Making Scents of Esters

Total Page:16

File Type:pdf, Size:1020Kb

Making Scents of Esters Lesson Plan Making Scents of Esters Lesson Objectives: 1. The student will be able to distinguish between alcohol, carboxylic acid, and ester compounds by identifying the functional groups characteristic to each. 2. The student will be able to describe the process of esterification. 3. The student will be able to name ester compounds. 4. The student will be able to describe the applications of organic chemistry to the food industry. QCC Objectives: Grade: 9-12 Science Chemistry 4 Topic: Inquiry, Process and Problem Solving Standard: Gives examples of industrial processes that have been derived from scientific research and describe the impact on society. 17 Topic: Organic Chemistry Standard: Uses the structure of methane as a model structure to draw configurations of, and name, representative classes of organic compounds. Discusses the solubility properties of such compounds. 17.1 Describes the applications of organic chemistry to modern industry, such as the pharmaceuticals and plastics industries. Total Duration: Roughly 60 minutes (adaptable to class schedule) Materials and/or Equipment Needed: Per class: food flavorings small zipper-type plastic bag or 35-mm film canister for each flavoring cotton ball for each flavoring (optional) food coloring 2/3 cup sweetened condensed milk 4 ½ cups confectioner’s sugar real vanilla extract imitation vanilla flavor unsalted saltine crackers large mixing bowl wooden spoon or hand mixer measuring cups measuring spoons serving plates labels markers Per group: 4 small test tubes 400-mL beaker 4 125-mL Erlenmeyer flasks hot plate test tube holder goggles aprons 100 mL concentrated sulfuric acid 4 alcohol/carboxylic pairs (isoamyl alcohol/acetic acid, octyl alcohol/acetic acid, methyl alcohol/salicylic acid, propyl alcohol/acetic acid) Opening Moments of Class: The teacher introduces students to a variety of organic compounds, including esters, by asking them to smell and describe different food flavorings using the wafting procedure. Getting Ready: Prepare a set of bags or canisters for each group or a set for the class to share. Label the bags or canisters with a number or letter code. Place a small amount of each flavor (5-10 drops) on a cotton ball and place it in the bag or canister, keeping a key that indicates where each flavor is located. If the coloring of the flavoring would give the answer to the students, you may want to add a small amount of food color to the cotton ball to hide the natural color of the flavoring. Once the cotton balls have been placed in the plastic bags or canisters, keep them closed to minimize students’ pre- exposure to the odors. Procedures: 1. The teacher reviews with students the definitions of organic compounds and functional groups. • Organic compounds are often simplified to include those compounds that contain the element carbon. For example, aspirin, C9H8O4, is an organic compound. Organic compounds do contain carbon, and most organic compounds also contain hydrogen. Those compounds that consist solely of carbon and hydrogen are called hydrocarbons. Butane, C4H10, is an example of a hydrocarbon. Other organic compounds may contain oxygen, nitrogen, sulfur, phosphorus, or one of the halogens. These groups of atoms containing elements other than carbon and hydrogen constitute functional groups. Each functional group is important because it is this group of elements that provides the compound as a whole with unique chemical properties. Furthermore, organic compounds are commonly classified by the functional groups they contain. 2. The teacher reviews with students the functional groups characteristic to alcohols, carboxylic acids, and esters. • Alcohol Æ -OH Carboxylic Acid Æ -COOH Ester Æ -COO 3. The teacher describes to students the properties of esters and the process of esterification (see introduction to attached laboratory handout). 4. The teacher demonstrates to students the naming of ester compounds. • Step 1: When “alcohol” is included in the name of the alcohol, drop it. Step 2: Remove from the name of the carboxylic acid “ic acid,” and add “ate.” Step 3: Combine the remaining names, beginning with the alcohol Ex. ethyl alcohol + acetic acid Æ ethyl acetate 5. The teacher describes in detail to students the laboratory exercise to be performed, stressing the safety precautions associated with the experiment. • Concentrated sulfuric acid (18M H2SO4) is a very dangerous chemical, which can cause severe chemical burns when in contact with skin. In addition, unknown chemicals should never be held directly under the nose when smelling; instead, the wafting procedure should be used. Carefully smell by waving a hand across the mouth of the container, pushing the vapors toward the nose. 6. The students perform the “Making Scents of Esters” laboratory experiment (see the attached laboratory handout). Closing Moments of Class: The teacher presents students with food samples made with real vanilla extract and imitation vanilla flavoring. Students are asked to distinguish between the two samples, citing the noted differences. Getting Ready: Measure 2/3 cup sweetened condensed milk into a mixing bowl. Gradually add 4 ½ cups confectioner’s sugar and mix. The mixture should be crumbly. Separate the crumbly mixture into 2 batcches. Add ½ tsp. real vanilla extract to one batch. Mix well. This is batch A. Add ½ tsp. imitation vanilla flavor to the other batch. Mix well. This is batch B. Shape the mixture into small balls about the size of marbles. Keep the two batches separate. When tasting, provide students with crackers to cleanse their palates between samples. • Real vanilla contains well over 100 chemicals, one of which is vanillin. Imitation vanilla is made from very few chemicals, often only vanillin and ethyl vanillin. Ethyl vanillin is not found in vanilla plants, and it has a taste similar to vanillin but about 5 times stronger. Many people can taste the difference between real vanilla extract and imitation vanilla flavoring. This is because they notice the taste of the other chemicals in real vanilla or because the taste of the imitation vanilla is too strong. A question to pose to students… Why are natural flavorings (such as chocolate) sometimes preferable to artificial? *Some artificial flavorings can be produced to taste just like natural flavors (ex. oil of wintergreen). Other natural flavorings (such as (chocolate) are such complex mixtures of chemicals that scientists have yet to make an artificial flavor that tastes just like the natural one (ex. chocolate is comprised of 1200 chemicals and coffee 450). Attempts have been made to replicate such complex mixtures (ex. oresh orange juice is comprised of 250 chemicals while TANG has only 5 or 6). Making Scents of Esters Introduction: An ester is an organic compound that is formed, in addition to water, when a carboxylic acid reacts with an alcohol. This process is called esterification. General Reaction: Specific Reaction: Esterification typically requires a catalyst to speed it, and for decades, concentrated sulfuric acid (18M H2SO4) has been used to do so. Sulfuric acid is a very dangerous chemical, which can cause severe chemical burns when in contact with skin, and therefore, the utmost care should be taken when working with sulfuric acid. When carboxylic acids are esterified (combined with an alcohol to form an ester), the resulting esters are liquids with fruity flavors. These synthetic esters are used in the food industry as flavorings. In many cases, the synthetic esters produced in the laboratory are nearly the same molecules that give fruits their characteristic flavors. Materials: 4 small test tubes 400-mL beaker 4 125-mL Erlenmeyer flasks hot plate test tube holder goggles apron 4 alcohol/carboxylic acids pairs concentrated sulfuric acid (18M H2SO4) Procedure: *Record all data in the attached data table. 1. Add about 200 mL water to the 400-mL beaker. Heat the water until it boils and then turn off the hot plate. 2. Add 10 drops iosamyl alcohol to a clean, dry test tube. Label the test tube “1.” 3. Add 10 drops octyl alcohol to a second clean, dry test tube. Label the test tube “2.” 4. Add 20 drops methyl alcohol to a third clean, dry test tube. Label the test tube “3.” 5. Add 10 drops propyl alcohol to a fourth clean, dry test tube. Label the test tube “4.” 6. To test tubes 1, 2, and 4, add 30 drops acetic acid. 7. To test tube 3, add 0.5g salicylic acid. Gently swirl the test tube to ensure the salicylic acid to go into solution. 8. Add 2 drops of the concentrated sulfuric acid to each of the 4 test tubes. 9. Using a test tube holder, place the test tubes into the beaker of near-boiling water. Let the test tubes stand in the hot-water bath for 5 minutes. 10. Label the 125-mL Erlenmeyer flasks “1,” “2,” “3,” and “4.” Add water to each until it is about 1/3 full. 11. Pour the contents of the test tubes into the correctly labeled flask and swirl. 12. Carefully smell the ester by waving a hand across the mouth of the flask to push the vapor toward your nose. Describe the odor of the sample in the table below. 13. Rinse the contents of the flasks down the drain with water. Table 1: Alcohol/Carboxylic Acid Pairs and Resulting Esters Test Carboxylic Ester Odor of Tube Alcohol Amount Acid Amount Produced Ester 1 2 3 4 Questions: 1. Write the chemical reactions for each of the esters produced in the above procedures. 2. Isoamyl alcohol, octanol, methanol, and propanol contain what functional group characteristic of all alcohols? 3. Acetic acid and salicylic acid contain what functional group characteristic of all carboxylic acids? 4. The esters produced in this laboratory experiment contain what functional group characteristic of all ester? 5. Isobutyl alcohol and formic acid combine to produce a raspberry odor.
Recommended publications
  • Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
    Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing.
    [Show full text]
  • Solvent Fractionation and Acetone Precipitation for Crude Saponins from Eurycoma Longifolia Extract
    molecules Article Solvent Fractionation and Acetone Precipitation for Crude Saponins from Eurycoma longifolia Extract Lee Suan Chua 1,2,* , Cher Haan Lau 1, Chee Yung Chew 2 and Dawood Ali Salim Dawood 1 1 Metabolites Profiling Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310 UTM, Johor, Malaysia; [email protected] (C.H.L.); [email protected] (D.A.S.D.) 2 Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310 UTM, Johor, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +607-5531566 Academic Editors: Raffaele Capasso and Lorenzo Di Cesare Mannelli Received: 22 March 2019; Accepted: 2 April 2019; Published: 10 April 2019 Abstract: Eurycoma longifolia is a popular folk medicine in South East Asia. This study was focused on saccharide-containing compounds including saponins, mainly because of their medical potentials. Different organic solvents such as ethyl acetate, butanol, and chloroform were used to fractionate the phytochemical groups, which were consequently precipitated in cold acetone. Solvent fractionation was found to increase the total saponin content based on colorimetric assay using vanillin and sulfuric acid. Ethyl acetate fraction and its precipitate were showed to have the highest crude saponins after acetone precipitation. The samples were shown to have anti-proliferative activity comparable with tamoxifen (IC50 = 110.6 µg/mL) against human breast cancer cells. The anti-proliferative activities of the samples were significantly improved from crude extract (IC50 = 616.3 µg/mL) to ethyl acetate fraction (IC50 = 185.4 µg/mL) and its precipitate (IC50 = 153.4 µg/mL).
    [Show full text]
  • Fermentation and Ester Taints
    Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al.
    [Show full text]
  • Isoamyl Acetate
    SUMMARY OF DATA FOR CHEMICAL SELECTION Isoamyl Acetate CAS No. 123-92-2 Prepared for NTP by Technical Resources International, Inc Prepared on 11/94 Under NCI Contract No. N01-CP-56019 Table of Contents I. Chemical Identification II. Exposure Information Table 1. Levels of isoamyl acetate reported in foods III. Evidence for Possible Carcinogenic Activity Appendix A: Structural Analogs of Isoamyl Acetate IV. References SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry No.: 123-92-2 Chem. Abstr. Name: 1-Butanol, 3-methyl-, acetate Synonyms: Acetic acid 3-methylbutyl ester; acetic acid, isopentyl ester; AI3-00576; banana oil; isoamyl ethanoate; isopentyl acetate; isopentyl alcohol, acetate; pear oil; 3-methyl-1-butanol acetate; 3-methyl-1-butyl acetate; 3-methylbutyl acetate; 3-methylbutyl ethanoate; i-amyl acetate Structure: Molecular Formula and Molecular Weight: C7H14O2 Mol. Wt.: 130.18 Chemical and Physical Properties: Description: Colorless, flammable liquid with a banana-like odor (ACGIH, 1993). Boiling Point: 142°C (Lide, 1993) Melting Point: -78.5°C (Mark, et al, 1984; Lide, 1993) Solubility: Soluble in water (2000 mg/L at 25°C) (Howard, 1990); soluble in ethanol, diethyl ether, and acetone (Lide, 1993). Vapor 4.5 mm Hg at 20°C (Howard, 1990) Pressure: Refractive 1.4003 (Lide, 1993) Index: Flash Point: closed cup, 33°C; open cup, 38°:C (Budavari, 1989) Density: 0.876 (Lewis, 1993) Reactivity: Thermal decomposition of isoamyl acetate may produce acrid fumes. Contact with strong oxidizing agents, strong acids, and alkaline materials should be avoided (Haarmann & Reimer Corp., 1994). Hazardous decomposition products of isoamyl acetate include CO and CO2 (AESAR/Alfa, 1994) Log 2.13 (Howard, 1990) P(octanol/water partition coefficient): Technical Isoamyl acetate is commercially available as both a natural and synthetic product with a purity Products and range of 95-99+%.
    [Show full text]
  • Dehydrogenation of Ethanol to Acetaldehyde Over Different Metals Supported on Carbon Catalysts
    catalysts Article Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts Jeerati Ob-eye , Piyasan Praserthdam and Bunjerd Jongsomjit * Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (J.O.-e.); [email protected] (P.P.) * Correspondence: [email protected]; Tel.: +66-2-218-6874 Received: 29 November 2018; Accepted: 27 December 2018; Published: 9 January 2019 Abstract: Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 ◦C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 ◦C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%).
    [Show full text]
  • Hydrogenation of Ethyl Acetate to Ethanol Over Ni-Based Catalysts Obtained from Ni/Al Hydrotalcite-Like Compounds
    Molecules 2010 , 15 , 5139-5152; doi:10.3390/molecules15085139 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Hydrogenation of Ethyl Acetate to Ethanol over Ni-Based Catalysts Obtained from Ni/Al Hydrotalcite-Like Compounds Beixiao Zhang, Lu Lin *, Junping Zhuang, Ying Liu *, Lincai Peng and Longfei Jiang State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China * Author to whom correspondence should be addressed; E-Mails: [email protected] (L.L.); [email protected] (Y.L.). Received: 18 June 2010; in revised form: 17 July 2010 / Accepted: 23 July 2010 / Published: 29 July 2010 Abstract: A series of Ni-based catalysts were prepared using hydrogen reduction of Ni/Al hydrotalcite-like compounds (Ni/Al HTlcs) synthesized by coprecipitation. The physico- chemical properties of Ni/Al hydrotalcite-like compounds and the corresponding Ni-based catalysts were characterized using inductively coupled plasma (ICP), BET surface areas, X- ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The results indicated that Ni/Al HTlcs with layered structures could be successfully prepared by the coprecipitation method, and the characteristic HTlcs reflections were also observed in the XRD analysis. The NiO and Ni 0 phases were identified in all Ni-based catalysts, which displayed randomly interconnected pores and no layer structures. In addition, the studies also found the Ni/Al HTlcs and Ni- based catalysts had high specific surface areas, low pore volumes and low pore diameters. The catalytic hydrogenation of ethyl acetate to ethanol with Ni-based catalysts was also investigated.
    [Show full text]
  • NMR Chemical Shifts of Common Laboratory Solvents As Trace Impurities
    7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel Received June 27, 1997 In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identifica- tion of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analyti- cally-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much Figure 1. Chemical shift of HDO as a function of tempera- more concentrated samples, and run at lower magnetic ture. fields, than today’s practice. 1 13 We therefore decided to collect H and C chemical dependent (vide infra). Also, any potential hydrogen- shifts of what are, in our experience, the most popular bond acceptor will tend to shift the water signal down- “extra peaks” in a variety of commonly used NMR field; this is particularly true for nonpolar solvents. In solvents, in the hope that this will be of assistance to contrast, in e.g. DMSO the water is already strongly the practicing chemist. hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true Experimental Section for D2O; the chemical shift of the residual HDO is very NMR spectra were taken in a Bruker DPX-300 instrument temperature-dependent (vide infra) but, maybe counter- (300.1 and 75.5 MHz for 1H and 13C, respectively).
    [Show full text]
  • N-Propyl Acetate Technical Data Sheet
    Technical Data Sheet Product Name n-Propyl Acetate Synonyms Acetic Acid, n-propyl Ester Chemical Formula CH3COOC3H7 Product Description N-propyl acetate is a colorless, volatile solvent with an odor similar to acetone. It has good solvency power for many natural and synthetic resins. It is miscible with many organic solvents. Applications • Coatings • Wood lacquers • Aerosol sprays • Nail care • Cosmetic / personal care solvent • Fragrance solvent • Process solvent • Printing inks (especially flexographic and special screen) Typical Physical Properties Property Value Molecular Weight (g/mol) 102.13 Boiling Point @ 760 mmHg, 1.01 ar 101.5 °C (214.7 °F) Flash Point (Setaflash Closed Cup) 11.8 °C (53.24°F) Freezing Point -93 °C (-135.4°F) Vapor pressure@ 25°C — extrapolated 25 mmHg 4.79 Kpa Specific gravity (20/20°C) 0.888 Liquid Density @ 20°C 0.89 g/cm3 Vapor Density (air = 1) 3.5 Viscosity (cP or mPa•s @ 20°C) 0.6 Surface tension (dynes/cm or mN/m @ 20°C) 24.4 Specific heat (J/g/°C @ 25°C) No test data available Heat of vaporization (J/g) at normal boiling No test data available point Net heat of combustion (kJ/g) — predicted @ No test data available 25°C Autoignition temperature 380 °C (716 °F) Evaporation rate (n-butyl acetate = 1.0) 2.75 Solubility, g/L or % @ 20°C Solvent in water 2% Water in solvent 2.6% Hansen solubility parameters (J/cm³)1/2 _Total 8.6 _Non-Polar 7.5 _Polar 2.1 Form No. 327-00024-0812 Page 1 of 3 ®™Trademark of The Dow Chemical Company (“Dow”) or an affiliated company of Dow _Hydrogen bonding 3.7 Partition Coefficient, n-octanol/water 1.4 (log Pow) Flammable limits (vol.% in air) Lower 1.7 Upper 8.0 Typical Physical Properties: This data provided for those properties are typical values, and should not be construed as sales specifications.
    [Show full text]
  • Ester Synthesis Lab (Student Handout)
    Name: ________________________ Lab Partner: ____________________ Date: __________________________ Class Period: ____________________ Ester Synthesis Lab (Student Handout) Lab Report Components: The following must be included in your lab book in order to receive full credit. 1. Purpose 2. Hypothesis 3. Procedure 4. Observation/Data Table 5. Results 6. Mechanism (In class) 7. Conclusion Introduction The compounds you will be making are also naturally occurring compounds; the chemical structure of these compounds is already known from other investigations. Esters are organic molecules of the general form: where R1 and R2 are any carbon chain. Esters are unique in that they often have strong, pleasant odors. As such, they are often used in fragrances, and many artificial flavorings are in fact esters. Esters are produced by the reaction between alcohols and carboxylic acids. For example, reacting ethanol with acetic acid to give ethyl acetate is shown below. + → + In the case of ethyl acetate, R1 is a CH3 group and R2 is a CH3CH2 group. Naming esters systematically requires naming the functional groups on both sides of the bridging oxygen. In the example above, the right side of the ester as shown is a CH3CH2 1 group, or ethyl group. The left side is CH3C=O, or acetate. The name of the ester is therefore ethyl acetate. Deriving the names of the side from the carboxylic acid merely requires replacing the suffix –ic with –ate. Materials • Alcohol • Carboxylic Acid o 1 o A o 2 o B o 3 o C o 4 Observation Parameters: • Record the combination of carboxylic acid and alcohol • Observe each reactant • Observe each product Procedure 1.
    [Show full text]
  • Comprehensive Characterization of Toxicity of Fermentative Metabolites on Microbial Growth Brandon Wilbanks1 and Cong T
    Wilbanks and Trinh Biotechnol Biofuels (2017) 10:262 DOI 10.1186/s13068-017-0952-4 Biotechnology for Biofuels RESEARCH Open Access Comprehensive characterization of toxicity of fermentative metabolites on microbial growth Brandon Wilbanks1 and Cong T. Trinh1,2* Abstract Background: Volatile carboxylic acids, alcohols, and esters are natural fermentative products, typically derived from anaerobic digestion. These metabolites have important functional roles to regulate cellular metabolisms and broad use as food supplements, favors and fragrances, solvents, and fuels. Comprehensive characterization of toxic efects of these metabolites on microbial growth under similar conditions is very limited. Results: We characterized a comprehensive list of thirty-two short-chain carboxylic acids, alcohols, and esters on microbial growth of Escherichia coli MG1655 under anaerobic conditions. We analyzed toxic efects of these metabo- lites on E. coli health, quantifed by growth rate and cell mass, as a function of metabolite types, concentrations, and physiochemical properties including carbon number, chemical functional group, chain branching feature, energy density, total surface area, and hydrophobicity. Strain characterization revealed that these metabolites exert distinct toxic efects on E. coli health. We found that higher concentrations and/or carbon numbers of metabolites cause more severe growth inhibition. For the same carbon numbers and metabolite concentrations, we discovered that branched chain metabolites are less toxic than the linear chain ones. Remarkably, shorter alkyl esters (e.g., ethyl butyrate) appear less toxic than longer alkyl esters (e.g., butyl acetate). Regardless of metabolites, hydrophobicity of a metabolite, gov- erned by its physiochemical properties, strongly correlates with the metabolite’s toxic efect on E. coli health.
    [Show full text]
  • BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING
    BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Bart Heldreth Ph.D., Chemist Date: July 30, 2010 Subject: Draft Final Report of Methyl Acetate, Simple Alkyl Acetate Esters, Acetic Acid and its Salts as used in Cosmetics . This review includes Methyl Acetate and the following acetate esters, relevant metabolites and acetate salts: Propyl Acetate, Isopropyl Acetate, t-Butyl Acetate, Isobutyl Acetate, Butoxyethyl Acetate, Nonyl Acetate, Myristyl Acetate, Cetyl Acetate, Stearyl Acetate, Isostearyl Acetate, Acetic Acid, Sodium Acetate, Potassium Acetate, Magnesium Acetate, Calcium Acetate, Zinc Acetate, Propyl Alcohol, and Isopropyl Alcohol. At the June 2010 meeting, the Panel reviewed information submitted in response to an insufficient data announcement for HRIPT data for Cetyl Acetate at the highest concentration of use (lipstick). On reviewing the data in the report, evaluating the newly available unpublished studies and assessing the newly added ingredients, the Panel determined that the data are now sufficient, and issued a Tentative Report, with a safe as used conclusion. Included in this report are Research Institute for Fragrance Materials (RIFM) sponsored toxicity studies on Methyl Acetate and Propyl Acetate, which were provided in “wave 2” at the June Panel Meeting but are now incorporated in full. The Tentative Report was issued for a 60 day comment period (60 days as of the August panel meeting start date). The Panel should now review the Draft Final Report, confirm the conclusion of safe, and issue a Final Report. All of the materials are in the Panel book as well as in the URL for this meeting's web page http://www.cir- safety.org/aug10.shtml.
    [Show full text]
  • (2-Methoxymethylethoxy)-, Acetate (CASRN 88917-22-0) (DPMA) Final Designation
    Supporting Information for Low-Priority Substance Propanol, 1(or 2)-(2-Methoxymethylethoxy)-, Acetate (CASRN 88917-22-0) (DPMA) Final Designation February 20, 2020 Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 1200 Pennsylvania Avenue Washington, DC 20460 Contents 1. Introduction ................................................................................................................................................................ 1 2. Background on Dipropylene Glycol Methyl Ether Acetate ..................................................................................... 3 3. Physical-Chemical Properties ................................................................................................................................... 4 3.1 References ...................................................................................................................................................... 6 4. Relevant Assessment History ................................................................................................................................... 7 5. Conditions of Use ....................................................................................................................................................... 8 6. Hazard Characterization .......................................................................................................................................... 12 6.1 Human Health Hazard ..................................................................................................................................
    [Show full text]