Impacts of Applied Genetics: Micro-Organisms, Plants, and Animals

Total Page:16

File Type:pdf, Size:1020Kb

Impacts of Applied Genetics: Micro-Organisms, Plants, and Animals Impacts of Applied Genetics: Micro-Organisms, Plants, and Animals April 1981 NTIS order #PB81-206609 Library of Congress Catalog Card Number 81-600046 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword This report examines the application of classical and molecular genetic technol- ogies to micro-organisms, plants, and animals. Congressional support for an assess- ment in the field of genetics dates back to 1976 when 30 Representatives requested a study of recombinant DNA technology. Letters of support for this broader study came from the then Senate Committee on Human Resources and the House Committee on Interstate and Foreign Commerce, Subcommittee on Health and the Environment. Current developments are especially rapid in the application of genetic technol- ogies to micro-organisms; these were studied in three industries: pharmaceutical, chemical, and food. Classical genetics continue to play the major role in plant and animal breeding but new genetic techniques are of ever-increasing importance. This report identifies and discusses a number of issues and options for the Con- gress, such as: ● Federal Government support of R&D, ● methods of improving the germplasm of farm animal species, . risks of genetic engineering, patenting living organisms, and ● public involvement in decisionmaking. The Office of Technology Assessment was assisted by an advisory panel of scien- tists, industrialists, labor representatives, and scholars in the fields of law, economics, and those concerned with the relationships between science and society. Others con- tributed in two workshops held during the course of the assessment. The first was to investigate public perception of the issues in genetics; the second examined genetic applications to animals. Sixty reviewers drawn from universities, Government, in- dustry, and the law provided helpful comments on draft reports. The Office expresses sincere appreciation to all those individuals. An abbreviated copy of the summary of this report (ch. 1) is available free of charge from the Office of Technology Assessment, U.S. Congress, Washington, D. C., 20510. In addition, the working papers on the use of genetic technology in human and in veterinary medicine are available as a separate volume from the National Technical Information Service. Director Impacts of Applied Genetics Advisory J. E. Legates, Chairman Dean, School of Agriculture and Life Sciences, North Carolina State University Ronald E. Cape Oliver E. Nelson, Jr. Cetus Corp. Laboratory of Genetics University of Wisconsin Nina V. Fedoroff Department of Embryology Carnegie Institution of Washington David Pimentel Department of Entomology June Goodfield Cornell University The Rockefeller University Harold P. Green Robert Weaver Fried, Frank, Harris, Shriver and Kampelman Department of Agricultural Economics Halsted R. Holman Pennsylvania State University Stanford University Medical School M. Sylvia Krekel James A. Wright Health and Safety Office Pioneer Hi-Bred International Oil, Chemical, and Atomic Workers Plant Breeding Division International Union Elizabeth Kutter Norton D. Zinder The Evergreen State College The Rockefeller University iv Applied Genetics Assessment Staff Joyce C. Lashof, Assistant Director, OTA Health and Life Sciences Division Gretchen Kolsrud, Program Manager Zsolt Harsanyi, Project Director Project Staff Marya Breznay, Administrative Assistant Lawrence Burton, Analyst Susan Clymer, Research Assistant Renee G. Ford, * Technical Editor Michael Gough, Senior Analyst Robert Grossman,* Analyst Richard Hutton, * Editor Geoffrey M. Karny, Legal Analyst Major Contractors Benjamin G. Brackett, University of Pennsylvania The Genex Corp. William P. O’Neill, Poly-Planning Services Plant Resources Institute Anthony J. Sinskey, Massachusetts Institute of Technology Aladar A. Szalay, Boyce-Thompson Institute Virginia Walbot, Washington University OTA Publishing Staff John C. Holmes, publishing Officer John Bergling* Kathie S. Boss Debra M. Datcher Patricia A. Dyson* Mary Harvey * Joe Henson OTA contract personnel. v Contents Page . Glossary . .. .. .viii Acronyms and Abbreviations . xii Chapter l. Summary: Issues and Options . 3 Chapter 2. Introduction . .......00 29 Part I :Biotechnology Chapter 3. Genetic Engineering and the Fermentation Technologies . 49 Chapter 4. The Pharmaceutical Industry. 59 Chapter 5. The Chemical Industry . 85 Chapter 6. The Food Processing Industry. .. ....107 Chapter 7. The Use of Genetically Engineered Micro-Organisms in the Environment. ......117 Part II: Agriculture Chapter 8. The Application of Genetics to Plants . .. ...137 Chapter 9. Advances in Reproductive Biology and Their Effects on Animal Improvement . 167 Part III: Institutions and Society Chapter l0. The Question of Risk. .......199 Chapter ll. Regulation of Genetic Engineering. .. ....211 Chapter 12. Patenting Living Organisms. ..........237 Chapter 13. Genetics and Society . ................257 Appendixes I-A. A Case Study of Acetaminophen Production. ...269 I-B. A Timetable for the Commercial Production of Compounds Using Genetically Engineered Micro-Organisms in Biotechnology . ........275 I-C. Chemical and Biological Processes. ..........292 I-D. The Impact of Genetics on Ethanol-A Case Study . .............293 II-A. A Case Study of Wheat. .. ...304 11-B. Genetics and the Forest Products Industry Case Study . .........307 II-C. Animal Fertilization Technologies. ..........309 III-A. History of the Recombinant DNA Debate . .. ...315 III-B. Constitutional Constraints on Regulation. .. ...320 111-C. Information on International Guidelines for Recombinant DNA. ......322 IV. Planning Workshop Participants, Other Contractors and Contributors, and Acknowledgments. ...329 vii Glossary Aerobic.—Growing only in the presence of oxygen. volve the use of genetically engineered micro- organisms. Anaerobic. —Growing only in the absence of oxygen. Blastocyst.— An early developmental stage of the embryo; the fertilized egg undergoes several cell Alkaloids.—A group of nitrogen-containing organic divisions and forms a hollow ball of cells called substances found in plants; many are pharmaco- the blastocyst. logically active—e.g., nicotine, caffeine, and cocaine. Callus.—The cluster of plant cells that results from tissue culturing a single plant cell. Allele.—Alternate forms of the same gene. For ex- ample, the genes responsible for eye color (blue, Carbohydrates.— The family of organic molecules brown, green, etc.) are alleles. consisting of simple sugars such as glucose and sucrose, and sugar chains (polysaccharides) such Amino acids.—The building blocks of proteins. as starch and cellulose. There are 20 common amino acids; they are’ joined together in a strictly ordered “string” Catalyst.—A substance that enables a chemical which determines the character of each protein. reaction to take place under milder than normal conditions (e.g., lower temperatures). Biological Antibody.—A protein component of the immune catalysts are enzymes; nonbiological catalysts in- system in mammals found in the blood. clude metallic complexes. Cell fusion.—The fusing together of two or more Antigen.—A large molecule, usually a protein or cells to become a single cell. carbohydrate, which when introduced in the body stimulates the production of an antibody Cell lysis.—Disruption of the cell membrane allow- that will react specifically with the antigen. ing the breakdown of the cell and exposure of its contents to the environment. Aromatic chemical.—An organic compound con- taining one or more six-membered rings. Cellulase.—An enzyme that degrades cellulose to glucose. Aromatic polymer.–Large molecules consisting of repeated structural units of aromatic chem- Cellulose.–A polysaccharide composed entirely of icals. several glucose units linked end to end; it consti- tutes the major part of cell walls in plants. Artificial insemination.—The manual placement of sperm into the uterus or oviduct. Chimera.—An individual composed of a mixture of genetically different cells. Bacteriophage (or phage).–A virus that multi- plies in bacteria. Bacteriophage lambda is com- Chloroplast.-The structure in plant cells where monly used as a vector in recombinant DNA ex- photosynthesis occurs. periments. Chromosomes.—The thread-like components of a cell that are composed of DNA and protein. They Bioassay .–Determination of the relative strength contain most of the cell’s DNA. of a substance (such as a drug) by comparing its effect on a test organism with that of a standard Clone.—A group of genetically identical cells or preparation. organisms asexually descended from a common ancestor. All cells in the clone have the same ge- Biomass.—Plant and animal material. netic material and are exact copies of the original. Biome.—A community of living organisms in a ma- Conjugation.—The one-way transfer of DNA be- jor ecological region. tween bacteria in cellular contact. Biosynthesis. —The production of a chemical com- Crossing-over. —A genetic event that can occur pound by a living organism. during celluar replication, which involves the breakage and reunion of DNA molecules. Biotechnology .—The collection of industrial proc- esses that involve the use of biological systems. Cultivar.—An organism developed and persistent For some of these industries, these processes in- under cultivat ion. Cytognetics.-A branch of biology that deals with Gene.–The hereditary unit; a segment of DNA the study of heredity and variation by the meth- coding
Recommended publications
  • Models of the Gene Must Inform Data-Mining Strategies in Genomics
    entropy Review Models of the Gene Must Inform Data-Mining Strategies in Genomics Łukasz Huminiecki Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 00-901 Warsaw, Poland; [email protected] Received: 13 July 2020; Accepted: 22 August 2020; Published: 27 August 2020 Abstract: The gene is a fundamental concept of genetics, which emerged with the Mendelian paradigm of heredity at the beginning of the 20th century. However, the concept has since diversified. Somewhat different narratives and models of the gene developed in several sub-disciplines of genetics, that is in classical genetics, population genetics, molecular genetics, genomics, and, recently, also, in systems genetics. Here, I ask how the diversity of the concept impacts data-integration and data-mining strategies for bioinformatics, genomics, statistical genetics, and data science. I also consider theoretical background of the concept of the gene in the ideas of empiricism and experimentalism, as well as reductionist and anti-reductionist narratives on the concept. Finally, a few strategies of analysis from published examples of data-mining projects are discussed. Moreover, the examples are re-interpreted in the light of the theoretical material. I argue that the choice of an optimal level of abstraction for the gene is vital for a successful genome analysis. Keywords: gene concept; scientific method; experimentalism; reductionism; anti-reductionism; data-mining 1. Introduction The gene is one of the most fundamental concepts in genetics (It is as important to biology, as the atom is to physics or the molecule to chemistry.). The concept was born with the Mendelian paradigm of heredity, and fundamentally influenced genetics over 150 years [1].
    [Show full text]
  • Gene Use Restriction Technologies for Transgenic Plant Bioconfinement
    Plant Biotechnology Journal (2013) 11, pp. 649–658 doi: 10.1111/pbi.12084 Review article Gene use restriction technologies for transgenic plant bioconfinement Yi Sang, Reginald J. Millwood and C. Neal Stewart Jr* Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Received 1 February 2013; Summary revised 3 April 2013; The advances of modern plant technologies, especially genetically modified crops, are considered accepted 9 April 2013. to be a substantial benefit to agriculture and society. However, so-called transgene escape *Correspondence (fax 1-865-974-6487; remains and is of environmental and regulatory concern. Genetic use restriction technologies email [email protected]) (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Keywords: transgenic plants, Furthermore, we review the similarities and differences between IPP- and bioconfinement- transgene escape, male sterility, oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize embryo sterility, transgene deletion, recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and gene flow. ecological effects of implementing GURTs for bioconfinement. Introduction proposed (Daniell, 2002; Gressel, 1999; Moon et al., 2011), including strategies for male sterility (Mariani et al., 1990), Transgenic crops have become an integral part of modern maternal inheritance (Daniell et al., 1998; Iamtham and Day, agriculture and have been increasingly adopted worldwide (James, 2000; Ruf et al., 2001), transgenic mitigation (Al-Ahmad et al., 2011).
    [Show full text]
  • Molecular Materials for Nonlinear Optics
    RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para­ physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam­ Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com­ is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal­ molecular solids mere aggregations of molecules held to­ line fIlms, and amorphous compositions. In these materi­ gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug­ solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic.
    [Show full text]
  • Historiographies of Plant Breeding and Agriculture LSE Research Online URL for This Paper: Version: Accepted Version
    Historiographies of Plant Breeding and Agriculture LSE Research Online URL for this paper: http://eprints.lse.ac.uk/101334/ Version: Accepted Version Book Section: Berry, Dominic J. (2019) Historiographies of Plant Breeding and Agriculture. In: Dietrich, Michael, Borrello, Mark and Harman, Oren, (eds.) Handbook of the Historiography of Biology. Springer. ISBN 9783319901183 (In Press) Reuse Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item. [email protected] https://eprints.lse.ac.uk/ Historiographies of Plant Breeding and Agriculture Dominic J. Berry London School of Economics There are unique opportunities that plant breeding and agriculture offer the historian of biology, and unique ways in which the historian of biology can inform the history of plant breeding and agriculture (Harwood, 2006. Phillips and Kingsland, 2015). There are also of course questions and challenges that the study of agricultural sites share with the study of other biological sites, such as those in medicine (Wilmot 2007. Woods et al. 2018), the environment (Agar and Ward 2018), and non-agricultural industries (Bud 1993). Indeed, in some instances the agricultural, medical, environmental, and biologically industrial will be one and the same. This is to say nothing of what agricultural sites share in common with histories of science beyond biology, but that is a broader discussion I can only mention in passing (Parolini 2015).
    [Show full text]
  • An Overview: Innovation in Plant Breeding
    An Overview: Innovation in Plant Breeding Modern plant breeding blends traditional ways of developing crops with the latest in science and technology to achieve improved crops – enabling more choices for both farmers and consumers, and producing crops that can better cope with evolving pests, diseases and a changing climate. The Basics What: The simplest definition of plant breeding is crossing two plants Most of the fruits, vegetables, and to produce offspring that share the best characteristics of the two grains that we eat today are the parent plants. Breeders make crosses then select which offspring to advance in the pipeline based on their desired characteristics. result of generations of plant breeding. About 5,000 years ago, Why: Even the earliest farmers understood that, in order to survive, watermelons were only they needed plant varieties specifically adapted to their environmental conditions and cultivated to produce the best foods to nourish their 2 inches in diameter livestock and communities. and had a bitter taste, vastly How: Through generations of research and discovery, plant breeding has advanced beyond selecting a parent plant simply based on its different from appearance. It now includes an in-depth understanding of plants’ the large, genetic makeup, enabling breeders to better predict which plants will sweet-tasting have the highest probability of success in the field and the grocery fruit we enjoy store before making a cross. today. The Background The earliest farmers were plant breeders who understood the value of identifying crops that showed beneficial characteristics to plant in future seasons. Later, they learned they could cross two plants to develop an even better plant.
    [Show full text]
  • Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-By-Case Decision-Making
    sustainability Review Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making Paul Vincelli Department of Plant Pathology, 207 Plant Science Building, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; [email protected] Academic Editor: Sean Clark Received: 22 March 2016; Accepted: 13 May 2016; Published: 20 May 2016 Abstract: Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals. Keywords: biotechnology; GMO (genetically modified organism) 1. Introduction and Background Disease management practices can contribute to sustainability by protecting crop yields, maintaining and improving profitability for crop producers, reducing losses along the distribution chain, and reducing the negative environmental impacts of diseases and their management.
    [Show full text]
  • Plant Genetics and Biotechnology in Biodiversity
    diversity Plant Genetics and Biotechnology in Biodiversity Edited by Rosa Rao and Giandomenico Corrado Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Plant Genetics and Biotechnology in Biodiversity Plant Genetics and Biotechnology in Biodiversity Special Issue Editors Rosa Rao Giandomenico Corrado MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rosa Rao Giandomenico Corrado Universita` degli Studi di Napoli Universita` degli Studi di Napoli “Federico II” “Federico II” Italy Italy Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) from 2017 to 2018 (available at: http://www.mdpi.com/journal/diversity/special issues/plant genetics biotechnology) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03842-003-3 (Pbk) ISBN 978-3-03842-004-0 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Download the Chemical Engineering Major Handbook
    2020 - 2021 Undergraduate Handbook DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING INFORMATION FOR MAJORS IN CHEMICAL ENGINEERING Fall 2020 Updated July 2020 Quick Reference Guide Chemical Engineering Curriculum - Prerequisite Flowchart *Sophomore year has two variants; ChE 210 may be taken in sophomore or freshman year. Total Requirements - 48 classes Basic Courses: A. Mathematics - 4 classes D. Design and Communication - 3 classes Chemical Engineering Curriculum - Prerequisite Flowchart q MATH 220-1 (220) q MATH 228-1 (230) q q ENGLISH & DSGN 106-1,2 q MATH 220-2 (224) q MATH 228-2 (234) q COMM ST (Speech) 102, or B. Engineering Analysis - 4 classes PERF ST (Performance) 103 or 203 q q q q GEN ENG 205-1,2,3,4 E. Basic Engineering - 5 classes C. Basic Sciences - 4 classes q CHEM ENG 210 q q PHYSICS 135-2,3 (plus labs) q CHEM ENG 211 q q CHEM 131,132, or 151,152, q MAT SCI 301 or 171,172 (plus labs) q CHEM ENG 312 or IEMS 303 q CHEM ENG 321 Distribution Requirements: F. q Social Sci/Humanities (Theme) - 7 classes G. q Unrestricted Electives - 5 classes Core Curriculum: H. Major Program – 11 required classes + 5 technical electives q CHEM 210-1: Organic Chemistry q CHEM ENG 322: Heat Transfer q CHEM 210-2: Organic Chemistry (plus lab) q CHEM ENG 323: Mass Transfer q CHEM ENG 212: Phase Equilibrium and q CHEM ENG 341: Dynamics and Control Staged Separations of Chemical and Biological Processes q CHEM ENG 275: Cell & Molecular Biology q CHEM ENG 342: Chemical Engineering Lab for Engineers or BIOL SCI 215 or 291 or q CHEM ENG 351: Process Economics, 201 or 202 Design & Evaluation q CHEM ENG 307: Kinetics & Reactor q CHEM ENG 352: Chemical Engineering Engineering Design Projects q Technical Electives - 5 classes You may choose an area of specialization: (OR follow technical elective guidelines - Section IIIB) Bioengineering, Chemical Process Engineering, Design, Environmental Engineering and Sustainability, Nanotechnology and Molecular Engineering, or Polymer Science and Engineering Table of Contents I.
    [Show full text]
  • Epigenetics Is Normal Science, but Don't Call It Lamarckian
    Extended Abstract Volume 6:3, 2020 DOI: 6.2472/imedipce.2020.6.002 Journal of Clinical Epigenetics ISSN: 2472-1158 Open Access Epigenetics is Normal Science, But Don’t Call It Lamarckian David Penny New Zealand Extended Abstract they are general (but not necessarily universal) because they are found in Excavates, which many people consider are ancestral to other eukaryotes [6, 7]. Similarly, an important point is that Epigenetic mechanisms are increasingly being accepted as an integral methylation, phosphorylation, etc. of the DNA and of the histones is a part of normal science. Earlier genetic studies appear to have part of normal evolution (at least in eukaryotes that have the assumed that the only changes were ‘mutations’ as a result of a nucleosome structure) [8]. One of the most interesting aspects is change in the DNA sequence. If any such changes altered the amino methylation (and hydroxymethylation) of cytosine, and this is found in acid sequences then it was effectively a mutation, and if it occurred in many deep branching eukaryotes [9]. Typically there is methylation of a germline cell (including in unicellular organisms) then it could be cytosine molecules, especially in CpG (cytosine followed by guanine) passed on to subsequent generations. However, it is increasingly regions. The role of small RNAs in helping regulate the levels of apparent that other changes are also important, for example, changes protein expression is discussed in [10]. The main point here is that to methylation patterns, and to the histone proteins. Epigenetics was protein expression levels are very variable in all cells – it is not just sometimes consider ‘additional’ to classical genetics, but it is still fully classical genetics that is important; there are many epigenetic dependent on DNA, RNA and protein sequences, and at least since [1] mechanisms affecting the differences in protein expression.
    [Show full text]
  • Bottom-Up Nano-Technology: Molecular Engineering at Surfaces
    BESSY – Highlights 2003 – Scientific Highligths 1 Max-Planck-Institut für Bottom-up nano-technology: Festkörperforschung, Stuttgart, 2 molecular engineering at surfaces Lehrstuhl für 1 1 1 1 2 Physikalische Chemie I, S. Stepanow , M. Lingenfelder , A. Dmitriev , N. Lin , Th. Strunskus , Ruhr-Universität Bochum, Ch. Wöll2, J.V. Barth3,4, K. Kern1,3 3 Institut de Physique des Nanostructures, A key issue in nanotech- acid (terephthalic acid - Ecole Polytechnique Fédérale de nology is the development tpa) and 1,2,4-benzenetri- Lausanne, Schweiz of conceptually simple carboxylic acid (trimellitic 4 construction techniques acid - tmla) on the Advanced Materials and Process for the mass fabrication Cu(100) surface. Mol- Engineering Laboratory, of identical nanoscale ecules of this type are University of British Columbia, structures. Conventional frequently employed in Vancouver, Canada top down fabrication 3-D crystal engineering techniques are both top [3] and have proven to be down fabrication techniques are both energy useful for the fabrication of nanoporous intensive and wasteful, because many supramolecular layers [4-7]. The molecules production steps involve depositing unstruc- tpa and tmla with their respective twofold tured layers and then patterning them by and threefold exodentate functionality are removing most of the deposited films. shown in Fig. 1. While the formation of Furthermore, increasingly expensive fabrica- organic layers and nano-structures can be tion facilities are required as the feature size nicely monitored by STM, X-ray photoelectron decreases. The natural alternative to the top- spectroscopy (XPS) and near-edge X-ray down construction is the bottom-up ap- absorption fine structure (NEXAFS) resolve proach, in which nanoscale structures are conclusively the deprotonation of carboxylic obtained from their atomic and molecular acid group and molecular orientation.
    [Show full text]
  • Using Classical Genetics Simulator (CGS) to Teach Students the Basics of Genetic Research
    Tested Studies for Laboratory Teaching Proceedings of the Association for Biology Laboratory Education Vol. 33, 85–94, 2012 Using Classical Genetics Simulator (CGS) to Teach Students the Basics of Genetic Research Jean Heitz1, Mark Wolansky2, and Ben Adamczyk3 1University of Wisconsin, Zoology Department, 250 N. Mills Street, Madison WI 53706 USA 2University of Alberta, Department of Biological Science, Edmonton AB, CAN T6G 2E9 3Genedata, MA, A-1 Cranberry HI, Lexington MA 02421 USA ([email protected];[email protected];[email protected]) Some experiments are not well suited to large introductory labs because of space, time and funding constraints. Among these are classical Mendelian genetics investigations. Cyber labs can overcome these constraints. Classi- cal Genetics Simulator (CGS) gives students the opportunity to perform controlled crosses with model organisms much like a geneticist would do. CGS provides populations of Drosophila, Arabidopsis or mice with unknown patterns of inheritance and gives students the tools to design and perform experiments to discover these patterns. Students require an understanding of the what, why and how of solving genetic problems to successfully complete our cyber genetics lab activities. Keywords: Mendelian genetics, simulator, classical genetics simulator (CGS), linkage, monohybrid, dihybrid Introduction In large introductory biology classes some labs are dif- How can students get practice doing what geneticists ficult to do because of space, time and funding constraints. actually do? Among these are classical Mendelian genetics investiga- An obvious way for students to get practice doing what tions. As a result, we have turned to cyber labs. Working geneticists do is to conduct actual crosses.
    [Show full text]
  • Nanotechnology: a Slightly Different History Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected]
    Nanotechnology: a slightly different history Peter Schulz School of Applied Sciences UNICAMP Brazil [email protected] Originally published in Portuguese as a diffusion of Science article Nanotecnologia - uma história um pouco diferente Ciência Hoje 308, October 2013, p.26-29 Many introductory articles and books about nanotechnology have been written to disseminate this apparently new technology, which investigate and manipulates matter at dimension of a billionth of a meter. However, these texts show in general a common feature: there is very little about the origins of this multidisciplinary field. If anything is mentioned at all, a few dates, facts and characters are reinforced, which under the scrutiny of a careful historical digging do not sustain as really founding landmarks of the field. Nevertheless, in spite of these flaws, such historical narratives bring up important elements to understand and contextualize this human endeavor, as well as the corresponding dissemination among the public: would nanotechnology be a cultural imperative? Introduction: plenty of room beyond the bottom Nanotechnology is based on the investigation and manipulation of matter at the scale of billionths of a meter, i.e., nanometers; borrowing approaches from academic disciplines, which until recently were perceived more or less as isolated from each other: Biology, Physics, Chemistry and Material Sciences. Different groups, ranging from the scientific community to the general public, when asked about the history of nanotechnology seem to be satisfied with a tiny set of information spread out from site to site in the web. Within the most disseminated allegedly origins of nanotechnology, we can find the so called grandfather and launching act of nanotechnology, namely the famous physicist Richard Feynman (1918 - 1988) and his 1959 talk There is plenty of room at the bottom1.
    [Show full text]