Novel Gain of Function Activity of P53 Mutants: Activation of the Dutpase Gene Expression Leading to Resistance to 5-fluorouracil

Total Page:16

File Type:pdf, Size:1020Kb

Novel Gain of Function Activity of P53 Mutants: Activation of the Dutpase Gene Expression Leading to Resistance to 5-fluorouracil Oncogene (2002) 21, 4595 – 4600 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc ORIGINAL PAPERS Novel gain of function activity of p53 mutants: activation of the dUTPase gene expression leading to resistance to 5-fluorouracil Elena N Pugacheva1,4,5, Alexey V Ivanov2,6, Julia E Kravchenko1, Boris P Kopnin3, Arnold J Levine4,7 and Peter M Chumakov*,1,2,6 1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 117984 Moscow, Russia; 2Department of Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, IL 60607, USA; 3Institute of Cancerogenesis, Russian Cancer Research Center, Moscow, Kashirskoye shosse 24, 115478 Moscow, Russia; 4Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA Mutated forms of p53 are often expressed in a variety of Introduction human tumors. In addition to loss of function of the p53 tumor suppressor, mutant p53s contribute to malignant The p53 tumor suppressor gene plays a key role in process by acquisition of novel functions that enhance maintaining genetic stability and protection against transformed properties of cells and resistance to antic- cancer. Accumulation and activation of functional p53 ancer therapy in vitro, and increase tumorigenecity, protein occurs in response to a variety of stresses and invasiveness and metastatic ability in vivo. Searching for insults potentially leading to genetic alterations genes that change expression in response to p53 gain of (Levine, 1997; Pugacheva et al., 2000). Acting mainly function mutants may give a clue to the mechanisms (but not exclusively) as a sequence-specific transcrip- underlying their oncogenic effects. Recently by subtrac- tion factor, p53 is capable of activating a set of genes tion hybridization cloning we found that the dUTPase required for cell cycle arrest or apoptosis (for review gene is transcriptionally upregulated in p53-null mouse see el-Deiry (1998); Sionov et al. (1999)). In this fibroblasts expressing the exogenous human tumor- manner the p53 gene controls elimination of potential derived His175 p53 mutant. Here we show that progenitors of malignant tumor cells. p53 deficient cells conditional expression of His175 and Trp248 hot-spot show greatly increased genetic instability, and most of p53 mutants in p53-negative mouse 10(1) fibroblasts and the p53 knockout mice develop malignant diseases by 6 human SK-OV3 and H1299 tumor cells results in months of age (Donehower et al., 1992). Different increase in dUTPase gene transcription, an important types of abnormalities in the p53 signaling pathways marker predicting the efficacy of cancer therapy with are observed in a majority of human malignancies. The fluoropyrimidine drugs. Using tetracycline-regulated most frequent type of defect represents missense retroviral vectors for conditional expression of p53 mutations within the p53 gene itself. Unexpectedly a mutants, we found that transcription of the dUTPase small fraction of mutations in the tumors corresponds gene is increased within 24 h after tetracycline with- to nonsense or frame shift mutations and that drawal, and the cells acquire higher resistance to 5-FU. discriminates the p53 gene from other tumor-suppres- Additional inactivation of the N-terminal transcription sors, such as RB or APC (Levine et al., 1995). This fact activation domain of mutant p53 (substitutions in amino- suggests that the presence of a mutated protein in acid residues 22 and 23) results in abrogation of both addition to the loss of wild type p53 protein might induction of dUTPase transcripts and 5-FU resistance. confer selective growth advantage and promote clonal Oncogene (2002) 21, 4595 – 4600. doi:10.1038/sj.onc. expansion (Greenblatt et al., 1994). In contrast to a 1205704 classical tumor suppressor gene, a missense mutation in the p53 gene can lead not only to loss of function (both Keywords: mutant p53; drug resistance; gain of in cis by mutation itself, or in trans by a dominant- function negative mechanism), but also to a gain of function. In particular, novel activities of mutant p53 are capable of promoting tumorigenicity when introduced into p53- *Correspondence: PM Chumakov, Department of Molecular Biol- null cell types (Dittmer et al., 1993; Michalovitz et al., ogy, Lerner Research Institute, Cleveland Clinic Foundation, 9500 1991). Also, over-expression of mutant p53 proteins in Euclid Avenue, Cleveland, Ohio, OH 44195, USA; p53-null cells of several lineages enhances their E-mail: [email protected] Current addresses: 5Fox Chase Cancer Center, 7701 Burtholme transformed properties and plating efficiency in culture, Avenue, Philadelphia, Pennsylvania, PA 19111, USA; 6Department and increases tumorigenicity and tissue invasiveness in of Molecular Biology, Lerner Research Institute, Cleveland Clinic mice (Dittmer et al., 1993; Gloushankova et al., 1997; Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA; Hsiao et al., 1994; Kremenetskaya et al., 1997; Sun et 7Rockefeller University, 1230 York Avenue, New York, NY 10021, USA al., 1993; Wolf et al., 1984). Introduction into p53-null Received 2 January 2002; revised 15 May 2002; accepted 22 May mice of a mutant p53 allele changes the tumor 2002 spectrum and results in higher frequencies of metas- Mutant p53s increase resistance to 5-FU EN Pugacheva et al 4596 tases (Liu et al., 2000). Some of the p53 mutants of dUTPase expression in colon cancer showed its provide increased resistance to p53-independent apop- strong correlation with poor response to 5-FU therapy tosis induced by a variety of treatments, including and a worse prognosis (Ladner et al., 2000). certain chemotherapeutic drugs (Kremenetskaya et al., In this study we show that certain types of mutant 1997; Li et al., 1998; Lotem and Sachs, 1995; Peled et p53s are capable of inducing expression of the al., 1996). For example, in p53 negative lung carcinoma dUTPase gene and, as a result, increasing resistance cell line H1299 introduction of His175 and His179 p53 of cells to fluoropyrimidine drugs. This observation mutants significantly reduces the rate of etoposide- provides a possible mechanism for increased resistance induced apoptosis, although His273 and Trp248 of certain malignant tumors to 5-FU, and may have mutants provide a much milder effect, indicating an potential value for prediction of sensitivity to allele specific impact, which provides further evidence chemotherapy based on analysis of mutant p53 that mutant p53 protein confers this activity (Blandino expression. et al., 1999). The mechanisms underlying gain of function activ- ities of p53 mutants remain poorly understood. Some Results and discussion studies emphasize the importance of the N-terminal transcription-activation domain for expression of We tested whether expression of different forms of mutant p53 gain of function phenotype (Lanyi et al., tumor-derived p53 mutants introduced into p53 1998; Lin et al., 1995). Mutant p53s seem to be capable negative cells can affect dUTPase expression and of activating promoters of genes that are usually not sensitivity to 5-FU. Constitutive ectopic expression of activated by the wild type protein. Among these are His175 and Ala281 p53 mutants in p53-negative mouse promoters of MDR1 (Chin et al., 1992; Dittmer et al., cell line 10(3) results in significant increase in dUTPase 1993; Kopnin et al., 1995), PCNA (Deb et al., 1992), transcripts as seen by Northern blot hybridization HSP70 (Tsutsumi-Ishii et al., 1995), 15-lipoxygenase (Figure 1a). This result is consistent with the fact that (Kelavkar and Badr, 1999), BAG-1 (Yang et al., 1999) the dUTPase cDNA clone was present in a high and c-myc (Frazier et al., 1998) genes. It is not clear proportion of a subtraction library from 10(3)-His175 whether mutant p53 acts directly as a transcription vs 10(3) cell lines. factor with altered sequence specificity, or modifies Conditional expression vectors were then used to expression of the genes by interaction with factors study immediate effects of mutant p53s. Various forms responsible for positive or negative transcriptional of mutant p53 cDNAs were inserted into self- regulation. Taking into account how common missense inactivating retroviral vectors designed for tetracy- p53 mutants are in human cancer, it is clear that cline-regulated gene expression. Three different p53 understanding the mechanisms underlying this gain of deficient cell lines bearing a tetracycline dependent function as well as identification of genes that are transactivator protein, tTA, were infected with recom- regulated by p53 mutants may help in development of binant retroviral stocks obtained after transfection of rational strategies of cancer treatment. the DNA constructs into the packaging cell line In a recent study using subtraction hybridization Phoenix. Mass cultures obtained after selection with cloning we have isolated several cDNA clones G418 were induced to express p53 by withdrawal of corresponding to genes that are activated in p53- doxacycline from the medium. Twenty-four hours after negative mouse fibroblast cell line 10(3) following induction, strong signals corresponding to p53 were expression of exogenous tumor-derived human mutant seen on Western blots (Figure 1b,d). In the mouse p53 p53-His175 (Pugacheva et al., 2000). One of the most deficient fibroblast cell line 10(1) induction of His175 abundant cDNAs differentially expressed in the 10(3)- p53 mutant expression correlated with a significant p53His175 cell line corresponded
Recommended publications
  • Differential Control of Dntp Biosynthesis and Genome Integrity
    www.nature.com/scientificreports OPEN Diferential control of dNTP biosynthesis and genome integrity maintenance by the dUTPase Received: 6 November 2015 Accepted: 12 June 2017 superfamily enzymes Published online: 20 July 2017 Rita Hirmondo1, Anna Lopata1, Eva Viola Suranyi1,2, Beata G. Vertessy1,2 & Judit Toth1 dUTPase superfamily enzymes generate dUMP, the obligate precursor for de novo dTTP biosynthesis, from either dUTP (monofunctional dUTPase, Dut) or dCTP (bifunctional dCTP deaminase/dUTPase, Dcd:dut). In addition, the elimination of dUTP by these enzymes prevents harmful uracil incorporation into DNA. These two benefcial outcomes have been thought to be related. Here we determined the relationship between dTTP biosynthesis (dTTP/dCTP balance) and the prevention of DNA uracilation in a mycobacterial model that encodes both the Dut and Dcd:dut enzymes, and has no other ways to produce dUMP. We show that, in dut mutant mycobacteria, the dTTP/dCTP balance remained unchanged, but the uracil content of DNA increased in parallel with the in vitro activity-loss of Dut accompanied with a considerable increase in the mutation rate. Conversely, dcd:dut inactivation resulted in perturbed dTTP/dCTP balance and two-fold increased mutation rate, but did not increase the uracil content of DNA. Thus, unexpectedly, the regulation of dNTP balance and the prevention of DNA uracilation are decoupled and separately brought about by the Dcd:dut and Dut enzymes, respectively. Available evidence suggests that the discovered functional separation is conserved in humans and other organisms. Proper control of the intracellular concentration of deoxyribonucleoside-5-triphosphates (dNTPs), the building blocks of DNA, is critically important for efcient and high-fdelity DNA replication and genomic stability1, 2.
    [Show full text]
  • DUT (NM 001948) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221635 DUT (NM_001948) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: DUT (NM_001948) Human Tagged ORF Clone Tag: Myc-DDK Symbol: DUT Synonyms: dUTPase Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221635 representing NM_001948 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCCTGCTCTGAAGAGACACCCGCCATTTCACCCAGTAAGCGGGCCCGGCCTGCGGAGGTGGGCGGCA TGCAGCTCCGCTTTGCCCGGCTCTCCGAGCACGCCACGGCCCCCACCCGGGGCTCCGCGCGCGCCGCGGG CTACGACCTGTACAGTGCCTATGATTACACAATACCACCTATGGAGAAAGCTGTTGTGAAAACGGACATT CAGATAGCGCTCCCTTCTGGGTGTTATGGAAGAGTGGCTCCACGGTCAGGCTTGGCTGCAAAACACTTTA TTGATGTAGGAGCTGGTGTCATAGATGAAGATTATAGAGGAAATGTTGGTGTTGTACTGTTTAATTTTGG CAAAGAAAAGTTTGAAGTCAAAAAAGGTGATCGAATTGCACAGCTCATTTGCGAACGGATTTTTTATCCA GAAATAGAAGAAGTTCAAGCCTTGGATGACACCGAAAGGGGTTCAGGAGGTTTTGGTTCCACTGGAAAGA AT ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC221635 representing NM_001948 Red=Cloning site Green=Tags(s) MPCSEETPAISPSKRARPAEVGGMQLRFARLSEHATAPTRGSARAAGYDLYSAYDYTIPPMEKAVVKTDI QIALPSGCYGRVAPRSGLAAKHFIDVGAGVIDEDYRGNVGVVLFNFGKEKFEVKKGDRIAQLICERIFYP EIEEVQALDDTERGSGGFGSTGKN TRTRPLEQKLISEEDLAANDILDYKDDDDKV Chromatograms:
    [Show full text]
  • Crucial Roles of Thymidine Kinase 1 and Deoxyutpase in Incorporating the Antineoplastic Nucleosides Trifluridine and 2'-Deoxy-5-Fluorouridine Into DNA
    INTERNATIONAL JOURNAL OF ONCOLOGY 46: 2327-2334, 2015 Crucial roles of thymidine kinase 1 and deoxyUTPase in incorporating the antineoplastic nucleosides trifluridine and 2'-deoxy-5-fluorouridine into DNA KAzUKI SAKAMoTo, Tatsushi YoKogAwA, HIRoYUKI UENo, KEI ogUcHI, HIRoMI KAzUNo, KEIJI ISHIDA, NozoMU TANAKA, AKIKo oSADA, YUKARI YAMADA, HIRoYUKI oKABE and KENIcHI Matsuo Drug Discovery and Development I, Discovery and Preclinical Research Division, Taiho Pharmaceutical co., Ltd., Tsukuba, Ibaraki 300-2611, Japan Received March 6, 2015; Accepted April 9, 2015 DoI: 10.3892/ijo.2015.2974 Abstract. Trifluridine (FTD) and 2'-deoxy-5-fluorouridine transported into cells by ENT1 and ENT2 and were phosphor- (FdUrd), a derivative of 5-fluorouracil (5-FU), are antitumor ylated by thymidine kinase 1, which showed a higher catalytic agents that inhibit thymidylate synthase activity and their activity for FTD than for FdUrd. deoxyUTPase (DUT) did not nucleotides are incorporated into DNA. However, it is evident recognize dTTP and FTD-triphosphate (F3dTTP), whereas that several differences occur in the underlying antitumor deoxyuridine-triphosphate (dUTP) and FdUrd-triphosphate mechanisms associated with these nucleoside analogues. (FdUTP) were efficiently degraded by DUT. DNA poly- Recently, TAS-102 (composed of FTD and tipiracil hydrochlo- merase α incorporated both F3dTTP and FdUTP into DNA at ride, TPI) was shown to prolong the survival of patients with sites aligned with adenine on the opposite strand. FTD-treated colorectal cancer who received a median of 2 prior therapies, cells showed differing nuclear morphologies compared to including 5-FU. TAS-102 was recently approved for clinical FdUrd-treated cells. These findings indicate that FTD and use in Japan.
    [Show full text]
  • Electronic Reprint Phosphorylation Adjacent to the Nuclear Localization
    electronic reprint Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights Gergely Rona,´ Mary Marfori, Mat´ e´ Borsos, Ildiko´ Scheer, EnikoTak˝ acs,´ Judit Toth,´ Fruzsina Babos, Anna Magyar, Anna Erdei, Zoltan´ Bozoky,´ Laszl´ o´ Buday, Bostjan Kobe and Beata´ G. Vertessy´ Acta Cryst. (2013). D69, 2495–2505 Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see http://journals.iucr.org/services/authorrights.html Acta Crystallographica Section D: Biological Crystallography welcomes the submission of papers covering any aspect of structural biology, with a particular emphasis on the struc- tures of biological macromolecules and the methods used to determine them. Reports on new protein structures are particularly encouraged, as are structure–function papers that could include crystallographic binding studies, or structural analysis of mutants or other modified forms of a known protein structure. The key criterion is that such papers should present new insights into biology, chemistry or structure. Papers on crystallo- graphic methods should be oriented towards biological crystallography, and may include new approaches to any aspect of structure determination or analysis. Papers on the crys- tallization of biological molecules will be accepted providing that these focus on new methods or other features that are of general importance or applicability.
    [Show full text]
  • Regulation of Human Dutpase Gene Expression and P53-Mediated Transcriptional Repression in Response to Oxaliplatin-Induced DNA Damage Peter M
    78–95 Nucleic Acids Research, 2009, Vol. 37, No. 1 Published online 16 November 2008 doi:10.1093/nar/gkn910 Regulation of human dUTPase gene expression and p53-mediated transcriptional repression in response to oxaliplatin-induced DNA damage Peter M. Wilson1, William Fazzone1, Melissa J. LaBonte1, Heinz-Josef Lenz2 and Robert D. Ladner1,* 1Department of Pathology and 2Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Received May 19, 2008; Revised October 28, 2008; Accepted October 29, 2008 ABSTRACT INTRODUCTION Deoxyuridine triphosphate nucleotidohydrolase Deoxyuridine triphosphate nucleotidohydrolase (dUT (dUTPase) catalyzes the hydrolysis of dUTP to Pase) is the sole enzyme responsible for the hydrolysis of dUMP and PPi. Although dUTP is a normal intermedi- dUTP to dUMP and pyrophosphate simultaneously pro- ate in DNA synthesis, its accumulation and misincor- viding substrate for thymidylate synthase (TS) and elim- poration into DNA is lethal. Importantly, uracil inating dUTP from the DNA biosynthetic pathway. Although dUTP is a normal intermediate in DNA synth- misincorporation is a mechanism of cytotoxicity esis, its extensive accumulation and misincorporation induced by fluoropyrimidine chemotherapeutic into DNA is lethal in both prokaryotic and eukaryotic agents including 5-fluorouracil (5-FU) and elevated organisms as evidenced from knockout models (1,2). expression of dUTPase is negatively correlated Importantly, uracil misincorporation also represents with clinical response to 5-FU-therapy. In this study a major mechanism of cytotoxicity induced by the we performed the first functional characterization of TS-inhibitor class of chemotherapeutic agents including the dUTPase promoter and demonstrate a role for the fluoropyrimidines 5-fluorouracil (5-FU), fluorodeox- E2F-1 and Sp1 in driving dUTPase expression.
    [Show full text]
  • Targeting Nucleotide Metabolism Enhances the Efficacy of Anthracyclines and Anti-Metabolites in Triple-Negative Breast Cancer
    www.nature.com/npjbcancer ARTICLE OPEN Targeting nucleotide metabolism enhances the efficacy of anthracyclines and anti-metabolites in triple-negative breast cancer Craig Davison1, Roisin Morelli1, Catherine Knowlson1, Melanie McKechnie1, Robbie Carson1, Xanthi Stachtea1, Kylie A. McLaughlin2, Vivien E. Prise2, Kienan Savage 1, Richard H. Wilson3, Karl A. Mulligan2, Peter M. Wilson2, Robert D. Ladner1,5 and ✉ Melissa J. LaBonte 1,4,5 Triple-negative breast cancer (TNBC) remains the most lethal breast cancer subtype with poor response rates to the current chemotherapies and a lack of additional effective treatment options. We have identified deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) as a critical gatekeeper that protects tumour DNA from the genotoxic misincorporation of uracil during treatment with standard chemotherapeutic agents commonly used in the FEC regimen. dUTPase catalyses the hydrolytic dephosphorylation of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP), providing dUMP for thymidylate synthase as part of the thymidylate biosynthesis pathway and maintaining low intracellular dUTP concentrations. This is crucial as DNA polymerase cannot distinguish between dUTP and deoxythymidylate triphosphate (dTTP), leading to dUTP misincorporation into DNA. Targeting dUTPase and inducing uracil misincorporation during the repair of DNA damage induced by fluoropyrimidines or anthracyclines represents an effective strategy to induce cell lethality. dUTPase inhibition significantly sensitised TNBC cell lines 1234567890():,; to fluoropyrimidines and anthracyclines through imbalanced nucleotide pools and increased DNA damage leading to decreased proliferation and increased cell death. These results suggest that repair of treatment-mediated DNA damage requires dUTPase to prevent uracil misincorporation and that inhibition of dUTPase is a promising strategy to enhance the efficacy of TNBC chemotherapy.
    [Show full text]
  • The Role of a Key Amino Acid Position in Species- Specific Proteinaceous Dutpase Inhibition
    Article The Role of a Key Amino Acid Position in Species- Specific Proteinaceous dUTPase Inhibition András Benedek 1,2,*, Fanni Temesváry-Kis 1, Tamjidmaa Khatanbaatar 1, Ibolya Leveles 1,2, Éva Viola Surányi 1,2, Judit Eszter Szabó 1,2, Lívius Wunderlich 1 and Beáta G. Vértessy 1,2,* 1 Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, H -1111 Budapest, Szent Gellért tér 4, Hungary; [email protected] (F.T-K.); [email protected] (T.K.); [email protected] (L.W.) 2 Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary; [email protected] (I.L.); [email protected] (É.V.S.); [email protected] (J.E.S.) * Correspondence: [email protected] (A.B.); [email protected] (B.G.V.) Received: 14 May 2019; Accepted: 27 May 2019; Published: 6 June 2019 Abstract: Protein inhibitors of key DNA repair enzymes play an important role in deciphering physiological pathways responsible for genome integrity, and may also be exploited in biomedical research. The staphylococcal repressor StlSaPIbov1 protein was described to be an efficient inhibitor of dUTPase homologues showing a certain degree of species-specificity. In order to provide insight into the inhibition mechanism, in the present study we investigated the interaction of StlSaPIbov1 and Escherichia coli dUTPase. Although we observed a strong interaction of these proteins, unexpectedly the E. coli dUTPase was not inhibited. Seeking a structural explanation for this phenomenon, we identified a key amino acid position where specific mutations sensitized E.
    [Show full text]
  • CRISPR/Cas9-Mediated Knock-Out of Dutpase in Mice Leads to Early Embryonic Lethality
    bioRxiv preprint doi: https://doi.org/10.1101/335422; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CRISPR/Cas9-mediated knock-out of dUTPase in mice leads to early embryonic lethality Hajnalka Laura Pálinkás1,2*, Gergely Rácz 1,3, Zoltán Gál4, Orsolya Hoffmann4, Gergely Tihanyi1,3, Elen Gócza4*, László Hiripi4*, Beáta G. Vértessy1,3* *Corresponding authors 1Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary 2Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary 3Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary 4Department of Animal Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary Correspondence and requests for materials should be addressed to Beáta G. Vértessy (email: [email protected]). Correspondence may also be addressed to Hajnalka Laura Pálinkás ([email protected]), Elen Gócza ([email protected]), and László Hiripi ([email protected]). 1 bioRxiv preprint doi: https://doi.org/10.1101/335422; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Sanitization of nucleotide pools is essential for genome maintenance. Among the enzymes significant in this mechanism, deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) performs cleavage of dUTP into dUMP and inorganic pyrophosphate. By this reaction the enzyme efficiently prevents uracil incorporation into DNA and provides dUMP, the substrate for de novo thymidylate biosynthesis.
    [Show full text]
  • The Relationship Between Dntp Pool Levels and Mutagenesis in an Escherichia Coli NDP Kinase Mutant
    The relationship between dNTP pool levels and mutagenesis in an Escherichia coli NDP kinase mutant Jared Nordman and Andrew Wright* Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 Edited by Jonathan Beckwith, Harvard Medical School, Boston, MA, and approved May 6, 2008 (received for review March 27, 2008) Loss of nucleoside diphosphate kinase (Ndk) function in Escherichia The human genome contains eight Ndk paralogues, Nm23 coli results in an increased frequency of spontaneous mutation and H1–H8, which have been implicated in multiple cellular pro- an imbalance in dNTP pool levels. It is presumed that the imbalance cesses. For example, human NDP kinase (nm23-H1) was initially in dNTP pool levels is responsible for the mutator phenotype of an identified as a suppressor of tumor metastasis by using meta- E. coli ndk mutant. A human homologue of Ndk and potential static melanoma cell lines (17). Nm23-H2 has been shown to suppressor of tumor metastasis, nm23-H2, can complement the cleave DNA in a mechanism similar to that of the AP lyase family mutagenic phenotype of an E. coli ndk mutant. Here, we show that of DNA repair enzymes, and directly regulate expression of the the antimutagenic property of nm23-H2 in E. coli is independent of c-MYC oncogene (18, 19). Mutational loss of NDP kinase dNTP pool levels, indicating that dNTP pool imbalance is not function in Drosophila leads to developmental defects (20). responsible for the mutator phenotype associated with the loss of Interestingly, restoration of NDP kinase enzymatic activity is ndk function.
    [Show full text]
  • Disruption of Nucleocytoplasmic Trafficking As a Cellular Senescence
    www.nature.com/emm ARTICLE OPEN Disruption of nucleocytoplasmic trafficking as a cellular senescence driver Ji-Hwan Park1,14, Sung Jin Ryu2,13,14, Byung Ju Kim3,13,14, Hyun-Ji Cho3, Chi Hyun Park4, Hyo Jei Claudia Choi2, Eun-Jin Jang3, Eun Jae Yang5, Jeong-A Hwang5, Seung-Hwa Woo5, Jun Hyung Lee5, Ji Hwan Park5, Kyung-Mi Choi6, Young-Yon Kwon6, 6 7 3 3 8 9 10 5 ✉ Cheol-Koo Lee , Joon✉ Tae Park , Sung✉ Chun Cho , Yun-Il Lee , Sung✉ Bae Lee , Jeong A. Han , Kyung A. Cho , Min-Sik Kim , Daehee Hwang11 , Young-Sam Lee3,5 and Sang Chul Park3,12 © The Author(s) 2021 Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model.
    [Show full text]
  • Uorouracil Based Chemotherapy Inlocally Advanced Gastric Cancer
    A Predictive Signature for Oxaliplatin and 5- uorouracil Based Chemotherapy Inlocally Advanced Gastric Cancer Qinchuan Wang Zhejiang University https://orcid.org/0000-0002-2370-6714 Xiyong Liu City of Hope National Medical Center Chen Chen Zhejiang University Jida Chen Zhejiang University Beisi Xu Saint Jude Children's Research Hospital Lini Chen Zhejiang University Jichun Zhou Zhejiang University Yasheng Huang Hangzhou Hospital of Traditional Chinese Medicine Wenjun Chen Zhejiang University Rongyue Teng Zhejiang University Wenhe Zhao Zhejiang University Lidan Jin Zhejiang University Jun Shen Zhejiang University Jianguo Shen Zhejiang University Yun Yen ( [email protected] ) Linbo Wang Zhejiang University Page 1/23 Research Keywords: Locally advanced gastric cancer, adjuvant chemotherapy, overall survival, prediction, mutation Posted Date: June 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-34678/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/23 Abstract Background: Adjuvantchemotherapy(AC)plays a substantial role in the treatment of locally advanced gastric cancer (LAGC), but the response remains poor. Weaims to improve its ecacy in LAGC. Methods: We identied the expression of eight genes closely associated with platinum and uorouracil metabolism (RRM1, RRM2, RRM2B, POLH, DUT, TYMS, TYMP, MKI67) in the discovery cohort (N=291). And we further validated the ndings in TCGA (N=279) and GEO. Overall survival (OS) was used as an endpoint. Univariate and multivariate Cox models were applied. A multivariate Cox regression model was simulated to predict theOS. Results: In the discovery cohort,the univariate Coxmodelindicated that AC was benecial to high-RRM1, high-DUT, low-RRM2, low-RRM2B, low-POLH, low-KI67, low-TYMS or low-TYMP patients, the results were validated in the TCGA cohort.
    [Show full text]
  • Novel Opportunities for Thymidylate Metabolism As a Therapeutic Target
    3029 Novel opportunities for thymidylate metabolism as a therapeutic target Peter M. Wilson,1 William Fazzone,1 small-molecule inhibitor to dUTPase represents a viable Melissa J. LaBonte,1 Jinxia Deng,2 strategy to improve the clinical efficacy of these mainstay Nouri Neamati,2 and Robert D. Ladner1 chemotherapeutic agents. [Mol Cancer Ther 2008; 7(9):3029–37] 1Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, and 2Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California Introduction The fluoropyrimidine 5-fluorouracil (5-FU) is widely used in the treatment of a range of cancers, including breast Abstract cancers, and cancers of the aerodigestive and gastrointes- For over 40 years, the fluoropyrimidine 5-fluorouracil tinal tract (1). However, 5-FU has had the greatest effect (5-FU) has remained the central agent in therapeutic and is arguably the most successful drug approved to date regimens employed in the treatment of colorectal cancer for the treatment of colorectal cancer. Throughout 50 years and is frequently combined with the DNA-damaging of clinical development, the response rate of advanced agents oxaliplatin and irinotecan, increasing response colorectal cancer chemotherapy using 5-FU and 5-FU-based rates and improving overall survival. However, many combinations has improved from 10% to 15% to 40% to patients will derive little or no benefit from treatment, 50% primarily due to the introduction of efficacious combi- highlighting the need to identify novel therapeutic targets nation partners such as the topoisomerase I inhibitor to improve the efficacy of current 5-FU-based chemother- irinotecan and the platinum agent oxaliplatin and deter- apeutic strategies.
    [Show full text]