Absite Reviewreview RTC 1/22/10 Topicstopics

Total Page:16

File Type:pdf, Size:1020Kb

Absite Reviewreview RTC 1/22/10 Topicstopics AbsiteAbsite ReviewReview RTC 1/22/10 TopicsTopics CoverCover HighlightsHighlights ofof thethe following:following: •• GastrointestinalGastrointestinal HormonesHormones •• TransplantTransplant (rejection,(rejection, medicationsmedications)) •• HematologyHematology GiGi HormonesHormones • Gastrin • Origin: G cells in antrum • Target: parietal and chief cells • Action: ×HCl, intrinsic factor, pepsinogen secretion • Stimulators: AA’s, vagal input, antral distension, pH>3 • Inhibitors: secretin/CCK, somatostatin, pH<3, VIP, GIP • Omeprazole blocks H/K ATPase of parietal cell •• AcetylcholineAcetylcholine andand HistamineHistamine causecause HClHCl secretionsecretion GIGI hormoneshormones • Somatostatin “the great inhibitor” • Origin: D cell in antrum • Target: many cells in GI tract • Action: inhibits release of gastrin and HCl, insulin, glucagon, secretin; decreases biliary and pancreatic output. • Stimulator: acid in duodenum • Octreotide (somatostatin analogue) GIGI hormoneshormones • Cholecystokinin • Origin: I cells of duodenum and jejunum • Action: ×gallbladder contraction, sphincter of Oddi relaxation, ×pancreatic enzyme secretion and intestinal motility. • Stimulators: amino acids and fatty acids GiGi hormoneshormones • Secretin • Origin: S cells of duodenum • Action: ×pancreatic HCO3 release, bile flow; inhibits gastrin and HCl release • Stimulators: fatty acids, bile, pH<4.0 • Inhibitors: pH>4.0 and gastrin QuestionsQuestions • Which of the following statements are true or false? • Reducing vagal input will result in higher gastric pH and reduced HCl. • TRUE • Rising pH levels in the duodenum stimulate secretion of somatostatin. • FALSE • Amino acids cause increased release of cholecystokinin and secretin. • TRUE • Secretin stimulates biliary and pancreatic flow, and increases gastrin release from the antrum. • FALSE GiGi hormoneshormones • Insulin • Origin: beta cells in pancreas • Action: cellular glucose uptake; ×protein synthesis • Stimulators: glucose, glucagons, CCK • Inhibitors: somatostatin, pancreatostatin GiGi hormoneshormones • Glucagon • Origin: alpha cells of pancreas • Action: glycogenolysis, gluconeogenesis, lipolysis, ketogenesis, Ð gastric acid and pancreatic secretion, ÐGI motility and MMC’s • Stimulators: Ðglucose, Ïamino acids, acetylcholine, and gastrin -releasing peptide • Inhibitors: Ïglucose and insulin; somatostatin • Treatment for beta blockade overdose GiGi hormoneshormones • Gastric Inhibitory Peptide • Origin: K cells in duodenum • Target: parietal cells in stomach and beta cells • Action: ÐHCl secretion and pepsin; Ï insulin release • Stimulators: amino acids, glucose, long -chain FA’s, and ÐpH GiGi hormoneshormones • Vasoactive Intestinal Peptide (VIP) • Origin: various cells in GI tract and pancreas • Action: Ïintestinal secretion (water, electrolytes) and motility • Stimulators: fatty acids, acetylcholine • Pancreatic Polypetide • Origin: Islet cells in pancreas • Action: Ðpancreatic and gallbladder secretion • Stimulators: food, vagal stimulation GiGi hormoneshormones • Motilin • Origin: various intestinal cells • Action: Ïsmall bowel motility • Stimulators: duodenal acid, food, vagal input • Inhibitors: somatostatin, secretin, pancreatic polypeptide • Erythromycin acts on this receptor GiGi hormoneshormones • Bombesin (gastrin-releasing peptide) • Ïgastric acid secretion, Ïpancreatic secretion, Ïmotility • Peptide YY • Released from TI after fatty meal • Inhibits acid secretion, pancreatic and gallbladder secretion QuestionsQuestions • Which of the following questions are true or false? • GIP is released from the duodenum in the presence of • GIP is released from the duodenum in the presence of glucose, AA’s, long-chain fatty acids, and low pH. • TRUE • Glucagon and Peptide YY both decrease GI motility and pancreatic secretion • TRUE • VIP causes decreased GI motility and decreased absorption. • FALSE • Bombesin results in increased GI motility • TRUE • Pancreatic polypeptide stimulates release of pancreatic enzymes. • FALSE TransplantTransplant MedsMeds • Azathioprine (Imuran) • Inhibits purine synthesis affecting T cells • 6-mercaptopurine is active metabolite • Side effects: myelosuppression • Common maintenance for renal tx pts • Mycophenolate (Cellcept) • Similar in function to Azathioprine • Side effets: GI intolerance • Steroids • Inhibit genes for cytokine synthesis (IL-1, 6) and macrophages • Side effects: adrenal suppression, osteoporsis, hyperglycemia, weight gain, etc. TransplantTransplant medsmeds • Cyclosporin • Binds cyclosporin protein inhibiting genes for cytokine synthesis (IL- 2,3,4 and INF-gamma) 2,3,4 and INF-gamma) • Side effects: nephrotoxicity, hepatotoxicity, HUS, seizures, gingival hyperplasia hyperplasia • Hepatic metabolism and biliary excretion • Many drug interactions • FK-506 (Prograf) • Binds FK binding protein; action similar to cyclosporin • Side effects: nephrotoxicity, neurologic and mood changes, HTN TransplantTransplant medsmeds • ATGAM • Equine polyclonal antibodies against T cells (CD2,3,4,8) • Used for induction therapy • Complement dependent • Thymoglobulin • Rabbit polyclonal antibodies • Action similar to ATGAM • Often used for induction of immunosuppression • OKT3 • Monoclonal antibodies that block antigen recognition function of T cells by binding CD3 • Used for severe rejection QestionsQestions • All of the following are true regarding Azathioprine except: • 6-mercaptopurine is the active metabolite • The key mechanism is to inhibit genes which regulate cytokine synthesis in T cells cytokine synthesis in T cells • Routine CBC’s are necessary while taking this medication medication • This drug is used for maintenance immunosuppression QuestionsQuestions • Which of the following are true or false? • OKT3 is a monoclonal antibody used for severe rejection • OKT3 is a monoclonal antibody used for severe rejection • TRUE • FK -506 effectively inhibits nucleotide synthesis similar to Azathioprine • FALSE • Thymoglobulin is a polyclonal antibody made from rabbits often used for induction therapy • TRUE • Nephrotoxicity, hepatotoxicity, and neurologic changes are all common side effects of cyclosporin. • TRUE rejectionrejection RejectionRejection • Hypercute Rejection • Occurs within minutes to hours • Caused by preformed antibodies • Results in complement cascade and vessel thrombosis • Need immediate retransplant • Accelerated Rejection • Occurs < 1 week • Caused by sensitized T cells to donor antigens • Results in secondary immune response • Tx: increase immunosuppression with pulse steroids, possibly OKT3 OKT3 rejectionrejection • Acute Rejection • Occurs within 1 week to 1 month • Caused by T cells (cytotoxic and Helper T) • Tx: increase immunosuppression, pulse steroids, possibly OKT3 OKT3 • Chronic Rejection • Partly a Type IV hypersensitivity reaction • Leads to inevitable graft fibrosis and vascular injury • Tx: increase existing immunosuppression – no cure questionsquestions • True or False: • Pulse steroids and OKT3 are used for acute rejection. • TRUE • Hyperacute rejection is secondary to sensitized T cells against donor antigens. against donor antigens. • FALSE • Chronic rejection manifests in graft thrombosis and vascular injury vascular injury • TRUE QuestionsQuestions • After receiving a renal transplant, a patient is started on a regimen of tacrolimus, corticosteroids, mycophenolate mofetil, and trimethoprim-sulfa. Two weeks after transplant, she develops seizures. The most likely cause of these symptoms is: • Tacrolimus toxicity • Corticosteroid toxicity • Mycophenolic acid toxicity • Rejection • Meningitis questionsquestions • Which of the following statements about acute rejection is NOT true? • It is T-cell mediated • It is related to organ-host human leukocyte antigen disparity • Treatment can save the grafted organ in 90% to 95% of cases • It does not occur with living related donors. • It is associated with an increased risk of chronic rejection HematologyHematology hematologyhematology • Coagulation • All factors made in liver except VIII (endothelium) • Vitamin K-dependent factors: • II, VII, IX, X, protein C and S • Prostacyclin (PGI2): • From endothelium • Decreases platelet aggregation, causes vasodilation • Thromboxane (TXA2): • From platelets • Causes platelet aggregation and vasoconstriction hematologyhematology • Von Willebrand’s disease • Most common congenital disorder • Type 1 and 2 autosomal dominant; 3 recessive • vWF links Gp1b receptor on platelet to collagen • PT normal; PTT normal or high • Have long bleeding time (ristocetin test) • Type 1 and 3 from reduced quantity • Treat with cryo, DDAVP • Type 2 is defect in vWF function • Treat with cryo hematologyhematology • Cryoprecipitate • Highest concentration of vWF and VIII • Used in von Willebrands disease (especially type 2) and Hemophilia A Hemophilia A • FFP • Contains all factors including protein C, S, and AT3 • DDAVP • Cause release of VIII and vWF from endothelium • Only effective in vWF type 1 and 3 hematologyhematology • Platelet disorders • Clinical Signs: bruising, epistaxis, petechiae, purpura • Acquired thromocytopenia: heparin, H2 blockers • Glanzmann ’s thrombocytopenia: • GpIIb/IIIa receptor deficiency on platelets (can’t bind to each other through fibrin) • Tx: platelets • Bernard Soulier • GpIb receptor deficiency (can’t bind collagen - vWF) • Tx: platelets hematologyhematology • Hypercoagulability (virchow’s triad) • Leiden factor: • 30% of spontaneous DVT’s • Most common congenital hypercoagulability • Factor V resistant to degredation
Recommended publications
  • Secretin and Autism: a Clue but Not a Cure
    SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear.
    [Show full text]
  • Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease
    cells Review Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease Chongxu Zhang 1, Tengjiao Cui 1, Renzhi Cai 1, Medhi Wangpaichitr 1, Mehdi Mirsaeidi 1,2 , Andrew V. Schally 1,2,3 and Robert M. Jackson 1,2,* 1 Research Service, Miami VAHS, Miami, FL 33125, USA; [email protected] (C.Z.); [email protected] (T.C.); [email protected] (R.C.); [email protected] (M.W.); [email protected] (M.M.); [email protected] (A.V.S.) 2 Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA 3 Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA * Correspondence: [email protected]; Tel.: +305-575-3548 or +305-632-2687 Received: 25 August 2020; Accepted: 17 October 2020; Published: 21 October 2020 Abstract: Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury.
    [Show full text]
  • Inhibition of Gastrin Release by Secretin Is Mediated by Somatostatin in Cultured Rat Antral Mucosa
    Inhibition of gastrin release by secretin is mediated by somatostatin in cultured rat antral mucosa. M M Wolfe, … , G M Reel, J E McGuigan J Clin Invest. 1983;72(5):1586-1593. https://doi.org/10.1172/JCI111117. Research Article Somatostatin-containing cells have been shown to be in close anatomic proximity to gastrin-producing cells in rat antral mucosa. The present studies were directed to examine the effect of secretin on carbachol-stimulated gastrin release and to assess the potential role of somatostatin in mediating this effect. Rat antral mucosa was cultured at 37 degrees C in Krebs-Henseleit buffer, pH 7.4, gassed with 95% O2-5% CO2. After 1 h the culture medium was decanted and mucosal gastrin and somatostatin were extracted. Carbachol (2.5 X 10(-6) M) in the culture medium increased gastrin level in the medium from 14.1 +/- 2.5 to 26.9 +/- 3.0 ng/mg tissue protein (P less than 0.02), and decreased somatostatin-like immunoreactivity in the medium from 1.91 +/- 0.28 to 0.62 +/- 0.12 ng/mg (P less than 0.01) and extracted mucosal somatostatin-like immunoreactivity from 2.60 +/- 0.30 to 1.52 +/- 0.16 ng/mg (P less than 0.001). Rat antral mucosa was then cultured in the presence of secretin to determine its effect on carbachol-stimulated gastrin release. Inclusion of secretin (10(-9)-10(-7) M) inhibited significantly carbachol-stimulated gastrin release into the medium, decreasing gastrin from 26.9 +/- 3.0 to 13.6 +/- 3.2 ng/mg (10(-9) M secretin) (P less than 0.05), to 11.9 +/- 1.7 ng/mg (10(-8) secretin) (P less than 0.02), and to 10.8 +/- 4.0 ng/mg (10(-7) M secretin) (P less than […] Find the latest version: https://jci.me/111117/pdf Inhibition of Gastrin Release by Secretin Is Mediated by Somatostatin in Cultured Rat Antral Mucosa M.
    [Show full text]
  • Secretin/Vasoactive Intestinal Peptide-Stimulated Secretion of Bombesin/ Gastrin Releasing Peptide from Human Small Cell Carcinoma of the Lung1
    ICANCER RESEARCH 46, 1214-1218, March 1986] Secretin/Vasoactive Intestinal Peptide-stimulated Secretion of Bombesin/ Gastrin Releasing Peptide from Human Small Cell Carcinoma of the Lung1 Louis Y. Korman,2 Desmond N. Carney, Marc L. Citron, and Terry W. Moody Medica/ Service (151W), Veterans Administration Medical Center, Washington, DC 20422 [L. Y.K., M.L.C.]; Department of Medicine and Biochemistry George Washington University School of Medicine, Washington, DC 20037 [T. W. M.¡;and National Cancer Institute-Navy Medical Oncology Branch National Cancer Institute and National Naval Medical Center, Bethesda, Maryland [D. N. C.¡ ABSTRACT autocrine factor for SCCL (12) growth. We studied the mecha nism of BLI secretion in several SCCL cell lines by examining Bombesin/gastrin releasing peptide-like immunoreactivity (BLI) the action of agents that increase intracellular cAMP. is found in the majority of small cell carcinoma of the lung (SCCL) Because of the results of these in vitro studies and the fact cell lines examined. Because BLI is present in high concentration that secretin stimulates hormone release in patients with gastrin in SCCL we studied the mechanism of BLI secretion from several producing tumors (Zollinger-Ellison syndrome), we examined the SCCL cell lines and in patients with SCCL. In cell line NCI-H345 action of i.v. secretin infusion on plasma BLI levels in several the structurally related polypeptide hormones secretin, vasoac- patients with SCCL, non-SCCL lung tumors, and patients with tive intestinal peptide, and peptide histidine isoleucine as well as theophylline, a phosphodiesterase inhibitor, N6,O2'-dibutyryl out any cancer. cyclic adenosine 3':5'-monophosphate, a cyclic nucleotide ana logue, increased BLI release by 16-120% and cyclic adenosine MATERIALS AND METHODS 3':5'-monophosphate by 36-350%.
    [Show full text]
  • The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation
    biomedicines Review The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation Haiyan Zheng 1, Ji Yeon Lim 1, Jae Young Seong 1 and Sun Wook Hwang 1,2,* 1 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (H.Z.); [email protected] (J.Y.L.); [email protected] (J.Y.S.) 2 Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492 Received: 12 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons.
    [Show full text]
  • Interactions Between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: the Role of PACAP and Its Receptor PAC1R
    International Journal of Molecular Sciences Review Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R Haruhiko Kanasaki *, Aki Oride, Tomomi Hara, Tselmeg Mijiddorj, Unurjargal Sukhbaatar and Satoru Kyo Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan; [email protected] (A.O.); [email protected] (T.H.); [email protected] (T.M.); [email protected] (U.S.); [email protected] (S.K.) * Correspondence: [email protected]; Tel.: +81-853-20-2268; Fax: +81-853-20-2264 Academic Editor: Kathleen Van Craenenbroeck Received: 18 August 2016; Accepted: 19 September 2016; Published: 26 September 2016 Abstract: Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin.
    [Show full text]
  • Secretin/Secretin Receptors
    JKVTAMand others Secretin and secretin receptor 52:3 T1–T14 Thematic Review evolution MOLECULAR EVOLUTION OF GPCRS Secretin/secretin receptors Correspondence Janice K V Tam, Leo T O Lee, Jun Jin and Billy K C Chow should be addressed to B K C Chow School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong Email [email protected] Abstract In mammals, secretin is a 27-amino acid peptide that was first studied in 1902 by Bayliss and Key Words Starling from the extracts of the jejunal mucosa for its ability to stimulate pancreatic " secretin secretion. To date, secretin has only been identified in tetrapods, with the earliest diverged " secretin receptor secretin found in frogs. Despite being the first hormone discovered, secretin’s evolutionary " evolution origin remains enigmatic, it shows moderate sequence identity in nonmammalian tetrapods " origin but is highly conserved in mammals. Current hypotheses suggest that although secretin has " divergence already emerged before the divergence of osteichthyans, it was lost in fish and retained only in land vertebrates. Nevertheless, the cognate receptor of secretin has been identified in both actinopterygian fish (zebrafish) and sarcopterygian fish (lungfish). However, the zebrafish secretin receptor was shown to be nonbioactive. Based on the present information that the earliest diverged bioactive secretin receptor was found in lungfish, and its ability to interact with both vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potently suggested that secretin receptor was descended from a VPAC-like receptor gene before the Actinopterygii–Sarcopterygii split in the vertebrate lineage. Hence, Journal of Molecular Endocrinology secretin and secretin receptor have gone through independent evolutionary trajectories despite their concurrent emergence post-2R.
    [Show full text]
  • Secretin: Structure of the Precursor and Tissue Distribution of the Mrna (Intestine/Preprohormone/Cdna/Polymerase Chain Reaction) ALAN S
    Proc. Nati. Acad. Sci. USA Vol. 87, pp. 2299-2303, March 1990 Biochemistry Secretin: Structure of the precursor and tissue distribution of the mRNA (intestine/preprohormone/cDNA/polymerase chain reaction) ALAN S. KoPIN*, MICHAEL B. WHEELER, AND ANDREW B. LEITER Division of Gastroenterology, Department of Medicine, New England Medical Center, Boston, MA 02111 Communicated by Donald F. Steiner, January 5, 1990 (receivedfor review, November 17, 1989) ABSTRACT Secretin is a 27-amino acid gastrointestinal denum, while the levels reported for hypothalamus, thala- hormone that stimulates the secretion of bicarbonate-rich mus, and olfactory lobe were comparable to those in small pancreatic fluid. The unusually high number ofserine, leucine, intestine (9). Others report that brain contains either small and arginine residues in secretin has precluded the use of amounts (10, 11) or no secretin-like immunoreactivity (12). oligonucleotides to screen cDNA libraries to isolate a secretin In the present study, we have isolated cDNAs encoding the cDNA. In the present study, a short cDNA encoding porcine rat and porcine secretin precursors.t The deduced amino acid secretin was amplified from duodenal mucosal first-strand sequence includes a signal peptide, an N-terminal peptide, cDNA template by using 16,384- and 4096-fold degenerate secretin, and a 72-amino acid C-terminal peptide. We have primers in the DNA polymerase chain reaction. From the used the secretin cDNA as a probe in Northern blot hybrid- sequence of the amplified cDNA, an unambiguous oligonucle- izations to address unresolved questions regarding the tissue otide probe was designed to screen a cDNA library. Here we localization of secretin biosynthesis in the rat CNS and report the sequences of cDNAs encoding the porcine and rat gastrointestinal tract.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/27/2021 12:13:16PM Via Free Access 82 C Y Y CHENG, J Y S CHU and Others
    81 REVIEW Vasopressin-independent mechanisms in controlling water homeostasis Carrie Y Y Cheng*, Jessica Y S Chu* and Billy K C Chow School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China (Correspondence should be addressed to B K C Chow; Email: [email protected]) *(C Y Y Cheng and J Y S Chu contributed equally this work) Abstract The maintenance of body water homeostasis depends on the balance between water intake and water excretion. In the kidney, vasopressin (Vp) is a critical regulator of water homeostasis by controlling the insertion of aquaporin 2 (AQP2) onto the apical membrane of the collecting duct principal cells in the short term and regulating the gene expression of AQP2 in the long term. A growing body of evidence from both in vitro and in vivo studies demonstrated that both secretin and oxytocin are involved as Vp-independent mechanisms regulating the renal water reabsorption process, including the translocation and expression of AQP2. This review focuses on how these two hormones are potentially involved as Vp-independent mechanisms in controlling water homeostasis. Journal of Molecular Endocrinology (2009) 43, 81–92 Introduction sensation of thirst and the availability of water, and water excretion controlled by the antidiuretic hormone Osmoregulation involves sophisticatedly integrated Vp and the medullary osmotic gradient. physiological and behavioral responses to maintain the osmolality of the fluid bathing body cells. The regulation of renal handling of water and electrolytes by Vasopressin the antidiuretic hormone, vasopressin (Vp), and the regulation of water and salt intake by the dipsogenic Vp is a pleiotropic peptide which affects a wide range of peptide, angiotensin, are involved in the physiological peripheral and central regulated functions in order to and behavioral approaches respectively.
    [Show full text]
  • Oxytocin Using ALZET Osmotic Pumps
    ALZET® Bibliography References on the Administration of Oxytocin Using ALZET Osmotic Pumps Q8212: T. Iwasa, et al. The effects of chronic oxytocin administration on body weight and food intake in DHT-induced PCOS model rats. Gynecol Endocrinol 2020;36(1):55-60 Agents: Oxytocin Vehicle: Saline; Route: SC; Species: Rat; Pump: 2002; Duration: 14 days; ALZET Comments: Dose (380 ug/day); Controls received mp w/ vehicle; animal info (Female Wistar rats); replacement therapy (effects of the chronic administration of oxytocin); Q8208: T. Hirayama, et al. Oxytocin induced labor causes region and sex-specific transient oligodendrocyte cell death in neonatal mouse brain. J Obstet Gynaecol Res 2020;46(1):66-78 Agents: Oxytocin Vehicle: Buffered Saline; Route: SC; Species: Mice; Pump: 1003D; Duration: Not stated; ALZET Comments: Dose (0.6, 6, 18 or 240 μg/day); Controls received mp w/ vehicle; animal info (Wild-type C57BL6/J mice and DBA/2 mice); replacement therapy ( associations between oxytocin induced labor and mental disorders in offspring); Q7621: M. Janecek, et al. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell and Tissue Research 2019;375(1):143-172 Agents: Oxytocin; atosiban Vehicle: Not Stated; Route: CSF/CNS (lateral ventricle); Species: Mice; Rats; Pump: Not Stated; Duration: 15 days; 14 days; ALZET Comments: Dose (Oxytocin 1, 10 ng/h), (atosiban 600μg/kg/day)); animal info (adult, male); behavioral testing (elevated plus maze, light-dark box, chronic subordinate colony stress); Atosiban is an inhibitor of the hormones oxytocin and vasopressin; literature review: author lists studies where oxytocin was administered to mice and atosiban was administered to rats; Q7962: C.
    [Show full text]
  • A Bombesin Immunoreactive Peptidein Milk
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 578-582, January 1984 Medical Sciences A bombesin immunoreactive peptide in milk (radioinimunoassay/gel filtration/high-performance liquid chromatography) GLORIA D. JAHNKE* AND LAWRENCE H. LAZARUSt Peptide Neurochemistry Workgroup, Laboratory of Behavioral and Neurological Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 Communicated by George H. Hitchings, September 19, 1983 ABSTRACT Immunoreactivity to the amphibian peptide tains peptide and steroid hormones (32), prostaglandins (33), bombesin was found in instant nonfat dry milk (ca. 0.7 ng/ml) morphine (34), melatonin (35), and immunoglobulins (36) in and in the whey of whole or skim bovine milk (ca. 1.2 ng/ml) addition to a growth factor and enzymes (37, 38). even after ultracentrifugation. The soluble immunoreactivity Moreover, the peptide hormones and the growth factor re- was associated with a peptide exhibiting the following charac- tain their biological activities in milk (37, 39, 40) and, when teristics: (i) parallel displacement in an immunoassay using an ingested by the neonate, appear intact in plasma (35, 39-42). antiserum recognizing bombesin amino acid residues 5-8; (ii) Thus, considering the coincidence between the action of am- separation from both gastrin-releasing peptide and amphibian phibian bombesin and milk on hormone peptide levels, we bombesin by gel filtration-the approximate Mr was 3,200; sought to determine whether milk could be a source of a (iii) denaturation in urea,
    [Show full text]
  • SECRETIN ENHANCED MRCP Andrew T
    SECRETIN ENHANCED MRCP Andrew T. Trout, MD @AndrewTroutMD Relevant Disclosures • Grant support: – National Pancreas Foundation • In-kind grant support: – ChiRhoClin, Inc. Objectives • Review basics of secretin and its role in diagnosis of pediatric pancreatic disease • Describe techniques for performing and interpreting secretin-enhanced MRCP Pediatric Pancreatic Disease • Endocrine insufficiency • Exocrine insufficiency • Pancreatitis Pediatric Pancreatic Disease • Endocrine insufficiency • Exocrine insufficiency • Pancreatitis Pediatric Pancreatic Disease • Multiple hereditary causes of exocrine insufficiency • Increasing recognition of acute recurrent (ARP) and chronic pancreatitis (CP) as causes of exocrine insufficiency – 1-5 per 100,000 • Increasing recognition of genetic causes of ARP and CP Secretin • Secretin plays a role in assessment of pediatric pancreatic disease – Increase duct visibility – Duct stress test – Assess exocrine fxn – Perfusion effect? Manfredi R, et al. Radiology. 2002 Sep;224(3):675-82. nature.com Secretin Basics • In broad terms: Adds value only* for pancreatic imaging • Synthetic human secretin – 0.2 µg / kg, max 16 µg – Test dose (atopy, asthma) – Slow injection over 1 minute (abd pain, vomiting) – Contraindications – acute pancreatitis, allergy • Mechanisms: – Bicarbonate secretion – Transient increase in tone at the sphincter of Oddi • Plasma half-life = 3-5 min – Duration of effect >10 min • Cost = up to $2000/vial Afroze S, et al. Ann Transl Med. 2013 Oct;1(3):29. Secretin Basics • In broad terms: Adds value only* for pancreatic imaging • Synthetic human secretin – 27 amino acid polypeptide – 0.2 µg / kg, max 16 µg – Test dose (atopy, asthma) – Slow injection over 1 minute (abd pain, vomiting) – Contraindications – acute pancreatitis, allergy • Mechanisms: – Bicarbonate secretion – Transient increase in tone at the sphincter of Oddi • Plasma half-life = 3-5 min – Duration of effect >10 min Matsufuji H, et al.
    [Show full text]