Downloaded from Bioscientifica.Com at 09/27/2021 12:13:16PM Via Free Access 82 C Y Y CHENG, J Y S CHU and Others
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oxytocin Is an Anabolic Bone Hormone
Oxytocin is an anabolic bone hormone Roberto Tammaa,1, Graziana Colaiannia,1, Ling-ling Zhub, Adriana DiBenedettoa, Giovanni Grecoa, Gabriella Montemurroa, Nicola Patanoa, Maurizio Strippolia, Rosaria Vergaria, Lucia Mancinia, Silvia Coluccia, Maria Granoa, Roberta Faccioa, Xuan Liub, Jianhua Lib, Sabah Usmanib, Marilyn Bacharc, Itai Babc, Katsuhiko Nishimorid, Larry J. Younge, Christoph Buettnerb, Jameel Iqbalb, Li Sunb, Mone Zaidib,2, and Alberta Zallonea,2 aDepartment of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; bThe Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, NY 10029; cBone Laboratory, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; dGraduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555 Japan; and eCenter for Behavioral Neuroscience, Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322 Communicated by Maria Iandolo New, Mount Sinai School of Medicine, New York, NY, February 19, 2009 (received for review October 24, 2008) We report that oxytocin (OT), a primitive neurohypophyseal hor- null mice (5). But the mice are not rendered diabetic, and serum mone, hitherto thought solely to modulate lactation and social glucose homeostasis remains unaltered (9). Thus, whereas the bonding, is a direct regulator of bone mass. Deletion of OT or the effects of OT on lactation and parturition are hormonal, actions OT receptor (Oxtr) in male or female mice causes osteoporosis that mediate appetite and social bonding are exerted centrally. resulting from reduced bone formation. Consistent with low bone The precise neural networks underlying OT’s central effects formation, OT stimulates the differentiation of osteoblasts to a remain unclear; nonetheless, one component of this network mineralizing phenotype by causing the up-regulation of BMP-2, might be the interactions between leptin- and OT-ergic neurones which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expres- in the hypothalamus (10). -
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Renal Physiology
Renal Physiology Integrated Control of Na Transport along the Nephron Lawrence G. Palmer* and Ju¨rgen Schnermann† Abstract The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both *Department of Physiology and filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. Biophysics, Weill- The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting Cornell Medical duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed College, New York, in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, New York; and †Kidney Disease allowing the simultaneous regulation of both Na and K excretion. Branch, National Clin J Am Soc Nephrol 10: 676–687, 2015. doi: 10.2215/CJN.12391213 Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Introduction The precise adaptation of urinary Na excretion to di- Health, Bethesda, Daily Na intake in the United States averages approx- etary Na intake results from regulated processing of an Maryland imately 180 mmol (4.2 g) for men and 150 mmol (3.5 g) ultrafiltrate of circulating plasma by the renal tubular for women (1). -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database. -
Reorganization of Neural Peptidergic Eminence After Hypophysectomy
The Journal of Neuroscience, October 1994, 14(10): 59966012 Reorganization of Neural Peptidergic Systems Median Eminence after Hypophysectomy Marcel0 J. Villar, Bjiirn Meister, and Tomas Hiikfelt Department of Neuroscience, The Berzelius Laboratory, Karolinska Institutet, Stockholm, 171 77 Sweden Earlier studies have shown the formation of a novel neural crease to a final stage of a few, strongly immunoreactive lobe after hypophysectomy, an experimental manipulation fibers in the external layer at longer survival times. Vaso- that causes transection of neurohypophyseal nerve fibers active intestinal polypeptide (VIP)- and peptide histidine- and removal of pituitary hormones. The mechanisms that isoleucine (PHI)-IR fibers in hypophysectomized animals had underly this regenerative process are poorly understood. already contacted portal vessels 5 d after hypophysectomy, The localization and number of peptide-immunoreactive and from then on progressively increased in numbers. Fi- (-IR) fibers in the median eminence were studied in normal nally, most of the peptide fibers described above formed rats and in rats at different times of survival after hypophy- dense innervation patterns around the large blood vessels sectomy using indirect immunofluorescence histochemistry. along the lateral borders of the median eminence. The number of vasopressin (VP)-IR fibers increased in the The present results show that hypophysectomy induces external layer of the median eminence in 5 d hypophysec- a wide variety of changes in hypothalamic neurosecretory tomized rats. Oxytocin (OXY)-IR fibers decreased in the in- fibers. Not only is the expression of several peptides in these ternal layer and progressively extended into the external fibers modified following different survival times, but a re- layer. -
Transcriptional Control of Tissue-Resident Memory T Cell Generation
Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells. -
Secretin and Autism: a Clue but Not a Cure
SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear. -
Oxytocin Effects in Mothers and Infants During Breastfeeding
© 2013 SNL All rights reserved REVIEW Oxytocin effects in mothers and infants during breastfeeding Oxytocin integrates the function of several body systems and exerts many effects in mothers and infants during breastfeeding. This article explains the pathways of oxytocin release and reviews how oxytocin can affect behaviour due to its parallel release into the blood circulation and the brain. Oxytocin levels are higher in the infant than in the mother and these levels are affected by mode of birth. The importance of skin-to-skin contact and its association with breastfeeding and mother-infant bonding is discussed. Kerstin Uvnäs Moberg Oxytocin – a system activator increased function of inhibitory alpha-2 3 MD, PhD xytocin, a small peptide of just nine adrenoceptors . Professor of Physiology amino acids, is normally associated The regulation of the release of oxytocin Swedish University of Agriculture O with labour and the milk ejection reflex. is complex and can be affected by different [email protected] However, oxytocin is not only a hormone types of sensory inputs, by hormones such Danielle K. Prime but also a neurotransmitter and a as oestrogen and even by the oxytocin 1,2 molecule itself. This article will focus on PhD paracrine substance in the brain . During Breastfeeding Research Associate breastfeeding it is released into the brain of four major sensory input nervous Medela AG, Baar, Switzerland both mother and infant where it induces a pathways (FIGURES 2 and 3) activated by: great variety of functional responses. 1. Sucking of the mother’s nipple, in which Through three different release pathways the sensory nerves originate in the (FIGURE 1), oxytocin functions rather like a breast. -
Physiology of Hypothalamus and Pituitary
Physiology of Hypothalamus and Pituitary Simge Aykan, PhD Department of Physiology Ankara University School of Medicine Pituitary Gland • Pituitary gland (hypophysis) is two different tissue types that merged during embryonic development • Anterior pituitary (adenohypophysis): true endocrine gland of epithelial origin • Posterior pituitary (neurohypophysis): extension of the neural tissue of the brain • secretes neurohormones made in the hypothalamus Pituitary Gland • Pituitary bridges and integrates the neural and endocrine mechanisms of homeostasis. • Highly vascular • Posterior pituitary receives arterial blood • anterior pituitary receives only portal venous inflow from the median eminence. • Portal system is particularly important in its function of carrying neuropeptides from the hypothalamus and pituitary stalk to the anterior pituitary. Posterior Pituitary • Storage and release site for two neurohormones (peptide hormones) • Oxytocin • Vasopressin (antidiuretic hormone; ADH) • Large diameter neurons producing hormones are clustered in hypothalamus at paraventricular (oxytocin) and supraoptic nuclei (ADH) • Secretory vesicles containing neurohormones transported to posterior pituitary through axons of the neurons • Stored at the axons until a release signal arrives • Depolarization of the axon terminal opens voltage gated Ca2+ channels and exocytosis is triggered • Hormones release to the circulation Posterior Pituitary • The posterior pituitary regulates water balance and uterine contraction • Vasopressin (ADH), is a neuropeptide -
Effect of Early Vasopressin Vs Norepinephrine On
Protocol Number: CRO1888 VANISH Vasopressin vs Noradrenaline as Initial therapy in Septic Shock PROTOCOL NUMBER: CRO1888 EudraCT NUMBER: 2011-005363-24 SPONSOR: Imperial College London FUNDER: National Institute for Health Research DEVELOPMENT PHASE: PHASE IV STUDY COORDINATION CENTRE: Imperial Clinical Trials Unit PROTOCOL Version & Date: Version 2.1, 02.08.2013 Property of: Dr Anthony Gordon May not be used, divulged or published without the consent of: Dr Anthony Gordon Confidential Final Version2.1, 02.08.2013 Page 1 of 31 Downloaded From: https://jamanetwork.com/ on 09/29/2021 Protocol Number: CRO1888 Study Management Group Chief Investigator: Dr Anthony Gordon Co-investigators: Dr Stephen Brett Prof Gavin Perkins Prof Deborah Ashby Statistician: Dr Alexina Mason Trial Management: Ms Neeraja Thirunavukkarasu Study Coordination Centre For general queries, supply of trial documentation, and collection of data, please contact: Study Coordinator: Ms Neeraja Thirunavukkarasu Address: ICU – 11N, Charing Cross Hospital, Fulham Palace Road London W6 8RF E-mail: [email protected] Clinical Queries Clinical queries should be directed to Ms Neeraja Thirunavukkarasu who will direct the query to the appropriate person Sponsor Imperial College London is the main research Sponsor for this study. For further information regarding the sponsorship conditions, please contact the Head of Regulatory Compliance at: Joint Research Compliance Office 510, Lab block, 5th Floor Charing Cross Hospital Fulham Palace Road London W6 8RF Tel: 0203 311 0213 Fax: 0203 311 0203 Funder National Institute for Health Research – Research for Patient Benefit and Clinician Scientist award schemes This protocol describes the VANISH study and provides information about procedures for entering participants. -
Renal Effects of Atrial Natriuretic Peptide Infusion in Young and Adult ~Ats'
003 1-3998/88/2403-0333$02.00/0 PEDIATRIC RESEARCH Vol. 24, No. 3, 1988 Copyright O 1988 International Pediatric Research Foundation, Inc. Printed in U.S.A. Renal Effects of Atrial Natriuretic Peptide Infusion in Young and Adult ~ats' ROBERT L. CHEVALIER, R. ARIEL GOMEZ, ROBERT M. CAREY, MICHAEL J. PEACH, AND JOEL M. LINDEN WITH THE TECHNICAL ASSISTANCE OF CATHERINE E. JONES, NANCY V. RAGSDALE, AND BARBARA THORNHILL Departments of Pediatrics [R.L.C., A.R.G., C.E.J., B. T.], Internal Medicine [R.M.C., J.M. L., N. V.R.], Pharmacology [M.J.P.], and Physiology [J.M.L.], University of Virginia, School of Medicine, Charlottesville, Virginia 22908 ABSTRAm. The immature kidney appears to be less GFR, glomerular filtration rate responsive to atrial natriuretic peptide (ANP) than the MAP, mean arterial pressure mature kidney. It has been proposed that this difference UeC~pV,urinary cGMP excretion accounts for the limited ability of the young animal to UN,V, urinary sodium excretion excrete a sodium load. To delineate the effects of age on the renal response to exogenous ANP, Sprague-Dawley rats were anesthetized for study at 31-32 days of age, 35- 41 days of age, and adulthod. Synthetic rat A* was infused intravenously for 20 min at increasing doses rang- By comparison to the adult kidney, the immature kidney ing from 0.1 to 0.8 pg/kg/min, and mean arterial pressure, responds to volume expansion with a more limited diuresis and glomerular filtration rate, plasma ANP concentration, natriuresis (I). A number of factors have been implicated to urine flow rate, and urine sodium excretion were measured explain this phenomenon in the neonatal kidney, including a at each dose.