Secretin Receptor Laurence J

Total Page:16

File Type:pdf, Size:1020Kb

Secretin Receptor Laurence J MOLECULE PAGE Secretin Receptor Laurence J. Miller and Maoqing Dong Department of Internal Medicine and the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ e-mail: [email protected] Version 1.0, April 14, 2011 [DOI: 10.3998/panc.2011.12] Gene symbols: Sctr 1. General Structure and Function with six highly conserved cysteine residues that contribute to three structurally and functionally Secretin and its receptor hold special places in important intra-domain disulfide bonds, and seven history, with secretin representing the first hydrophobic transmembrane segments having “hormone”, giving rise to the field of endocrinology residue conservation quite distinct from other when W. M. Bayliss and E. H. Starling recognized family GPCRs (Fig. 1, left panel) (5-7). it as a blood-borne non-neural mediator of pancreatic exocrine secretion in 1902 (1), and In evaluation of these sequences, it has been with the secretin receptor cloned by T. Ishihara et proposed that the helical bundle of family B al. in 1991 (2), representing the first family B G GPCRs is structurally distinct from that of family A protein-coupled receptor and giving rise to this GPCRs (5-7), even though it still likely includes a new and important receptor family. heptahelical bundle conformation and is known to couple with the same group of heterotrimeric G The secretin receptor is a guanine nucleotide- proteins. It is noteworthy that family B GPCRs binding protein (G protein)-coupled receptor typically couple with both Gs and Gq, in contrast (GPCR) that binds to and is activated by the to family A GPCRs that often couple with only a peptide hormone, secretin. This receptor was the single dominant G protein. The extracellular first member of the B family of GPCRs (3, 4), amino-terminal tail domains of several members which also includes receptors for vasoactive of this receptor family have recently been intestinal polypeptide (VIP), pituitary adenylate structurally characterized, either by NMR or cyclase-activating peptide (PACAP), glucagon, crystallography, to exhibit a highly conserved core glucagon-like peptide (GLP), glucose-dependent that includes two anti-parallel β-sheets, three insulinotropic polypeptide (GIP), calcitonin, disulfide bonds, and variable amino-terminal α- calcitonin-like peptide, parathyroid hormone helix and multiple loop regions (8-17). The (PTH), corticotrophin-releasing factor (CRF), and structure also provides a conserved hydrophobic growth hormone releasing hormone (GHRH) (3, peptide-binding cleft above the stable core and 4). It is notable that these receptors lack the between the helix and loop regions. classical signature sequences found in most members of the much larger A family of GPCRs Like many GPCRs, the secretin receptor is (5, 6). The most typical features of B family glycosylated on ectodomains, predominantly GPCRs includes a long amino-terminal tail region within the amino-terminal tail, and also on the This work is subject to a Creative Commons Attribution 3.0 license. second extracellular loop (18). These all of these studies have been directed toward family represent sites of N-linked glycosylation of C or family A GPCRs, recent work has shown that asparagine residues. Site-directed mutagenesis it is relevant to family B GPCRs as well (22). The has demonstrated potential functional importance evidence is best for family C GPCRs, where of glycosylation on Asn72 and Asn291 of the human dimeric structures typically have profound effects secretin receptor (Fig 1 shows Asn78 and Asn263 on receptor function and specificity, and where of the rat sequence), representing the first of three crystal structures of covalently-bonded dimeric glycosylation sites within the amino-terminal tail complexes of ectodomains have been reported and the glycosylation site within the second (23). In family A GPCRs, there have been no extracellular loop, although selective, single consistent observations of which receptors might mutation of the other sites had no demonstrable associate with themselves or other GPCRs, of functional impact (18). Generally, the functional effects of oligomerization, or of the glycosylation sites of membrane receptors are impact of ligand binding on receptor important for proper folding during biosynthesis, oligomerization (23). The secretin receptor is ensuring normal trafficking, and for protecting the among the best studied family B GPCR in regard receptor from proteolytic degradation. to its oligomerization. It is constitutively present within homo-dimeric complexes determined by the Desensitization of GPCRs often can be induced lipid-exposed face of the fourth transmembrane both by biochemical modifications such as segment (24-26). This structure is critically phosphorylation and by cellular mechanisms such important for achieving the high affinity G protein- as internalization. The secretin receptor utilizes coupled state of this receptor, with non-dimerizing both of these. Like many receptors that activate mutants coupling less efficiently, binding secretin intracellular kinases, phosphorylation of the with lower affinity, and having less potent effects secretin receptor is utilized as a biochemical of secretin to stimulate cAMP (24-26). Of note, mechanism for feedback regulation involved in only the dimeric state of this receptor exhibits desensitization. Direct evidence for agonist- negative cooperativity (24), another protective stimulated phosphorylation of the secretin feature of some receptor systems. The receptor was first demonstrated by Ozcelebi et al. structurally specific nature of secretin receptor (19). That work established the phosphorylation homo-dimers appears to be consistent throughout of threonine and serine residues within the this receptor family (27). This receptor is also receptor carboxyl-terminal tail region. The able to form hetero-dimers with other family B kinases involved in phosphorylation of the GPCRs (28). secretin receptor were found to represent predominantly G protein-coupled receptor There is also a single report to demonstrate the kinases, with minor action by both protein kinase ability of the single transmembrane Receptor A and protein kinase C (20). Secretin receptor Activity-Modifying Protein-3 (RAMP-3) to phosphorylation has been shown to disrupt G associate with the secretin receptor during its protein coupling (21), but not to be necessary for biosynthesis (29). Of note, since the secretin agonist-induced receptor internalization (21). The receptor is able to traffick to the cell surface latter certainly occurs, and represents a major independent of its association with RAMPs, it is mechanism for desensitization of this receptor. difficult to identify a specific effect of this bimolecular association, unlike those members of In recent years, it has been recognized that the B family of GPCRs that cannot get to the cell certain GPCRs can associate with themselves surface without RAMPs, such as the calcitonin and with structurally related GPCRs to form receptor-like receptor (30). Indeed, no specific oligomeric or dimeric complexes (22). While most 2 functional effect has yet been demonstrated for receptors are expressed on essentially all cells RAMP-3 association with the secretin receptor within the kidney, with this hormone described to (29). stimulate renal blood flow and glomerular filtration rate, as well as tubular water reabsorption, and to Like secretin, all of the natural ligands of family B have effects on translocation of aquaporin (38, GPCRs, represent moderately long peptide 40). Secretin has been described to have both hormones having diffuse pharmacophoric diuretic and anti-diuretic effects, dependent on domains (3, 4). These all have the propensity to dose and route of administration (41). Secretin form helical structures, particularly in their receptors are also expressed on gastrointestinal carboxyl-terminal ends, a region of these peptides smooth muscle, neurons, and certain mucosal now known to bind to the hydrophobic cleft within cells, heart, and lung (39). the amino terminus of their receptors. This binding directs the amino-terminal region of these Like most family B GPCRs, the secretin receptor ligands toward the core helical bundle domain of is known to couple to both Gs and Gq, with the their receptors. This portion of secretin and other cAMP response to stimulation most prominent family B GPCR ligands is responsible for its and sensitive, while the intracellular calcium biological activity, with amino-terminally truncated responses are only observed with high forms of these ligands acting as antagonists (31- concentrations of hormone (42). The 33). The right panel of Figure 1 illustrates the determinants for G protein coupling have been current working model of secretin occupation of its best studied for family A GPCRs, where distinct binding site within the secretin receptor. motifs have been present in the juxtamembranous regions of the second and third intracellular loops The classical effects of secretin are the and carboxyl-terminal tail (43, 44). Some work stimulation of the secretion of bicarbonate, water, has been reported for family B GPCRs (45-47), and electrolytes from the pancreatic ductular but the same motifs in the same positions appear system, as well as the biliary ducts (34, 35). to be absent. It is interesting that the These effects are largely stimulated by secretin determinants for coupling with these two G released from S cells in the proximal intestine in proteins are
Recommended publications
  • Secretin and Autism: a Clue but Not a Cure
    SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear.
    [Show full text]
  • Constitutive Activation of G Protein-Coupled Receptors and Diseases: Insights Into Mechanisms of Activation and Therapeutics
    Pharmacology & Therapeutics 120 (2008) 129–148 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate editor: S. Enna Constitutive activation of G protein-coupled receptors and diseases: Insights into mechanisms of activation and therapeutics Ya-Xiong Tao ⁎ Department of Anatomy, Physiology and Pharmacology, 212 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA article info abstract The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In Keywords: 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported G protein-coupled receptor Disease in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported Constitutively active mutation in several additional receptors. More recently, loss of constitutive activity was postulated to also cause Inverse agonist diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the Mechanism of activation pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined Transgenic model with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse Abbreviations: agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. ADRP, autosomal dominant retinitis pigmentosa Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic AgRP, Agouti-related protein AR, adrenergic receptor diseases caused by constitutively activating mutations in GPCRs. CAM, constitutively active mutant © 2008 Elsevier Inc.
    [Show full text]
  • Insights Into Nuclear G-Protein-Coupled Receptors As Therapeutic Targets in Non-Communicable Diseases
    pharmaceuticals Review Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases Salomé Gonçalves-Monteiro 1,2, Rita Ribeiro-Oliveira 1,2, Maria Sofia Vieira-Rocha 1,2, Martin Vojtek 1,2 , Joana B. Sousa 1,2,* and Carmen Diniz 1,2,* 1 Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; [email protected] (S.G.-M.); [email protected] (R.R.-O.); [email protected] (M.S.V.-R.); [email protected] (M.V.) 2 LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected] (J.B.S.); [email protected] (C.D.) Abstract: G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors’ superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the Citation: Gonçalves-Monteiro, S.; nucleus as an autonomous signaling organelle (triggered by GPCRs).
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human GPCR Signaling PathwayFinder Cat. no. 330231 PAHS-071ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human G-Protein-Coupled Receptor Signaling PathwayFinder RT² Profiler PCR Array profiles the expression of 84 genes representative of and involved in GPCR-mediated signal transduction pathways. G-protein Coupled Receptors (GPCRs) that are represented on this array include bioactive lipid receptors, metabotropic glutamate receptors (mGluRs), GABA-B-like receptors, rhodopsin-like receptors, and secretin-like receptors. Members of the intricate network of intracellular signaling pathways involved in GPCR-mediated signal transduction are also represented on this array including the cAMP / PKA Pathway, Calcium / PKC Pathway, Calcium / NFAT Pathway, PLC Pathway, Protein Tyrosine Kinase Pathway, PKC / MEK Pathway, p43 / p44MAP Pathway, p38 MAP Pathway, PI-3 Kinase Pathway, NO-cGMP Pathway, Rho Pathway, NFκB Pathway and Jak / Stat Pathway.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • Gpcrs Globally Coevolved with Receptor Activity-Modifying Proteins, Ramps
    GPCRs globally coevolved with receptor activity-modifying proteins, RAMPs Shahar Barbasha, Emily Lorenzena, Torbjörn Perssona,b, Thomas Hubera,1, and Thomas P. Sakmara,b,1 aLaboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, 10065; and bDepartment of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 57 Huddinge, Sweden Edited by Andrew C. Kruse, Harvard University, and accepted by Editorial Board Member K. C. Garcia September 28, 2017 (received for review July 22, 2017) Receptor activity-modifying proteins (RAMPs) are widely expressed between the two. Therefore, highly coevolved protein pairs could in human tissues and, in some cases, have been shown to affect be members in the same pathway, or they could be components surface expression or ligand specificity of G-protein–coupled recep- of the same complex. tors (GPCRs). However, whether RAMP−GPCR interactions are wide- Previously, several cases of coevolution of receptor genes and spread, and the nature of their functional consequences, remains their endogenous protein−ligand genes were reported (13), but largely unknown. In humans, there are three RAMPs and over large-scale coevolution of different signal transduction components 800 expressed GPCRs, making direct experimental approaches chal- was not examined. Phylogenetic analysis to conclude coevolution lenging. We analyzed relevant genomic data from all currently avail- could be implemented by two complementary approaches. The able sequenced organisms. We discovered that RAMPs and GPCRs first searches for ortholog genes across species with the assumption tend to have orthologs in the same species and have correlated that interacting proteins would tend to coexist in genomes (10).
    [Show full text]
  • Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease
    cells Review Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease Chongxu Zhang 1, Tengjiao Cui 1, Renzhi Cai 1, Medhi Wangpaichitr 1, Mehdi Mirsaeidi 1,2 , Andrew V. Schally 1,2,3 and Robert M. Jackson 1,2,* 1 Research Service, Miami VAHS, Miami, FL 33125, USA; [email protected] (C.Z.); [email protected] (T.C.); [email protected] (R.C.); [email protected] (M.W.); [email protected] (M.M.); [email protected] (A.V.S.) 2 Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA 3 Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA * Correspondence: [email protected]; Tel.: +305-575-3548 or +305-632-2687 Received: 25 August 2020; Accepted: 17 October 2020; Published: 21 October 2020 Abstract: Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury.
    [Show full text]
  • Inhibition of Gastrin Release by Secretin Is Mediated by Somatostatin in Cultured Rat Antral Mucosa
    Inhibition of gastrin release by secretin is mediated by somatostatin in cultured rat antral mucosa. M M Wolfe, … , G M Reel, J E McGuigan J Clin Invest. 1983;72(5):1586-1593. https://doi.org/10.1172/JCI111117. Research Article Somatostatin-containing cells have been shown to be in close anatomic proximity to gastrin-producing cells in rat antral mucosa. The present studies were directed to examine the effect of secretin on carbachol-stimulated gastrin release and to assess the potential role of somatostatin in mediating this effect. Rat antral mucosa was cultured at 37 degrees C in Krebs-Henseleit buffer, pH 7.4, gassed with 95% O2-5% CO2. After 1 h the culture medium was decanted and mucosal gastrin and somatostatin were extracted. Carbachol (2.5 X 10(-6) M) in the culture medium increased gastrin level in the medium from 14.1 +/- 2.5 to 26.9 +/- 3.0 ng/mg tissue protein (P less than 0.02), and decreased somatostatin-like immunoreactivity in the medium from 1.91 +/- 0.28 to 0.62 +/- 0.12 ng/mg (P less than 0.01) and extracted mucosal somatostatin-like immunoreactivity from 2.60 +/- 0.30 to 1.52 +/- 0.16 ng/mg (P less than 0.001). Rat antral mucosa was then cultured in the presence of secretin to determine its effect on carbachol-stimulated gastrin release. Inclusion of secretin (10(-9)-10(-7) M) inhibited significantly carbachol-stimulated gastrin release into the medium, decreasing gastrin from 26.9 +/- 3.0 to 13.6 +/- 3.2 ng/mg (10(-9) M secretin) (P less than 0.05), to 11.9 +/- 1.7 ng/mg (10(-8) secretin) (P less than 0.02), and to 10.8 +/- 4.0 ng/mg (10(-7) M secretin) (P less than […] Find the latest version: https://jci.me/111117/pdf Inhibition of Gastrin Release by Secretin Is Mediated by Somatostatin in Cultured Rat Antral Mucosa M.
    [Show full text]
  • Secretin/Vasoactive Intestinal Peptide-Stimulated Secretion of Bombesin/ Gastrin Releasing Peptide from Human Small Cell Carcinoma of the Lung1
    ICANCER RESEARCH 46, 1214-1218, March 1986] Secretin/Vasoactive Intestinal Peptide-stimulated Secretion of Bombesin/ Gastrin Releasing Peptide from Human Small Cell Carcinoma of the Lung1 Louis Y. Korman,2 Desmond N. Carney, Marc L. Citron, and Terry W. Moody Medica/ Service (151W), Veterans Administration Medical Center, Washington, DC 20422 [L. Y.K., M.L.C.]; Department of Medicine and Biochemistry George Washington University School of Medicine, Washington, DC 20037 [T. W. M.¡;and National Cancer Institute-Navy Medical Oncology Branch National Cancer Institute and National Naval Medical Center, Bethesda, Maryland [D. N. C.¡ ABSTRACT autocrine factor for SCCL (12) growth. We studied the mecha nism of BLI secretion in several SCCL cell lines by examining Bombesin/gastrin releasing peptide-like immunoreactivity (BLI) the action of agents that increase intracellular cAMP. is found in the majority of small cell carcinoma of the lung (SCCL) Because of the results of these in vitro studies and the fact cell lines examined. Because BLI is present in high concentration that secretin stimulates hormone release in patients with gastrin in SCCL we studied the mechanism of BLI secretion from several producing tumors (Zollinger-Ellison syndrome), we examined the SCCL cell lines and in patients with SCCL. In cell line NCI-H345 action of i.v. secretin infusion on plasma BLI levels in several the structurally related polypeptide hormones secretin, vasoac- patients with SCCL, non-SCCL lung tumors, and patients with tive intestinal peptide, and peptide histidine isoleucine as well as theophylline, a phosphodiesterase inhibitor, N6,O2'-dibutyryl out any cancer. cyclic adenosine 3':5'-monophosphate, a cyclic nucleotide ana logue, increased BLI release by 16-120% and cyclic adenosine MATERIALS AND METHODS 3':5'-monophosphate by 36-350%.
    [Show full text]
  • The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation
    biomedicines Review The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation Haiyan Zheng 1, Ji Yeon Lim 1, Jae Young Seong 1 and Sun Wook Hwang 1,2,* 1 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (H.Z.); [email protected] (J.Y.L.); [email protected] (J.Y.S.) 2 Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492 Received: 12 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons.
    [Show full text]
  • Interactions Between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: the Role of PACAP and Its Receptor PAC1R
    International Journal of Molecular Sciences Review Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R Haruhiko Kanasaki *, Aki Oride, Tomomi Hara, Tselmeg Mijiddorj, Unurjargal Sukhbaatar and Satoru Kyo Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan; [email protected] (A.O.); [email protected] (T.H.); [email protected] (T.M.); [email protected] (U.S.); [email protected] (S.K.) * Correspondence: [email protected]; Tel.: +81-853-20-2268; Fax: +81-853-20-2264 Academic Editor: Kathleen Van Craenenbroeck Received: 18 August 2016; Accepted: 19 September 2016; Published: 26 September 2016 Abstract: Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin.
    [Show full text]
  • Secretin/Secretin Receptors
    JKVTAMand others Secretin and secretin receptor 52:3 T1–T14 Thematic Review evolution MOLECULAR EVOLUTION OF GPCRS Secretin/secretin receptors Correspondence Janice K V Tam, Leo T O Lee, Jun Jin and Billy K C Chow should be addressed to B K C Chow School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong Email [email protected] Abstract In mammals, secretin is a 27-amino acid peptide that was first studied in 1902 by Bayliss and Key Words Starling from the extracts of the jejunal mucosa for its ability to stimulate pancreatic " secretin secretion. To date, secretin has only been identified in tetrapods, with the earliest diverged " secretin receptor secretin found in frogs. Despite being the first hormone discovered, secretin’s evolutionary " evolution origin remains enigmatic, it shows moderate sequence identity in nonmammalian tetrapods " origin but is highly conserved in mammals. Current hypotheses suggest that although secretin has " divergence already emerged before the divergence of osteichthyans, it was lost in fish and retained only in land vertebrates. Nevertheless, the cognate receptor of secretin has been identified in both actinopterygian fish (zebrafish) and sarcopterygian fish (lungfish). However, the zebrafish secretin receptor was shown to be nonbioactive. Based on the present information that the earliest diverged bioactive secretin receptor was found in lungfish, and its ability to interact with both vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide potently suggested that secretin receptor was descended from a VPAC-like receptor gene before the Actinopterygii–Sarcopterygii split in the vertebrate lineage. Hence, Journal of Molecular Endocrinology secretin and secretin receptor have gone through independent evolutionary trajectories despite their concurrent emergence post-2R.
    [Show full text]