria Berndt 1907b, Berndtia Utinomi 1950a, Balanodytes Utinomi 1950b, Chytraea Utinomi 1950c, Rogeretla Saint-Seine 1951, Zapfella Saint-Seine 1954, Simonizapfes Codez 1957, and Brachyzapfes Codez 1957. The fossil form-genus Nygmites Magdefrau (1937) includes at least one species (A^. sacculus) which is considered to be an acrothoracican, anticipating Zapfella. 1 2 UNITED STATES NATIONAL MUSEUM BULLETIN 296 Specimen Deposition The following museums have been chosen as major depositories of acrothoracican material. Under each species description the depositories for that species will be abbreviated as indicated in the following schedule. The name of the individual most instrumental in assisting me at each institution and the one to whom the material was sent also is included. In addition to these major depositories, about one hundred in- stitutions were sent a standard set of three species of acrothoracican cirripeds: Weltneria spinosa, Kochlorine Jloridana, and ''Crypto- phialus" melampygos (see page 118). These institutions are too nu- merous to mention individually. The sets were bulk-labeled, so local fractioning into five sets and redistributing is expected. Aust Australian Museum, College Street, Sydney, N.S.W., Australia; Elizabeth C. Pope. BA Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Avda. Angel Gallardo 470, Buenos Aires, Argentina; Elena Martinez Pontes. Belg Institut Royal des Sciences Naturelles de Belgique, Rue Vautier, 31, Brussels 4, Belgium; W. Adam. BPB Bernice P. Bishop Museum, 1355 Kalihi St., Honolulu, Hawaii 96819; Yoshio Kondo. Accession number 7246, and catalog numbers B460 to B465. Brit British Museum (Natural History), Cromwell Road, London, S.W. 7, England; J. P. Harding, Keeper of Zoology. CA California Academy of Sciences, Golden Gate Park, San Francisco, California 94118; Department of Invertebrate Zoology; AUyn G. Smith. Dublin National Museum of Ireland, Kildare Street, Dublin, 2, Ireland; Colm O'Riordan, Natural History Division. Catalog numbers NMI.11.1967/ 1 to 17. Mex National University of Mexico, Cuidad Universitaria, Mexico City, Mexico; Instituto de Biologia; Llamas Flores. Catalog numbers: IBUNAM 022468—1 to 20; 090468—1 to 6. Paris Museum National d'Histoire Naturelle, 61, rue de Buffon, Paris Ve, France; Laboratoire de Zoologie; J. Forest. Seto Seto Marine Biological Laboratories (of the University of Kyoto), Sirahama, Wakayama-ken, Japan; Huzio Utinomi. SFSC San Francisco State College, San Francisco, California 94132; De- partment of Marine Biology. SIO Scripps Institution of Oceanography, University of California, La JoUa, California 92038; William A. Newman. UCT University of Cape Town, Cape Town, Cape Province, South Africa; Zoology Department; John Field. USNM United States National Museum, Washington 25, D.C.; Marine In- vertebrates; Fenner A. Chace, Jr. Catalog numbers: 122603 to 122629 and 123331 to 123334. : ) THE BURROWING BARNACLES (CIRRIPEDIA: ACROTHORACICA 3 Vict National Museum of Victoria, 284-321 Russell Street, Melbourne, Victoria, Australia; Edmund D. Gill. Catalog numbers: J- 186 to J-192. Acknowledgments It is a pleasure to acknowledge the kind consideration and assistance offered to me by the institutions and individuals listed above under the subject of Specimen Distribution. In addition, the following individuals and institutions have been most helpful Australia: John Yaldwyn and Donald McMichael, Australian Museum; Robert Endean and the Great Barrier Reef Committee. France: Dr. B. Salvat and Dr. F. Salvat, Museum National d'Histoire Naturelle, Paris. Great Britain: R. Bassindale of Bristol; D. J. Crisp of Menai Bridge Labora- tories; H. Barnes of Millport, Scotland. Hong Kong: Dennis Hill, University of Hong Kong. Italy: Stazione Zoologica di Napoli (NSF Table Award). Japan: Tadeshige Habe, National Science Museum, Tokyo; S. M. Shiino, Mie Prefectural University, Tsu. Liberia: Frank Tichy and Dr. Joshna of the University; Dr. and Mrs. William Winnett; Russell Riley. New Zealand : Elizabeth Batham, and the staff of the Universities of Canterbury, Otago, and Auckland. Nigeria: Alice O' Grady. Panama: Stewart and Claire Jadis, Canal Zone Police; Joe Becker, U.S. Army. Philippines: The National Museum. Singapore: D. S. Johnson of the University, and Eric Alfred of the National Museum. South Africa: Mr. and Mrs. Lawrence Meiring of Cape Town; Mrs. C. M. Connolly of Fishoek. Trust Territories of the Pacific Islands: The Commissioners and their staffs; Peter and Ann Wilson; the Robert Owens, George Hagiwaras, and Peter Hills. United States: Ensign and Mrs. Gaylord Galiher, USN; Mr. and Mrs. Henry Scott at Addis Ababa, Ethiopia; Leo Hertlein at the California Academy of Sciences; C. G. Bookhout and Lawrence McCloskey of Duke University Marine Laboratories; Tom Hopkins of New College and Cape Haze Marine Labora- tories, Sarasota, Florida; University of California at Santa Barbara; University of Hawaii Marine Laboratories; Dr. Willard D. Hartman of the Peabody Museum, Yale University. This work was begun as a thesis for the degree of Doctor of Philos- ophy in Zoology at the University of Cahfornia at Berkeley under the supervision of Dr. Cadet Hand. Substantially furthered by a sabbatical leave for one year from San Francisco State College, it was completed under a five-year grant for a study on the reproduction 4 UNITED STATES NATIONAL MUSEUM BULLETIN 29 6 of barnacles from the National Institutes of Health, United States Public Health Service, number GM-09953. Special thanks
Recommended publications
  • Cirripedia of Madeira
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Algarve Helgol Mar Res (2006) 60: 207–212 DOI 10.1007/s10152-006-0036-5 ORIGINAL ARTICLE Peter Wirtz Æ Ricardo Arau´jo Æ Alan J. Southward Cirripedia of Madeira Received: 13 September 2005 / Revised: 12 January 2006 / Accepted: 13 January 2006 / Published online: 3 February 2006 Ó Springer-Verlag and AWI 2006 Abstract We give a list of Cirripedia from Madeira phers. The marine invertebrates have been less studied Island and nearby deep water, based on specimens in and there has been no compilation of cirripede records the collection of the Museu Municipal do Funchal for Madeira, comparable to those for the Azores (Histo´ria Natural) (MMF), records mentioned in the archipelago (Young 1998a; Southward 1999). We here literature, and recent collections. Tesseropora atlantica summarize records from Madeira and nearby deep water Newman and Ross, 1976 is recorded from Madeira for and discuss their biogeographical implications. the first time. The Megabalanus of Madeira is M. az- oricus. There are 20 genera containing 27 species, of which 22 occur in depths less than 200 m. Of these Methods shallow water species, eight are wide-ranging oceanic forms that attach to other organisms or to floating The records are based on (1) the work of R.T. Lowe, objects, leaving just 13 truly benthic shallow water who sent specimens to Charles Darwin; (2) material in barnacles. This low diversity is probably a consequence the Museu Municipal do Funchal (Histo´ria Natural) of the distance from the continental coasts and the (MMF); (3) casual collecting carried out by residents or small area of the available habitat.
    [Show full text]
  • Crustaceans Topics in Biodiversity
    Topics in Biodiversity The Encyclopedia of Life is an unprecedented effort to gather scientific knowledge about all life on earth- multimedia, information, facts, and more. Learn more at eol.org. Crustaceans Authors: Simone Nunes Brandão, Zoologisches Museum Hamburg Jen Hammock, National Museum of Natural History, Smithsonian Institution Frank Ferrari, National Museum of Natural History, Smithsonian Institution Photo credit: Blue Crab (Callinectes sapidus) by Jeremy Thorpe, Flickr: EOL Images. CC BY-NC-SA Defining the crustacean The Latin root, crustaceus, "having a crust or shell," really doesn’t entirely narrow it down to crustaceans. They belong to the phylum Arthropoda, as do insects, arachnids, and many other groups; all arthropods have hard exoskeletons or shells, segmented bodies, and jointed limbs. Crustaceans are usually distinguishable from the other arthropods in several important ways, chiefly: Biramous appendages. Most crustaceans have appendages or limbs that are split into two, usually segmented, branches. Both branches originate on the same proximal segment. Larvae. Early in development, most crustaceans go through a series of larval stages, the first being the nauplius larva, in which only a few limbs are present, near the front on the body; crustaceans add their more posterior limbs as they grow and develop further. The nauplius larva is unique to Crustacea. Eyes. The early larval stages of crustaceans have a single, simple, median eye composed of three similar, closely opposed parts. This larval eye, or “naupliar eye,” often disappears later in development, but on some crustaceans (e.g., the branchiopod Triops) it is retained even after the adult compound eyes have developed. In all copepod crustaceans, this larval eye is retained throughout their development as the 1 only eye, although the three similar parts may separate and each become associated with their own cuticular lens.
    [Show full text]
  • Remarkable Convergent Evolution in Specialized Parasitic Thecostraca (Crustacea)
    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A Published in: BMC Biology DOI: 10.1186/1741-7007-7-15 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pérez-Losada, M., Høeg, J. T., & Crandall, K. A. (2009). Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea). BMC Biology, 7(15), 1-12. https://doi.org/10.1186/1741-7007-7-15 Download date: 25. Sep. 2021 BMC Biology BioMed Central Research article Open Access Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Marcos Pérez-Losada*1, JensTHøeg2 and Keith A Crandall3 Address: 1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal, 2Comparative Zoology, Department of Biology, University of Copenhagen, Copenhagen, Denmark and 3Department of Biology and Monte L Bean Life Science Museum, Brigham Young University, Provo, Utah, USA Email: Marcos Pérez-Losada* - [email protected]; Jens T Høeg - [email protected]; Keith A Crandall - [email protected] * Corresponding author Published: 17 April 2009 Received: 10 December 2008 Accepted: 17 April 2009 BMC Biology 2009, 7:15 doi:10.1186/1741-7007-7-15 This article is available from: http://www.biomedcentral.com/1741-7007/7/15 © 2009 Pérez-Losada et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Cirripedia: Acrothoracica), a New Burrowing Barnacle from Hawaii
    Lhhoglyptes hirsutus (Cirripedia: Acrothoracica), A New Burrowing Barnacle from Hawaii JACK T. TOMLINSON! Two SAMPLES of coral from Kaneohe Bay, spine or hook ; aperture length exceeds Y2 of Oahu, H awaii , have each yielded a number mantle width, aperture armed with numerous of specimens of a new species of acroth oracican teeth and long flexible hairs, especially on the burrowing barnacle of the family Lithoglypti­ outer edge of the lip area; anterior and pos­ dae. Samples of Psamm ocora oerrilli Vaughan terior rami of mouth cirri with 5 and 3 articles, collected by Stephen A. W ainwright,2 and of respectively; caudal appendage with 2 seg­ Porites compressa Dana collected by Charles ments; head with acute projection opposite Srasek," were referred to me by William A. mouth area; burrow pointed oval in surface N ewman." These barnacles are the first repre­ view. H olotyp e 1.2 X 0.67 mm ; about 30 dried sentatives of the order Acrothoracica known specimens in Psamm ocora verrilli from a depth from H awaii. of 3-6 fr on Sand Bar Reef and in Porites com­ pressa from NE side Checker Reef, Kaneohe Bay, Oahu, Ha waii. The species is named for FAMILY LITHOGLYPTIDAE Aurivillius 1892 the presence of numerous hairs on the mantle aperture. Lithoglyptidae em end. Tomlinson and New­ TYPE MATERIAL : Holotype USNM 107544. man 1960. Para type material: San Francisco State College, Mouth cirri well developed, on a· 2-jointed San Francisco, Californi a; California Academy pedicle; 4-5 pairs of term inal cirri, but if only of Sciences, San Francisco, California; Plymouch 4 pairs, caudal app endage present; no gut teeth Laboratory, England; Seto Marine Biological or gizzard in digestive tract; with adhesive disc Laboratory, Japan; Porrobello Marine Station, on mantle ; lateral bar absent ; burrows in coral New Zealand.
    [Show full text]
  • A Possible 150 Million Years Old Cirripede Crustacean Nauplius and the Phenomenon of Giant Larvae
    Contributions to Zoology, 86 (3) 213-227 (2017) A possible 150 million years old cirripede crustacean nauplius and the phenomenon of giant larvae Christina Nagler1, 4, Jens T. Høeg2, Carolin Haug1, 3, Joachim T. Haug1, 3 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg- Martinsried, Germany 2 Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 3 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany 4 E-mail: [email protected] Key words: nauplius, metamorphosis, palaeo-evo-devo, Cirripedia, Solnhofen lithographic limestones Abstract The possible function of giant larvae ................................ 222 Interpretation of the present case ....................................... 223 The larval phase of metazoans can be interpreted as a discrete Acknowledgements ....................................................................... 223 post-embryonic period. Larvae have been usually considered to References ...................................................................................... 223 be small, yet some metazoans possess unusually large larvae, or giant larvae. Here, we report a possible case of such a giant larva from the Upper Jurassic Solnhofen Lithographic limestones (150 Introduction million years old, southern Germany), most likely representing an immature cirripede crustacean (barnacles and their relatives). The single specimen was documented with up-to-date
    [Show full text]
  • Checklist of the Australian Cirripedia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Jones, D. S., J. T. Anderson and D. T. Anderson, 1990. Checklist of the Australian Cirripedia. Technical Reports of the Australian Museum 3: 1–38. [24 August 1990]. doi:10.3853/j.1031-8062.3.1990.76 ISSN 1031-8062 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ISSN 1031-8062 ISBN 0 7305 7fJ3S 7 Checklist of the Australian Cirripedia D.S. Jones. J.T. Anderson & D.l: Anderson Technical Reports of the AustTalfan Museum Number 3 Technical Reports of the Australian Museum (1990) No. 3 ISSN 1031-8062 Checklist of the Australian Cirripedia D.S. JONES', J.T. ANDERSON*& D.T. AND ER SON^ 'Department of Aquatic Invertebrates. Western Australian Museum, Francis Street. Perth. WA 6000, Australia 2School of Biological Sciences, University of Sydney, Sydney. NSW 2006, Australia ABSTRACT. The occurrence and distribution of thoracican and acrothoracican barnacles in Australian waters are listed for the first time since Darwin (1854). The list comprises 204 species. Depth data and museum collection data (for Australian museums) are given for each species. Geographical occurrence is also listed by area and depth (littoral, neuston, sublittoral or deep). Australian contributions to the biology of Australian cimpedes are summarised in an appendix. All listings are indexed by genus and species. JONES. D.S.. J.T. ANDERSON & D.T. ANDERSON,1990. Checklist of the Australian Cirripedia.
    [Show full text]
  • Barnacle Paper.PUB
    Proc. Isle Wight nat. Hist. archaeol. Soc . 24 : 42-56. BARNACLES (CRUSTACEA: CIRRIPEDIA) OF THE SOLENT & ISLE OF WIGHT Dr Roger J.H. Herbert & Erik Muxagata To coincide with the bicentenary of the birth of the naturalist Charles Darwin (1809-1889) a list of barnacles (Crustacea:Cirripedia) recorded from around the Solent and Isle of Wight coast is pre- sented, including notes on their distribution. Following the Beagle expedition, and prior to the publication of his seminal work Origin of Species in 1859, Darwin spent eight years studying bar- nacles. During this time he tested his developing ideas of natural selection and evolution through precise observation and systematic recording of anatomical variation. To this day, his monographs of living and fossil cirripedia (Darwin 1851a, 1851b, 1854a, 1854b) are still valuable reference works. Darwin visited the Isle of Wight on three occasions (P. Bingham, pers.com) however it is unlikely he carried out any field work on the shore. He does however describe fossil cirripedia from Eocene strata on the Isle of Wight (Darwin 1851b, 1854b) and presented specimens, that were supplied to him by other collectors, to the Natural History Museum (Appendix). Barnacles can be the most numerous of macrobenthic species on hard substrata. The acorn and stalked (pedunculate) barnacles have a familiar sessile adult stage that is preceded by a planktonic larval phase comprising of six naupliar stages, prior to the metamorphosis of a non-feeding cypris that eventually settles on suitable substrate (for reviews on barnacle biology see Rainbow 1984; Anderson, 1994). Additionally, the Rhizocephalans, an ectoparasitic group, are mainly recognis- able as barnacles by the external characteristics of their planktonic nauplii.
    [Show full text]
  • Stalked Barnacles
    *Manuscript Click here to view linked References Stalked barnacles (Cirripedia, Thoracica) from the Upper Jurassic (Tithonian) Kimmeridge Clay of Dorset, UK; palaeoecology and bearing on the evolution of living forms Andy Gale School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL; E-mail address: [email protected] A B S T R A C T New thoracican cirripede material from the Kimmeridge Clay (Upper Jurassic, Tithonian) is described. This includes a log, encrusted on the lower surface with hundreds of perfectly preserved, articulated specimens of Etcheslepas durotrigensis Gale, 2014, and fewer specimens of Concinnalepas costata (Withers, 1928). Some individuals are preserved in life position, hanging from the underside of the wood, and the material provides new morphological information on both species. It appears that Martillepas ovalis (Withers, 1928), which occurs at the same level (Freshwater Steps Stone Band, pectinatus Zone) attached preferentially to ammonites, whereas E. durotrigensis and C. costata used wood as a substrate for their epiplanktonic lifestyle. Two regurgitates containing abundant barnacle valves, mostly broken, and some bivalve fragments, have been found in the Kimmeridge Clay. These were produced by a fish grazing on epiplanktonic species, and are only the second example of regurgitates containing barnacle valves known from the fossil record. The evolution of modern barnacle groups is discussed in the light of the new Jurassic material as well as recently published molecular phylogenies. New clades defined herein are called the Phosphatothoracica, the Calamida and the Unilatera. Keywords Epiplanktonic barnacles Kimmeridge Clay predation 1. INTRODUCTION Amongst the most remarkable fossils collected by Steve Etches from the Kimmeridge Clay of Dorset are articulated stalked barnacles.
    [Show full text]
  • (II) : Cirripeds Found in the Vicinity of the Seto Marine Biological
    Studies on Cirripedian Fauna of Japan (II) : Cirripeds Found in Title the Vicinity of the Seto Marine Biological Laboratory Author(s) Hiro, Fujio Memoirs of the College of Science, Kyoto Imperial University. Citation Ser. B (1937), 12(3): 385-478 Issue Date 1937-10-30 URL http://hdl.handle.net/2433/257864 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEMorRs oF THE CoLLEGE oF SclENcE, KyoTo IM?ERIAL UNIvERSITy, SERIEs B, VoL. XII, No. 3, ART. 17, 1937 Studie$ on Cirripedian FauRa of Japan II. Cirripeds Found in the Vicinity ef the Seto Mavine Biological Laboxatory By Fajio HIRo (Seto Marine Biological Laboratory, Wakayarna-ken) With 43 Text-pt•gKres (Received April 21, l937) Introductien The purpose of the present paper is to describe the theracic cirripeds found in the waters around the Sete Marine Biological Laboratory. The material dealt with in this paper was collected almost entirely by myself during the period extending from the summer of 1930 up to the present time, except a few species ob- tained from the S6y6-maru Expedition undertaken by the Ircperial Fisheries Experimental Station during the years 1926-1930. Descrip- tions of the latter have already been given (HiRo, 1933a). The present material consists, with few exceptions, of specimens from the littoral zone and shallow ;vvater ; noRe of the specimens are irom deep water. However, I have paid special attention to the commensal forms from the ecological and fauRistic standpoint, and have thes been able to enumerate a comparatively large number of species in such a re- stricted area as this district.
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • University of Cape Town
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Taxonomy, Systematics and Biogeography of South African Cirripedia (Thoracica) Aiden Biccard Town A thesis submitted in fulfilment of the degreeCape of Master of Science in the Department of Zoology, Faculty of Science, University of Cape Town Supervisor Prof. Charles L. Griffiths University 1 Town “and whatever the man called every livingCape creature, that was its name.” - Genesis 2:19 of University 2 Plagiarism declaration This dissertation documents the results of original research carried out at the Marine Biology Research Centre, Zoology Department, University of Cape Town. This work has not been submitted for a degree at any other university and any assistance I received is fully acknowledged. The following paper is included in Appendix B for consideration by the examiner. As a supervisor of the project undertaken by T. O. Whitehead, I participated in all of the field work and laboratory work involved for the identification of specimens and played a role in the conceptualisation of the project. Figure 1 was compiled by me. Town Whitehead, T. O., Biccard, A. and Griffiths, C. L., 2011. South African pelagic goose barnacles (Cirripedia, Thoracica): substratum preferences and influences of plastic debris on abundance and distribution. Crustaceana, 84(5-6): 635-649.
    [Show full text]