Map of Nearby Space 2320AD HYG 197

Total Page:16

File Type:pdf, Size:1020Kb

Map of Nearby Space 2320AD HYG 197 HD 224723 cluster Map of nearby space 2320AD HYG 197 4.8 HD 224964 HD 1224 HD 236481 7.6 6.7 3.2 HYG 2888 HD 224767 6.5 HD 3434 7.7 7.0 6.3 7.0 HYG 3246 Castor cluster HD 1251 HD 224723 6.4 5.6 0.0 HYG 542 HD 2236 7.6 7.3 Beta Tucanae cluster HYG 1966 HYG 1868 1.1 HD 3714 7.3 7.2 6.3 3.5 HD 1260 Topology of stutterwarp links (solid HYG 716 HYG 2115 HD 224853 HD 2749 HD 145 HD 164 5.7 3.8 7.2 4.5 HD 2665 6.7 HD 2289 7.4 0.0 HD 2779 6.7 5.7 7.5 5.9 HD 224828 5.6 0.0 7.5 6.7 6.8 HD 181 HD 224778 HD 224849 HD 155 HD 2804 7.5 lines) and tug-links (dashed lines). 7.1 6.7 5.8 7.2 5.3 5.1 HD 446 4.2 6.9 HD 2243 6.8 7.2 5.8 4.0 HD 2386 HYG 2791 7.0 HD 1105 6.6 6.8 HD 135 HD 375 3.3 30 Psc 6.1 Cluster #30 HD 3846 HD 224735 5.2 HD 183 7.0 HD 457 6.7 6.3 HYG 2523 HD 383 5.5 2.8 5.9 6.0 HD 2815 4.3 Green subclusters have sizeable human 2.0 HD 2766 6.6 5.6 6.6 7.1 6.8 7.3 HD 3157 HD 3888 6.6 4.8 HD 224980 7.5 6.9 HD 442 5.6 4.7 HD 3186 HD 2589 HD 429 HD 3912 5.6 5.6 HD 2024 5.7 HD 208 3.3 5.1 HD 225015 6.0 HD 2383 5.7 7.0 HD 458 HD 2827 HD 434 HD 2882 4.6 6.9 HYG 2649 7.3 0.0 HD 2762 6.3 7.3 presence, red sizeable kafer presence, 4.2 4.0 HD 404 7.5 HD 1940 6.5 7.4 HYG 211 4.6 5.0 7.2 6.7 HD 441 6.1 7.0 HD 2981 HD 2829 5.9 HD 162 5.1 HYG 2495 6.7 7.2 5.6 6.7 HD 538 6.6 HD 417 HD 277 HD 2945 HD 483 HYG 1905 HD 677 3.3 7.3 HD 2816 HD 2712 HD 2839 7.3 Bet1Tuc HD 2359 11.3 6.5 7.5HD 3858 7.5 7.0 9.1 HYG 739 3.1 5.5 5.8 2.2 7.3 blue Pentapod presence and grey 4.8 5.5 0.0 HD 406 HD 2837 6.2 4.6 2.7 7.5 7.1 7.5 5.8 5.6 6.0 5.6 HD 319 2.9 5.5 HD 2912 HD 2811 HD 628 HD 290 5.56.3 6.3 13 Cas 5.5 HD 2893 Bet2Tuc 6.3 6.2 10.4 5.8 5.5 7.2 10.1 4.9 HD 2014 HD 2121 6.2 HD 216 HD 2785 6.5 9.1 8.7 HYG 2544 4.5HYG 2565 6.6 HD 565 HD 2784 7.6 3.6 0.0 3.8 9.5 HD 2947 2.3 HD 2937 4.5 5.6 6.3 7.1 HD 2711 7.6 7.3 6.5 HD5.6 516 HD 512 HYG 664 7.3 4.8 7.2 2.3 7.6 represents clusters only reachable using 3.6 HYG 2493 0.0 7.1 5.5 7.6 2.6 4.9 HD 2962 0.0 14Lam Cas HD 233 HD 2873 11.5 8.0 4.9 HD 2936 HD 336 0.0 HYG 778 HD 2824 5.5 HD 563 HD 3045 3.7 HD 2903 7.1 5.4 0.0 HYG 2642 11.5 8.0 HD 531 HD 452 2.6 7.2 7.1 6.1 9.3 4.6 9.1 HD 2978 9.3 HD 425 6.7 51 Psc HD 449 7.4 6.6 7.5 6.1 9.4 3.9 6.7 9.1 5.1 3.9 HD 2833 HD 511 7.5 6.1 tugs. HYG 587 HD 2836 6.7 HD 620 6.1 6.6 10.2 4.2 5.1 HD 2946 3.4 HD 464 HD 567 HD 521 5.8 2.6 6.6 5.9 7.7 6.2 6.7 4.8 1.5 HYG 762 0.0 HYG 896 7.5 6.8 HD 236 7.3 HD 281 5.9 7.2 3.47.6 HD6.6 505 7.3 HYG 2433 6.6 5.7HD 2888 3.2 5.9 3.2HD 2970 7.7 7.2 0.0 HD 2874 5.9 3.2 5.8 7.7 0.5 4.8 6.7 9.4 6.8 HD 2980 6.4 5.2 HD 225 0.0 7.5 3.9 6.8 HD 2748 Gl 22 A 6.4 7.6 6.7 6.4 4.5 HD 2764 0.0 7.6 HYG 751 HYG 2538 HD 2826 HD 2663 3.7 HD 2901 5.2 3.8 5.8 HD 299 0.0 0.0 5.7 6.7 7.1 HD 2806 5.9 4.5 2.5 5.9 6.7 Psi5 Aurigae 7.3 4.90.0 4.8 6.9 4.8 HYG 2541 5.9 5.2 3.1 HD 227 5.6 5.1 7.3 HD6.9 544 HD 615 3.1 3.7 HYG 2576 6.9 6.0 HD 2702 5.9 4.2 6.4 HD 279 G 107-69 A HD 2731 2.5 Cluster #24 HD 334 HD 313 6.9 4.8 5.7 7.6 4.8 6.4 3.1 HD 2911 Based on information in 2320AD by AC+47 256-150G 107-69 B 0.0 6.0 HYG 2571 7.6 6.8 6.5 6.7 4.2 HD 403 6.1 3.1 4.2 7.7 7.7 2.7 5.3 6.3 HYG 2406 HD 2851 2.7 5.8 6.6 5.8 7.6 3.4 5.5 5.52.7 2.7 6.4 5.8 15Kap Cas HD 2775 G 107-70 D HD 2798 HD 2801 HD 3034 6.6 4.6 HD 2952 HD 278 0.0 3.2 5.3 2.6 2.6HD 2931 4.4 G 107-70 C 0.2 HD 422 0.0 4.4 Colin Dunn, Near Star List II by Andy 5.1 Alpha Gemini B6.4 6.8 3.2 7.7 4.6 6.4 HD 2871 5.1 4.4 5.6 5.6 5.6 4.4 3.2 5.6 HD 2823 6.4 4.1 7.5 4.4 7.5 4.4 3.2 0.0 0.0 4.1 0.5 4.4 4.4 4.4 6.4Alpha3.2 Gemini A 3.2 6.4 5.9 0.0 6.4 HD 2907 4.4 0.0 0.0 0.0 10.1 Gl 6 4.4 HYG 2594 HD 2998 4.4 YY Geminorum E 0.0 0.0 0.0 4.7 HD 757 8.7 4.4 0.0 HD 2964 3.2 Brick and the HYG database by David 0.0 0.0 6.1 10.1 Alpha Gemini C 0.0 0.0 YY Geminorum F 0.0Alpha Gemini D 0.0 6.2 HD 2770 HD 585 6.2 3.4 Pentapod Space 5.3 NN 3012 Cluster #17 HD 3093 Nash. HD 2989 4.7 HD 749 HD 734 4.9 HD 730 3.2 7.1 HD 559 7.3 5.5 DM+46 1635 7.3 HD 2929 5.2 5.6 5.26.7 6.0 47 uma 7.6 7.6 6.7 6.8 3.1 HD 3062 5.0 6.3 4.9 HYG 2588 7.3 DM+48 1829 7.1 HD 3011 7.3 7.5 6.2 HD 236462 HD 2973 6.2 5.8 Gam3Oct HD 793 0.0 7.0 5.4 3.0 5.3 HD 3160 7.6 7.6 DM+46 1551 5.3 6.8 6.5 7.0 DM+39 2376A 4.0 0.0HD 3025 HD 652 3.6 HD 3000 5.6 7.6DM+43 1953 7.1 7.4 HYG 2522 6.7 DM+39 2376B0.0 4.9 6.1 7.4 4.0 6.1 7.4 Iota Ursae Majoris A7.2 HD 3020 HD 2789 7.1 4.9 5.4 52 Psc 1.7 0.0 6.7 7.4 6.9 0.0 7.2 HD 632 HD 3019 HD 626 7.4 6.9 6.9 HYG 899 0.0 1.7 3.6 5.7 7.4 6.9 6.5 6.2 4.0 5.1 1.7 Iota Ursae Majoris C 7.2 HD 3076 7.2 G 195-19 7.1 0.0 5.6 HYG 25185.7 1.7 5.1 6.27.1 1.7 1.7 0.0 HD 3084 3.6 6.2 4.8 0.0 DM+31 2240 A 7.46.2 7.4 7.2 0.0 10.2 5.7 0.0DM+31 2240 B HD 2995 8.1 6.1 6.7 6.2 7.4 1.7 5.7 7.4 5.6 6.2 1.7 Iota Ursae Majoris B 7.5 7.2 HD 604 6.2 HD 2925 4.6 HD 3109 4.7 DM+42 1956 B 7.4Iota Ursae Majoris0.0 D 6.2 HD 2890 DM+36 1970 7.4 HD 681 7.7 7.4 6.7 7.6 9.3 7.7 0.0 DM+42 1956 A 7.4 DM+22 2302 6.7 HD 743 3.0 9.3 HD 758 HYG 997 6.1 3.4 5.6 3.5 HD 3095 7.5 6.8 Ross 627 Gliese 11 cluster 7.2 G 44-42 7.1 6.2 HD 3024 11.3 HYG 1078 7.6 6.1 HYG 2650 HD 3059 Beta Leonis Cluster #35 HD 921 5.9 9.2 Gamma pegasi cluster Cluster #34 7.5 9.5 10.1 HYG 1076 7.4 9.5 11.1 9.8 4.4 HD 1032 HYG 2724 HD 985 0.0 9.5 HD 858 7.1 HD 3175 8.3 6.9 6.8 9.5 NN 3014 A 7.1 HD 791 6.1 HYG 2722 0.0 10.0 HD 761 6.7 5.3 7.2 8.4 7.4 HD 916 6.9 2.5 HD 3136 6.5 6.9 7.3 6.0 9.2 4.811.0 HD 802 HD 1018 HD 3194 7.1 4.4 HD 3140 HD 940 HD 949 4.2 1.0 6.5 7.3 6.5 6.0 HD 838 7.6 3.3 5.6 5.8 HD 988 HD 3110 7.0 HD 987 4.9 5.1 HD 912 HD 3149 4.3 HYG 2771 HYG 2761 7.4 3.2 HYG6.8 2733 6.1 6.0 0.6 6.4 7.6 5.7 HD 964 6.1 7.2 7.1 7.7 3.5 2.6 HD 989 6.5 HYG 2716 5.46.3 5.9 6.7 7.4 HD 3091 4.3 5.2 3.0 HYG 2598 7.4 88Gam Peg 5.2 7.5 HD 1023 7.7 HD 877 7.6 6.7 7.1 5.7 7.1 3.1 7.25.0 7.1 4.9 6.0 HD 953 HD 3085 5.7 HYG 27464.2 7.7 6.5 6.3 5.3 6.4 3.4 HYG 2647 7.0 0.0 HYG 1081 7.15.7 HD 997 7.5 1.8 2.4 6.2 HYG 2770 7.2 7.7 HD 2939 HD 842 7.2 4.7 3.4 7.0 HD 950 5.8 HYG 1143 6.6 5.7 7.0 6.5 5.3 HD 3177 7.5 1.5 6.4 HD 3148 HD 3040 0.0 6.5 HD 1025 7.7 5.3 2.8 HD 30225.8 6.7 7.7 7.6 HD 3100 5.8 HD 3257 2.7 6.4 4.8 5.1 11.2 6.8 HD 899 7.1 HD 236471 5.1 HD 2983 HD 3033 7.6 7.7 HD 3054 3.5 HD 895 6.7 HD 1020 2.7 5.7 0.0 6.6 6.1 11.2 5.7 5.9 HD 3030 HD 3055 5.7 3.5 0.0 HD 3061 0.0 6.4 HYG 1051 7.3 HYG 1158 5.2 7.3 6.1 7.7 7.5 9.8 7.3 7.6 7.2 HD 974 HD 3222 HYG 897 7.3 6.9 HD 3107 6.1 7.3 HYG 2744 HD 3179 0.8 5.9 6.8 4.0 5.2 HD 3057 5.5 3.2 7.3 HD 2993 7.5 6.6 HD 3232 HYG 2793 5.63.4 6.1 HD 3231 HD 3137 7.0 5.5 HD 978 0.8 7.7 4.1 HD 236464 7.2 5.8 6.1 4.6 5.5 6.0 HYG 2709 5.8 4.3 3.4 6.6 3.2 0.0 HD 3213 6.3 5.3 HD 698 7.1 6.6 7.7 HD 982 3.9 4.3 4.3 HYG 1034 4.5 6.9 HD 3166 3.0 HYG 1077 HYG 909 7.2 2.9 HD 3067 HD 850 HD 236469 HD 711 6.9 2.1 4.7 6.3 6.4 4.6 HD 3204 HD 1011 7.5 HD 966 4.6 7.2 6.5 5.4 6.7 7.3 7.5 6.5 7.7 6.2 5.6 6.7 HD 3151 HD 800 5.7 4.7 3.8 3.8 DM+27 2055 7.1 7.0 HD 3207 HD 3259 HYG 946 7.1 6.8 7.5 HD 738 3.2 7.0 7.4 5.1 1.0 HD 3047 5.8 4.2 5.3 7.5 4.5 HD 1089 7.4 5.3 5.9 Gl 11 A 0.0 6.8 HD 3932 6.9 HYG 1092 5.9 4.3 7.5 HD 973 5.1 5.9 Wo 9016 5.9 4.5 HYG 1184 HD 975 3.0 1.6 HD 769 7.2 6.8 HD 3122 5.8 HD 3180 11.1 5.9 HYG5.8 1203 7.7 3.0 HD 31250.0 HD 915 5.9 5.9 5.2 5.9 4.5 HD 1022 6.7 1.7 HD 3238 7.6 5.3 0.0 0.0 HD 33293.0 3.0 10.3 7.1 1.2 HD 1075 HD 669 1.5 0.0 HD 740 5.8 2.5 5.0 HD 3188 5.8 1.5 6.8 6.8 6.4 2.56.5 1.2 6.6 HD 1077 4.8 HD 745 HD 3037 4.7 4.3 HD 3218 HD 1000 0.0 1.8 5.5 HD 3015 French Arm 6.5 AC+23 468-46 cluster HD 3244 HD 872 6.1 35 Psc 7.5 7.0 4.7 L675 81 AC+13 14332 HD 688 DM-32 5613 Theta Tucanae cluster 4.7 Cluster #25 7.7 Gl 10.1 HD 3032 6.3 7.4 8.1 DM+55 1519 7.3 HD 1430 6.0 L678 39 DM+45 2014 0.0 HD 3431 5.2 HYG 921 Cluster #13 0.1 6.5 5.2 4.9 7.6 Kafer Space 6.5 5.2 4.9 G 197-50 4.2 7.5 HD 2840 DM-38 4789 6.3 HD 3448 4.2 7.3 7.7 HD 3101 6.3 Lambda Serpenti 6.8 HD 1494 DM-12 2918 A 2.7 HYG 2633 7.3 DM-12 2918 B 0.0 6.9 HD 1428 4.5 DM+50 1832 4.7 7.3 6.5 44 I Bootis A cluster 6.6 7.6 4.8 4.8 7.2 5.6 7.3 HD 3430 7.3 7.5 HD 706 HD 3012 DM-3 2870 B L1346 53 7.3 7.6 HD 1413 DM+42 2296 HD 3087 HD 874 6.5 Theta Bootis B HD 717 7.0 6.2 1.9 6.5 6.9 HD 750 0.0 HD 471 1.2L968 22 6.5 7.4 HD 3144 3.0 7.5 DM-40 5404 Gahshak'ah - Dimly Sparkling One 6.0 4.7 HD 3365 3.9 0.8 6.9 HD 3505 HD 3075 6.0 DM-3 2870 A 1.2 4.8 DM+66 717 AC+66 3955 7.5 4.7 5.0 DM+34 2323 4.6 5.0 DM+56 1459 4.4 6.0 5.6 1.9 1.9 2.1 7.0 0.0HD 3374 5.1 1.8 4.9 4.7 7.2 7.3 HD 2974 4.8 7.1 5.9 9.6 Theta Bootis A 0.0 4.8 Ka'vak'ah! 7.2 HD 1320 HD 3416 6.3 DM+56 1458 3.9 DM+16 2708 AC+18 1890-112 9.7 0.4 5.0 6.1 5.9 L1272 21 6.3 6.3 HD 1368 DM-42 5678 4.9 L897 16 6.1 0.0 6.6 1.2 7.6 HYG 2964 7.4 6.8 4.4 5.8 7.7 Berthier System 6.9 5.7 5.7 HYG 2819 6.9 DM-45 5378 6.9 5.2 6.6 5.6 3.3 7.1 Ross 52 A 4.4 6.9 0.5 G 200-38 4.7 5.4 6.5 3.3 HD 729 HYG 1195 5.2 DM+50 2030 7.6 6.9 HD 3563 HD 748 DM+27 28217 6.9 5.3 5.6 7.7 5.2 5.2 7.56.97.57.5 7.5 6.0 HD 1383 5.5 7.0 6.5 6.1 0.0 1.4 5.4 DM+1 2447 4.8 5.6Ross 52 B 23 Lib 5.7 The Tuc 5.5 7.2 Henry's Star 5.5 4.8 C1 11.0 6.2 5.6 HD 3438 7.1 7.6 10.4 5.6 HD 3255 HD 1381 7.1 Xi Ursae Majoris B 7.0 10.5 7.3 5.0 11.0 5.1 5.0 6.3 5.0 10.4 9.3 Gl 7 7.25.5 5.7 6.8 Shsh'ah - Wet OneDM+195.6 2881 B DM+25 2874 HD 3358 3.7 6.6 Xi Ursae Majoris0.0 C 4.8 11.3 6.2 0.0 6.7 6.7 5.9 6.9 4.8 0.0 7.6 5.0 HD 3461 6.3 11.3 11.0 6.9 HD 789 4.0 0.0 6.3 5.0 6.4 Vogelheim System 6.7 6.7 5.05.05.0 Sans Souci System Alpha Bootis 0.0 0.0 7.3 11.0 HYG4.4 1224 HD 3913 0.0 5.0 4.5 DM+47 2112 A HD 3063 DM+63 869 2.4 5.7 5.2 2.9 Catherine's Star 6.7 6.5 10.9 6.3 5.7 5.7 4.0 5.2 Xi Ursae Majoris D 2.9 5.4 5.4 4.4 5.7 0.0 9.3 5.0 6.3 7.1 DM+24 2786B 7.5 5.0 9.3 6.0 5.2 5.2 7.7 5.5 6.9 5.0 4.8 4.5 Beta Canum Venaticorum 7.7 7.1 7.2
Recommended publications
  • Modeling Super-Earth Atmospheres in Preparation for Upcoming Extremely Large Telescopes
    Modeling Super-Earth Atmospheres In Preparation for Upcoming Extremely Large Telescopes Maggie Thompson1 Jonathan Fortney1, Andy Skemer1, Tyler Robinson2, Theodora Karalidi1, Steph Sallum1 1University of California, Santa Cruz, CA; 2Northern Arizona University, Flagstaff, AZ ExoPAG 19 January 6, 2019 Seattle, Washington Image Credit: NASA Ames/JPL-Caltech/T. Pyle Roadmap Research Goals & Current Atmosphere Modeling Selecting Super-Earths for State of Super-Earth Tool (Past & Present) Follow-Up Observations Detection Preliminary Assessment of Future Observatories for Conclusions & Upcoming Instruments’ Super-Earths Future Work Capabilities for Super-Earths M. Thompson — ExoPAG 19 01/06/19 Research Goals • Extend previous modeling tool to simulate super-Earth planet atmospheres around M, K and G stars • Apply modified code to explore the parameter space of actual and synthetic super-Earths to select most suitable set of confirmed exoplanets for follow-up observations with JWST and next-generation ground-based telescopes • Inform the design of advanced instruments such as the Planetary Systems Imager (PSI), a proposed second-generation instrument for TMT/GMT M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (1) Neptune Mass Range of Interest Earth Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Current State of Super-Earth Detections (2) A Approximate Habitable Zone Host Star Spectral Type F G K M Data from NASA Exoplanet Archive M. Thompson — ExoPAG 19 01/06/19 Atmosphere Modeling Tool Evolution of Atmosphere Model • Solar System Planets & Moons ~ 1980’s (e.g., McKay et al. 1989) • Brown Dwarfs ~ 2000’s (e.g., Burrows et al. 2001) • Hot Jupiters & Other Giant Exoplanets ~ 2000’s (e.g., Fortney et al.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • CARMENES Input Catalogue of M Dwarfs IV. New Rotation Periods from Photometric Time Series
    Astronomy & Astrophysics manuscript no. pk30 c ESO 2018 October 9, 2018 CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series E. D´ıezAlonso1;2;3, J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8;9, S. Vanaverbeke10;6, P. J. Amado11, V. J. S. B´ejar12;13, M. Cort´es-Contreras4, E. Herrero8;9, D. Hidalgo12;13;1, M. K¨urster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Sch¨ofer5, and L. Tal-Or5;16 1 Departamento de Astrof´ısicay Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas,Universidad Complutense de Madrid, E-280140 Madrid, Spain; e-mail: [email protected] 2 Departamento de Explotaci´ony Prospecci´onde Minas, Escuela de Minas, Energ´ıay Materiales, Universidad de Oviedo, E-33003 Oviedo, Asturias, Spain 3 Observatorio Astron´omicoCarda, Villaviciosa, Asturias, Spain (MPC Z76) 4 Centro de Astrobiolog´ıa(CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Ca~nada,Madrid, Spain 5 Institut f¨ur Astrophysik, Georg-August-Universit¨at G¨ottingen, Friedrich-Hund-Platz 1, D-37077 G¨ottingen, Germany 6 AstroLAB IRIS, Provinciaal Domein \De Palingbeek", Verbrandemolenstraat 5, B-8902 Zillebeke, Ieper, Belgium 7 Observatorio Astron´omicoNaves, Cabrils, Barcelona, Spain (MPC 213) 8 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, E-08193 Bellaterra, Barcelona, Spain 9 Institut d'Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain 10
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • IV. New Rotation Periods from Photometric Time Series?
    A&A 621, A126 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833316 & c ESO 2019 Astrophysics CARMENES input catalogue of M dwarfs IV. New rotation periods from photometric time series? E. Díez Alonso1,2,3 , J. A. Caballero4, D. Montes1, F. J. de Cos Juez2, S. Dreizler5, F. Dubois6, S. V. Jeffers5, S. Lalitha5, R. Naves7, A. Reiners5, I. Ribas8,9, S. Vanaverbeke10,6, P. J. Amado11, V. J. S. Béjar12,13, M. Cortés-Contreras4, E. Herrero8,9, D. Hidalgo12,13,1 , M. Kürster14, L. Logie6, A. Quirrenbach15, S. Rau6, W. Seifert15, P. Schöfer5, and L. Tal-Or5,16 1 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 280140 Madrid, Spain e-mail: [email protected] 2 Departamento de Explotación y Prospección de Minas, Escuela de Minas, Energía y Materiales, Universidad de Oviedo, 33003 Oviedo, Asturias, Spain 3 Observatorio Astronómico Carda, MPC Z76 Villaviciosa, Asturias, Spain 4 Centro de Astrobiología (CSIC-INTA), Campus ESAC, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 6 AstroLAB IRIS, Provinciaal Domein “De Palingbeek”, Verbrandemolenstraat 5, 8902 Zillebeke, Ieper, Belgium 7 Observatorio Astronómico Naves, (MPC 213) Cabrils, Barcelona, Spain 8 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 9 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • Dr. Konstantin Batygin Curriculum Vitae Division of Geological & Planetary Sciences [email protected] California Institute of Technology (626) 395-2920 1200 E
    Dr. Konstantin Batygin Curriculum Vitae Division of Geological & Planetary Sciences [email protected] California Institute of Technology (626) 395-2920 1200 E. California Blvd. Pasadena, CA 91125 Education Ph.D., Planetary Science (2012) California Institute of Technology doctoral advisors: David J. Stevenson & Michael E. Brown M.S., Planetary Science (2010) California Institute of Technology B.S., Astrophysics (2008) (with honors) University of California, Santa Cruz undergraduate advisor: Gregory Laughlin Academic Employment Professor of Planetary Science, Caltech May 2019 - present Van Nuys Page Scholar, Caltech May 2017 - May 2019 Assistant Professor of Planetary Science, Caltech Jun. 2014 - May 2019 Harvard ITC Postdoctoral Fellow, Harvard Center for Astrophysics Nov. 2012 - Jun. 2014 Postdoctoral Fellow, Observatoire de la Cote d’Azur, Nice, France Jul. 2012 - Nov. 2012 Visiting Scientist, Observatoire de la Cote d’Azur, Nice, France Feb. 2011 - Mar. 2011 Graduate Research Assistant/Teaching Assistant, Caltech Sep. 2008 - Jun. 2012 Research Assistant, UCO/Lick Observatory Mar. 2006 - Sep. 2008 Supplemental Instructor, University of California, Santa Cruz Mar. 2006 - Jun. 2006 Research Assistant, NASA Ames Research Center Jul. 2005 - Jan. 2006 Awards Sloan Fellowship in Physics - 2018 Packard Fellowship for Science & Engineering - 2017 Genius100 Visionary Award, Albert Einstein Legacy Foundation - 2017 Garfinkel Lectureship in Celestial Mechanics (Yale) - 2017 AAS WWT Prize in Research - 2016 Popular Science Brilliant 10 - 2016
    [Show full text]
  • Etir Code Lists
    eTIR Code Lists Code lists CL01 Equipment size and type description code (UN/EDIFACT 8155) Code specifying the size and type of equipment. 1 Dime coated tank A tank coated with dime. 2 Epoxy coated tank A tank coated with epoxy. 6 Pressurized tank A tank capable of holding pressurized goods. 7 Refrigerated tank A tank capable of keeping goods refrigerated. 9 Stainless steel tank A tank made of stainless steel. 10 Nonworking reefer container 40 ft A 40 foot refrigerated container that is not actively controlling temperature of the product. 12 Europallet 80 x 120 cm. 13 Scandinavian pallet 100 x 120 cm. 14 Trailer Non self-propelled vehicle designed for the carriage of cargo so that it can be towed by a motor vehicle. 15 Nonworking reefer container 20 ft A 20 foot refrigerated container that is not actively controlling temperature of the product. 16 Exchangeable pallet Standard pallet exchangeable following international convention. 17 Semi-trailer Non self propelled vehicle without front wheels designed for the carriage of cargo and provided with a kingpin. 18 Tank container 20 feet A tank container with a length of 20 feet. 19 Tank container 30 feet A tank container with a length of 30 feet. 20 Tank container 40 feet A tank container with a length of 40 feet. 21 Container IC 20 feet A container owned by InterContainer, a European railway subsidiary, with a length of 20 feet. 22 Container IC 30 feet A container owned by InterContainer, a European railway subsidiary, with a length of 30 feet. 23 Container IC 40 feet A container owned by InterContainer, a European railway subsidiary, with a length of 40 feet.
    [Show full text]
  • Introduction to ASTR 565 Stellar Structure and Evolution
    Introduction to ASTR 565 Stellar Structure and Evolution Jason Jackiewicz Department of Astronomy New Mexico State University August 22, 2019 Main goal Structure of stars Evolution of stars Applications to observations Overview of course Outline 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Order in the H-R Diagram!! Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Motivation: Understanding the H-R Diagram Introduction to ASTR 565 Jason Jackiewicz HRD (2) HRD (3) Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Basic structure - highly non-linear solution Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Massive-star nuclear burning Introduction
    [Show full text]
  • 236. “Stelle E Costellazioni Del Cielo”
    Progetto RaPHAEL (www.raphaelproject.com ) - Incontro nº 236 del 10/07/2005 - Colore Grigio verde 236. “Stelle e costellazioni del cielo” Una parte della natura umana è terrestre , ma un’altra parte è cosmica e stellare , volendo riscoprire la totalità della nostra vera natura è molto importante ritrovare la risonanza con le dimensioni trans-terrestri, facendo anche riemergere memorie di vite passate dove non avevamo un corpo umano e dove l’esistenza si svolgeva su altri continuum spazio-temporali. Abbiamo già visto come la Fantascienza sappia risvegliare questa risonanza (ved. incontro n° 212 ) e come ci permetta di concretizzare a livello mentale esperienze che qualcuno potrebbe aver difficoltà anche solo a concepire, adesso focalizziamo un attimo l’attenzione sull’incredibile fascino che ispirano le stelle ad ogni essere umano di animo sensibile... interiormente una parte di noi sa di originare dalle stelle ed è là che aspira a tornare! Una buona parte del nostro DNA origina da altri sistemi stellari, le leggende comparate delle varie tribù native americane raccontano che ben 12 razze galattiche hanno contribuito a creare il DNA dell’Homo sapiens. Ebbene noi suggeriamo di lasciarvi guidare dalla meditazione e dal ricordo immaginativo per recuperare i “circuiti” atemporali legati al piano cosmico , attraverso esercizi rilassati di rimpatrio energetico ed esperenziale (ed un respiro consapevole) molte esperienze possono riemergere… I nomi sotto riportati, con la posizione relativa rispetto alla costellazione di appartenenza (alfa= 1,
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]