Recommended Techniques for Effective Maintainability

Total Page:16

File Type:pdf, Size:1020Kb

Recommended Techniques for Effective Maintainability W..e_: NASA Technical Memorandum 4628 Recommended Techniques for Effective Maintainability A Continuous Improvement Initiative of the NASA Reliability and Maintainability Steering Committee December 1994 = # \ (NASA-TM-4628) RECOMMENOEO N95-31530 TECHNIQUES FOR EFFECTIVE MAINTAINABILITY. A CONTINUOUS IMPROVEMENT INITIATIVE OF THE NASA Unclas RELIABILITY AND MAINTAINABILITY STEERING COMMITTEE (NASA) 105 p H1/38 0060399 | w = J J Ira! J] ii U mmm mini mJ r - w J _J W IL u h_ PREFACE Current and future NASA programs face the challenge of achieving a high degree of mission success with a minimum degree of technical risk. Although technical risk has several . , w elements, such as safety, reliability, and performance, a proven track record of overall system effectiveness ultimately will be the NASA benchmark. This will foster the accomplishment of r mission objectives within cost and schedule expectations without compromising safety or w program risk. A key CharaCteristic of systems effeci_veness is the impiementation of appropriate levels of maintainability throughout the program life cycle. Maintainability is a process for assuring the ease by which a system can be restored to operation following a failure. It is an essential consideration for any program requiring ground n and/or on-orbit maintenance. TheiOffice of S_._ty"and Mission Assurance (OSMA) has undertaken a continuous improvement initiative to develop a technical roadmap that will provide a path toward achieving the desired degree of maintainability while realizing cost and schedule benefits. Although early life cycle costs are a characteristic of any assurance program, operational cost savings and improved system availability almost always result from __° a properlY administered maintainability assurance program. Past experience on NASA w programs has demonstrated the value of an effective maintainability program initiated early in the program life cycle. This memorandum provides guidance towards continuous improvement of the life cycle development process within NASA. It has been developed from NASA, Department of Defense, and industry experience. The degree to which these proven techniques should be w imposed resides with the project/program, and will require an objective evaluation of the applicability of each technique. However, each applicable suggestion not implemented may represent an increase in program risk. Also, the information presented is consistent with w OSMA policy, which advocates an Integrated Product Team (IPT) approach for NASA systems acquisition. Therefore, this memorandum should be used to communicate technical knowledge that will promote proven maintainability design and implementation methods resulting in the highest possible degree of mission success while balancing cost effectiveness and programmatic risk. w w Frederick D. Gregory Associate Administrator for Safety and Mission Assurance w w DEVELOPING ACTIVITY U The development of this technical memorandum has been overseen by the NASA Reliability and Maintainability (R&M) Steering Committee, which consists of senior technical representatives from NASA Headquarters and participating NASA field installations. This Committee exists to m provide recommendations for the continuous improvement of the R&M discipline within the NASA community, and this manual represents the best technical "advice" on designing and m operating maintainable systems from the participating Centers and the Committee. Each J technique presented in this memorandum has been reviewed and approved by the Committee. CENTER CONTACTS m Appreciation is expressed for the dedication, time, and technical contributions of the following M individuals in the preparation of thismanual. Without the support of their individual Centers, U and their enthusiastic personal support and willingness to serve on the NASA R&M Steering c-bmmittee, the capture oftlie m_inffinab_tytechniques _ofi/a_ned in this manual would not be possible. -" R All of the NASA Centers are invited to participate in this activity and contribute to this manual. The Committee members listed below may be contacted for more information pertaining to these i maintainability techniques. m Mr. Donald Bush Mr. Leon Migdalski George C. Marshall Space Flight Center John F. Kennedy Space Center I CR85 Bldg 4203 RT-SRD-2 KSC HQS 3548 Marshall Space Flight Center, Alabama 35812 Kennedy Space Center, Florida 32899 B Mr. Vincent Lalli Mr. Ronald Lisk Lewis Research Center NASA Headquarters Code QS MS 501-4 Code 0152 200 E Street, SW g 21000 Brookpark Road Washington, DC 20546 Cleveland, Ohio 44135 u Mr. Malcolm Himel Lyndon B. Johnson Space Center Bldg. 45 RM 618A, Code NB2 m Houston, Texas 77058 w J ii U m I . J TABLE OF CONTENTS w SECTION PAGENUMBER PREFACE ................................................................ i DEVELOPING ACTIVITY .................................................. ii CENTER CONTACTS ...................................................... ii w I. INTRODUCTION ...................................................... v w A. Purpose .......................................................... v B. Control/Contributions ............................................... v C. Maintainability Technique Format Summary ........................... vi II. RECOMMENDED TECHNIQUES FOR EFFECTIVE MAINTAINABILITY Program Management 22 Technique PM-I : The Benefits of Implementing Maqntainability on NASA Programs .... PM-2 w Technique PM-2 : Maintainability Program Management Considerations ............. PM-8 Technique PM-3: Maintenance Concept for Space Systems ....................... PM-14 Design Factors and Engineering Technique DFE-I : Selection of Robotically Compatible Fasteners and Handling Mechanisms .................................... DFE-2 Technique DFE-2: False Alarm Mitigation ................................... DFE-8 Analysis and Test Technique A T-l: Neutral Buoyancy Simulation of On-Orbit Maintenance ............ AT-2 Technique A T-2: Mean Time To Repair Predictions ............................. AT-7 Technique A T-3: Availability Prediction and Analysis ........................... AT-12 Technique A 7-4: Availability, Cost, and Resource Allocation (ACARA) Model to Support Maintenance Requirements ......................... AT- 17 Technique AT-5: Rocket Engine Failure Detection Using an Average Signal Power Technique ......................................... AT-21 Operations and Operational Design Considerations Technique OPS-I : SRB Maintainability and Refurbishment Practices ............... OPS-2 Technique OPS-2: Electrical Connector Protection ............................. OPS-9 Technique OPS-3: Robotic Removal and Application of SRB Thermal Systems ....... OPS- 11 Technique OPS-4: GHe Purging of H 2 Systems ............................... OPS- 17 Technique OPS-5: Programmable Logic Controller ........................... OPS-20 III TABLE OF CONTENTS (CONT.) m IBm SECTION: PAGE NUMBER Operations and Operational Design Considerations (cont.) m Technique OPS-6: DC Drive - Solid State Controls ............................ OPS-24 i Technique OPS-7: AC- Variable Frequency Drive Systems ..................... OPS-28 m Technique OPS-8: Fiber Optic Systems ..................................... OPS-32 Technique OPS-9: Pneumatic Systems-Dome Loaded Pressure Regulator Loading .... OPS-36 Technique OPS-IO: Modular Automatic Power Source Switching Device OPS-39 I Technique OPS-11: Pneumatic System Contamination Protection ................. OPS-42 m m m. APPENDIX A: CANDIDATE TECHNIQUES FOR FUTURE DEVELOPMENT ............................................ A-1 g I M il IB J m_ w E m w u I m 1v u w I. INTRODUCTION r A. PURPOSE w Maintainability is a process for assuring the ease by which a system can be restored to operation following a failure. Designing and operating cost effective, maintainable systems ? f (both on-orbit and on the ground) has become a necessity within NASA. In addition, NASA w cannot afford to lose public support by designing less than successful projects. In this era of shrinking budgets, the temptation to reduce up front costs rather than consider total program life cycle costs should be avoided. In the past, relaxation of R&M requirements to reduce up front costs has resulted in end-items that did not perform as advertised and could not be properly maintained in a cost effective manner. Additional costs result when attempts are L_ made late in the design phase to correct for the early relaxation of requirements. w The purpose of this manual is to present a series of recommended techniques that can increase overall operational effectiveness of both flight- and ground-based NASA systems. Although each technique contains useful information, none should be interpreted as a requirement. The objective is to provide a set of tools to minimize the risk associated with: • Restoring failed functions (both ground and flight based) • Conducting complex and highly visible maintenance operations • Sustaining a technical capability to support the NASA mission utilizing aging equipment W or facilities. This document provides (1) program management considerations - key elements of an effective maintainability effort; (2) design and development considerations; (3) analysis and test considerations - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design considerations that address NASA field experience. Updates will include a section applicable to on-orbit maintenance with practical experience from NASA EVA maintenance
Recommended publications
  • ASSESSING the MAINTAINABILITY of C++ SOURCE CODE by MARIUS SUNDBAKKEN a Thesis Submitted in Partial Fulfillment of the Requireme
    ASSESSING THE MAINTAINABILITY OF C++ SOURCE CODE By MARIUS SUNDBAKKEN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science WASHINGTON STATE UNIVERSITY School of Electrical Engineering and Computer Science DECEMBER 2001 To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of MARIUS SUNDBAKKEN find it satisfactory and recommend that it be accepted. Chair ii ASSESSING THE MAINTAINABILITY OF C++ SOURCE CODE Abstract by Marius Sundbakken, M.S. Washington State University December 2001 Chair: David Bakken Maintenance refers to the modifications made to software systems after their first release. It is not possible to develop a significant software system that does not need maintenance because change, and hence maintenance, is an inherent characteristic of software systems. It has been estimated that it costs 80% more to maintain software than to develop it. Clearly, maintenance is the major expense in the lifetime of a software product. Predicting the maintenance effort is therefore vital for cost-effective design and development. Automated techniques that can quantify the maintainability of object- oriented designs would be very useful. Models based on metrics for object-oriented source code are necessary to assess software quality and predict engineering effort. This thesis will look at C++, one of the most widely used object-oriented programming languages in academia and industry today. Metrics based models that assess the maintainability of the source code using object-oriented software metrics are developed. iii Table of Contents 1. Introduction .................................................................................................................1 1.1. Maintenance and Maintainability.......................................................................
    [Show full text]
  • A Quantitative Reliability, Maintainability and Supportability Approach for NASA's Second Generation Reusable Launch Vehicle
    A Quantitative Reliability, Maintainability and Supportability Approach for NASA's Second Generation Reusable Launch Vehicle Fayssai M. Safie, Ph. D. Marshall Space Flight Center Huntsville, Alabama Tel: 256-544-5278 E-mail: Fayssal.Safie @ msfc.nasa.gov Charles Daniel, Ph.D. Marshall Space Flight Center Huntsville, Alabama Tel: 256-544-5278 E-mail: Charles.Daniel @msfc.nasa.gov Prince Kalia Raytheon ITSS Marshall Space Flight Center Huntsville, Alabama Tel: 256-544-6871 E-mail: Prince.Kalia @ msfc.nasa.gov ABSTRACT The United States National Aeronautics and Space Administration (NASA) is in the midst of a 10-year Second Generation Reusable Launch Vehicle (RLV) program to improve its space transportation capabilities for both cargo and crewed missions. The objectives of the program are to: significantly increase safety and reliability, reduce the cost of accessing low-earth orbit, attempt to leverage commercial launch capabilities, and provide a growth path for manned space exploration. The safety, reliability and life cycle cost of the next generation vehicles are major concerns, and NASA aims to achieve orders of magnitude improvement in these areas. To get these significant improvements, requires a rigorous process that addresses Reliability, Maintainability and Supportability (RMS) and safety through all the phases of the life cycle of the program. This paper discusses the RMS process being implemented for the Second Generation RLV program. 1.0 INTRODUCTION The 2nd Generation RLV program has in place quantitative Level-I RMS, and cost requirements [Ref 1] as shown in Table 1, a paradigm shift from the Space Shuttle program. This paradigm shift is generating a change in how space flight system design is approached.
    [Show full text]
  • Software Quality Management
    Software Quality Management 2004-2005 Marco Scotto ([email protected]) Software Quality Management Contents ¾Definitions ¾Quality of the software product ¾Special features of software ¾ Early software quality models •Boehm model • McCall model ¾ Standard ISO 9126 Software Quality Management 2 Definitions ¾ Software: intellectual product consisting of information stored on a storage device (ISO/DIS 9000: 2000) • Software may occur as concepts, transactions, procedures. One example of software is a computer program • Software is "intellectual creation comprising the programs, procedures, rules and any associated documentation pertaining to the operation of a data processing system" •A software product is the "complete set of computer programs, procedures and associated documentation and data designated for delivery to a user" [ISO 9000-3] • Software is independent of the medium on which it is recorded Software Quality Management 3 Quality of the software product ¾The product should, on the highest level… • Ensure the satisfaction of the user needs • Ensure its proper use ¾ Earlier: 1 developer, 1 user • The program should run and produce results similar to those expected ¾ Later: more developers, more users • Need to economical use of the storage devices • Understandability, portability • User-friendliness, learnability ¾ Nowadays: • Efficiency, reliability, no errors, able to restart without using data Software Quality Management 4 Special features of software (1/6) ¾ Why is software ”different”? • Does not really have “physical” existence
    [Show full text]
  • Software Maintainability and Usability in Agile Environment
    Software Maintainability and Usability in Agile Environment {tag} {/tag} International Journal of Computer Applications © 2013 by IJCA Journal Volume 68 - Number 4 Year of Publication: 2013 Authors: Monika Agarwal Rana Majumdar 10.5120/11569-6873 {bibtex}pxc3886873.bib{/bibtex} Abstract This research is based on software maintainability and usability in the agile environment. Maintainability of the system is the ability to undergo changes relatively easily. These changes can affect components, services, interfaces and functionality when adding or changing functions, errors, and respond to business needs. Usability is defined as the application that meets the requirements of users and consumers by providing an intuitive, easy to locate and globalize and provides good access for disabled users and leads to a good overall user experience. In the conventional method of the software development, there are many metrics to calculate the maintenance and use of software. This research is to determine whether the same measures apply to Agile, or there is a need to change some metrics used for the agile environment. The goal of software engineering is to develop good quality maintainable software in schedule and budget. Inflated software costing, delayed time frame, or not meeting quality standards express a failure. A survey suggests about 45% of software fails due to the lack of quality. It is therefore one of the most important aspects for the success of software. Refer ences 1 / 3 Software Maintainability and Usability in Agile Environment - P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris, E. Theodoridis, C. Tjortjis, and N. Tsirakis, "A data mining methodology for evaluating maintainability according to ISO/IEC-9126 software engineering – product quality standard," in Special Session on System Quality and Maintainability - SQM2007, 2007.
    [Show full text]
  • Booster Rookie Book Typical Kicker Layout
    BOOSTER Table of Contents Foreword .................................................................................................................................... 3 Introduction................................................................................................................................ 4 Booster History and Design........................................................................................................ 5 Injection ..................................................................................................................................... 9 Gradient Magnets and Power Supplies......................................................................................17 Magnets .....................................................................................................................................18 GMPS........................................................................................................................................23 RF..............................................................................................................................................27 High Level.................................................................................................................................31 Low Level/Feedback..................................................................................................................32 Notching and Cogging...............................................................................................................37
    [Show full text]
  • Adaptability Evaluation at Software Architecture Level Pentti Tarvainen*
    The Open Software Engineering Journal, 2008, 2, 1-30 1 Open Access Adaptability Evaluation at Software Architecture Level Pentti Tarvainen* VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FIN-90571 Oulu, Finland Abstract: Quality of software is one of the major issues in software intensive systems and it is important to analyze it as early as possible. An increasingly important quality attribute of complex software systems is adaptability. Software archi- tecture for adaptive software systems should be flexible enough to allow components to change their behaviors depending upon the environmental and stakeholders' changes and goals of the system. Evaluating adaptability at software architec- ture level to identify the weaknesses of the architecture and further to improve adaptability of the architecture are very important tasks for software architects today. Our contribution is an Adaptability Evaluation Method (AEM) that defines, before system implementation, how adaptability requirements can be negotiated and mapped to the architecture, how they can be represented in architectural models, and how the architecture can be evaluated and analyzed in order to validate whether or not the requirements are met. AEM fills the gap from requirements engineering to evaluation and provides an approach for adaptability evaluation at the software architecture level. In this paper AEM is described and validated with a real-world wireless environment control system. Furthermore, adaptability aspects, role of quality attributes, and diversity of adaptability definitions at software architecture level are discussed. Keywords: Adaptability, adaptation, adaptive software architecture, software quality, software quality attribute. INTRODUCTION understand the system [6]. Examples of design decisions are the decisions such as “we shall separate user interface from Today, quality of a software system plays an increasingly the rest of the application to make both user interface and important role in the domain of software engineering.
    [Show full text]
  • Software Maintainability and Reusability Using Cohesion Metrics
    International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017 Software Maintainability and Reusability using Cohesion Metrics Adekola, O.D#1, Idowu, S.A*2, Okolie, S.O#3, Joshua, J.V#4, Akinsanya, A.O*5, Eze, M.O#6, EbiesuwaSeun#7 #1Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria *2Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria #3Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria #4Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria *5Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria #6Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria #7Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria Abstract - Among others, remarkable external software’s lifetime. Ahn et al., (2003) estimated that quality attributes of interest to software practitioners/ maintenance takes up to 80% of the total costof engineers include testability, maintainability and producing software applications. Expectation of reusability.Software engineers still combat achieving more reliable, quicker time-to-market and softwarecrisis and even chronic software affliction maintainable systems. A lot of research has gone into not because there is no standardized software the areas of software reuse and maintenance due to development process but because enough attention is the fact that these among other issues concern not given to seemingly insignificant but crucial intimately system developers/architects/engineers details of internal design attributes such as cohesion rather than end-users. Therehas been enormous and coupling especially in object-oriented systems. growth in software reuse research from the days of Consequently, the aftermath is increased structured programming concepts to object-oriented maintenance cost, effort and time which negatively methods and beyond (e.g.
    [Show full text]
  • Measuring Software Maintainability
    Aalto University School of Science Degree Programme in Computer Science and Engineering Juha Viljanen Measuring software maintainability Master's Thesis Espoo, August 10, 2015 Supervisor: Professor Marjo Kauppinen, Aalto University Advisor: Robert Brotherus Lic.Phil. (Chem.) Timo Lehtinen D.Sc. (Tech) Aalto University School of Science ABSTRACT OF Degree Programme in Computer Science and Engineering MASTER'S THESIS Author: Juha Viljanen Title: Measuring software maintainability Date: August 10, 2015 Pages: 94 Major: Software Engineering Code: T241-3 Supervisor: Professor Marjo Kauppinen Advisor: Robert Brotherus Lic.Phil. (Chem.) Timo Lehtinen D.Sc. (Tech) Maintenance forms the major part of the software's development costs. Keep- ing the software's code base in a good shape, i.e. maintainable, speeds up and reduces the cost of making changes and makes them less risky. Refactoring and reengineering are practices to improve a software's maintainability. An essential part of keeping a software's maintainability at a desired level or systematically improving its maintainability is to measure the progress and to find the parts of code whose improvement would have the biggest affect on the overall maintainability. This can be done by using metrics. It is crucial to make sure the metrics are actively used by the company personnel. This can be done by providing useful deployment practices for the metrics. A literature review and a case study was conducted using a simplified version of the Design Science. The aim was to find a relevant set of metrics and useful ways of deploying them at the case company. In the case study, workshops were organized at the case company to fulfill the aim.
    [Show full text]
  • Designing for Maintainability, Failure Resilience, and Evolvability in Ubiquitous Computing Software
    Designing for Maintainability, Failure Resilience, and Evolvability in Ubiquitous Computing Software Shankar Ponnekanti, Brad Johanson, Emre Kıcıman, and Armando Fox Computer Science Department, Stanford University pshankar,bjohanso,emrek,fox ¡ cs.stanford.edu Abstract architecture adequate for human-scale latencies, and the naturally-limited scale of ubicomp makes The design constraints in ubiquitous computing (ubi- scalability a lesser concern. comp) differ from those traditionally emphasized by the systems community: evolvability, long-term maintain- These observations lead us to a simple (and therefore ability, and robustness to transient failures are essential, deployable and low-maintenance) system architecture while scalability and performance are lesser concerns, with sufficient performance and scalability that nicely due to the nature of ubicomp itself and the performance supports important programming abstractions required of today’s commodity equipment. We show how these for room-scale ubicomp. observations are reflected in the design of iROS, a ubi- This paper describes why ubicomp environments lead comp software framework in production use. In par- to potentially different design decisions, and how they ticular, we show that a centralized architecture directly were made in iROS (the Interactive Room Operating enables the ubicomp programming abstractions needed System), the software infrastructure for a ubicomp en- while providing the best solution for evolvability and vironment that has been in production use for £¥¤ years. maintainability/deployability, and that we can achieve Since ubicomp is a relatively immature field, com- the required robustness through a fast-recovery strategy, parisons of specific mechanisms within ubicomp pro- which allows a simple centralized implementation of gramming frameworks are hard to make.
    [Show full text]
  • Software Quality Factors
    Software Quality Factors 1 TheThe needneed forfor aa comprehensivecomprehensive softwaresoftware qualityquality requirementsrequirements There are some characteristic common : All the software projects satisfactory fulfilled the basic requirements for correct calculations All the software projects suffered from poor performance in important areas such as maintenance, reliability, software reuse, or training. The cause for the poor performance of the developed software projects in these areas was the lack of predefined requirements to cover these important aspects of the software’s functionally. 2 TheThe needneed forfor aa comprehensivecomprehensive definitiondefinition ofof requirementsrequirements (2)(2) There is a need for a comprehensive definition of requirements that will cover all attributes of software and aspects of the usability aspects, reusability aspects, maintainability aspects, and so forth in order to assure the full satisfaction of the users. 3 ClassificationClassification ofof softwaresoftware requirementsrequirements intointo softwaresoftware qualityquality factorsfactors The classic model of software quality factors suggest by : McCall (consist of 11 factors, 1977) Deutsch and Willis (consist of 12 to 15 factors, 1988) Evans and Marciniak (1987) 4 McCall’sMcCall’s FactorFactor ModelModel Classifies all software requirement into 11 software quality factors, grouped into three categories : 1. Product operation factors : Correctness, Reliability, Efficiency, Integrity, Usability. 2. Product revision factors : Maintainability,
    [Show full text]
  • Appendix J Software Safety
    FAA System Safety Handbook, Appendix J: Software Safety December 30, 2000 Appendix J Software Safety SOFTWARE SAFETY...............................................................................................................................1 J.0 SOFTWARE SAFETY DURING LIFE CYCLE PHASES................................................................2 J-1 FAA System Safety Handbook, Appendix J: Software Safety December 30, 2000 J.0 Software Safety During Life Cycle Phases The safety process should support a structured program life cycle model that incorporates both the system design and engineering process and the software acquisition process. Prominent software life cycle models include the waterfall and spiral methodologies. Although different models may carry different lifecycle emphasis, the adopted model should not affect the safety process itself. For discussion purposes only, this enclosure adopts a waterfall model (subject to IEEE/IEA Standard for Information Technology-software life cycle processes No. 12207.) For brevity, only the development phase of the Standard is addressed in terms of the relationship to software safety activities. J.1 Safety Critical Software Development A structured development environment and an organization using state-of-the-art methods are prerequisites to developing dependable safety critical software. The following requirements and guidelines are intended to carry out the cardinal safety rule and its corollary that no single event or action shall be allowed to initiate a potentially hazardous event. The system, upon detection of an unsafe condition or command, shall inhibit the potentially hazardous event sequence and originate procedures/functions to bring the system to a predetermined “safe” state. The purpose of this section is to describe the software safety activities that should be incorporated into the software development phases of project development. The software safety information that should be included in the documents produced during these phases is also discussed.
    [Show full text]
  • Excitation Systems
    Excitation Systems 10 kVA - 35 MVA alternators REGULATORS AND EXCITATION SYSTEMS ARE AT THE HEART OF INDUSTRIAL ALTERNATORS PERFORMANCE AND RELIABILITY. At Leroy-Somer, we design, test and qualify our electronic products to meet the challenges of power generation systems. Using our experience and field expertise, we provide regulation features that help protect installations from outage and failures, and our excitation systems are optimized to provide the best performance levels for any situation. EXCITATION SYSTEMS Leroy-Somer offers different excitation systems to match application requirements. An excitation system uses the alternator output to build an excitation current that is then used to power the rotating magnetic field of the rotor. This principle allows for the control of the output power. To build excitation current, a regulator needs both a supply voltage to provide power, and a measured reference voltage at output terminals to pilot the excitation. Alternator Alternator Main power outputMain power User input N Exciter output User input N Exciter U Sensing + U AVRSensing power supply + V AVR power supply AVR V AVR W W AVR outputAVR + - output + - Exciter current STATOR Exciter current STATOR Exciter Diode Exciter bridgeDiode stator bridge stator Prime Power Exciter Power systemPrime ROTOR supply system rotorExciter supply ROTOR rotor Voltage Voltage - sensing - Control sensing Comp. PID Control Exciter Comp. PID command Exciter Ref + command Main power External Ref + Main power referenceExternal reference Diagram of a complete excitation system SHUNT The SHUNT excitation system can also be completed by a booster system for larger installations to allow In SHUNT excitation systems, the AVR power supply for short circuit capability.
    [Show full text]