Hydrogen Delivery Infrastructure Options Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Delivery Infrastructure Options Analysis The Power of Experience Final Report Hydrogen Delivery Infrastructure Options Analysis DOE Award Number: DE-FG36-05GO15032 Project director/principal investigator: Tan-Ping Chen Consortium/teaming Partners: Air Liquide, Chevron Technology Venture, Gas Technology Institute, NREL, Tiax, ANL TABLE OF CONTENTS SECTION 1 EXECUTIVE SUMMARY ........................................................................... 1-1 1.1 HOW THE RESEARCH ADDS TO THE UNDERSTANDING OF THE AREA INVESTIGATED.1-1 1.2 TECHNICAL EFFECTIVENESS AND ECONOMIC FEASIBILITY OF THE METHODS OR TECHNIQUES INVESTIGATED OR DEMONSTRATED .................................................... 1-1 1.3 HOW THE PROJECT IS OF BENEFIT TO THE PUBLIC..................................................... 1-1 SECTION 2 COMPARISON OF ACTUAL ACCOMPLISHMENTS WITH PROJECT GOALS.................................................................................................................................. 2-1 2.1 TASK 1: COLLECT AND COMPILE DATA AND KNOWLEDGE BASE ........................... 2-2 2.2 TASK 2: EVALUATE CURRENT AND FUTURE EFFICIENCIES AND COSTS OF HYDROGEN DELIVERY OPTIONS ................................................................................................ 2-5 2.3 TASK 3: EVALUATE EXISTING INFRASTRUCTURE CAPABILITY FOR HYDROGEN DELIVERY ............................................................................................................... 2-6 2.4 TASK 4: ASSESS GHG AND POLLUTANT EMISSIONS IN HYDROGEN DELIVERY....... 2-7 2.5 TASK 5: COMPARE AND RANK DELIVERY OPTIONS INCLUDING THE USE OF COST MODELS .................................................................................................................. 2-7 2.6 TASK 6: RECOMMEND HYDROGEN DELIVERY STRATEGIES .................................... 2-7 2.7 TASK 7: PROJECT MANAGEMENT AND REPORTING ................................................. 2-7 SECTION 3 SUMMARY OF PROJECT ACTIVITIES ................................................. 3-1 SECTION 4 PRODUCTS DEVELOPED AND TECHNOLOGY TRANSFER ACTIVITIES........................................................................................................................ 4-2 APPENDIX A TASK 1 REPORT ..........................................................................................1 APPENDIX B TASK 2 REPORT..........................................................................................2 APPENDIX C SUPPLEMENTAL REPORT TO TASK 2 FOR NOVEL CARRIER ANALYSIS ...............................................................................................................................3 Hydrogen Delivery Infrastructure Options Analysis ii Section 1 Executive Summary 1.1 HOW THE RESEARCH ADDS TO THE UNDERSTANDING OF THE AREA INVESTIGATED In the long run, central hydrogen production is a less costly option than the on-site production at point of use due to the economy of scale for the larger central production facilities. This project provides an in-depth analysis to determine the cost effective mechanism for the transport and delivery of hydrogen from the central production facilities to the point of use at a refueling station. 1.2 TECHNICAL EFFECTIVENESS AND ECONOMIC FEASIBILITY OF THE METHODS OR TECHNIQUES INVESTIGATED OR DEMONSTRATED The investigation involved only paper study and had no laboratory or pilot scale testing. There are no special techniques used in the investigations. 1.3 HOW THE PROJECT IS OF BENEFIT TO THE PUBLIC The project benefits the public in determining the effective roadmap to build hydrogen economy for providing carbon-free fuels in transportation sector. Hydrogen Delivery Infrastructure Options Analysis 1-1 Section 2 Comparison of Actual Accomplishments with Project Goals In this project, the Nexant team conducted an in-depth analysis of various hydrogen delivery options to provide basis for determining the most cost effective infrastructure for the transition and long term. The major objective of the project is to assist DOE to understand hydrogen delivery options and plan required R&D efforts. The project evaluated and analyzed the following seven hydrogen delivery options: Option 1: Dedicated pipelines for gaseous hydrogen delivery Option 2: Use of existing natural gas or oil pipelines for gaseous hydrogen delivery Option 3: Use of existing natural gas pipelines by blending in gaseous hydrogen with the separation of hydrogen from natural gas at the point of use Option 4: Truck or rail delivery of gaseous hydrogen Option 5: Truck, rail, or pipeline transport of liquid hydrogen Option 6: Use of novel solid or liquid H2 carriers in slurry/solvent form transported by pipeline/rail/trucks Option 7: Transport methanol or ethanol by truck, rail, or pipeline and reform it into hydrogen at point of use Delivery includes the entire infrastructure needed to transport, store, and deliver hydrogen from the point of production at 300 psi (central, semi-central, or distributed) to the point of use at the dispensing nozzle at a refueling station or stationary power site. The Nexant team conducted the analysis in seven tasks: Task 1: Collect and Compile Data and Knowledge Base Subtask 1.1: Pipeline/truck/rail GH delivery and truck/rail LH delivery Subtask 1.2: Natural gas pipelines Subtask 1.3: Novel solid/liquid H2 carrier processes Subtask 1.4: H2/natural gas separation processes Subtask 1.5: H2/carrier storage needs and technology for delivery infrastructure Subtask 1.6: Methanol/ethanol production, transport & conversion Subtask 1.7: Previous system analysis and modeling work completed Task 2: Evaluate Current and Future Efficiencies and Costs of Hydrogen Delivery Options Subtask 2.1: Establish Analysis Bases Subtask 2.2: Conduct Conceptual Design Subtask 2.3: Cost Estimate and Financial Analysis Task 3: Evaluate Existing Infrastructure Capability for Hydrogen Delivery Task 4: Assess GHG and Pollutant Emissions in Hydrogen Delivery Task 5: Compare and Rank Delivery Options including the use of cost models Hydrogen Delivery Infrastructure Options Analysis 2-1 Task 6: Recommend Hydrogen Delivery Strategies Task 7: Project Management and Reporting A comparison of actual accomplishments in these seven tasks with the project goals is provided below. 2.1 TASK 1: COLLECT AND COMPILE DATA AND KNOWLEDGE BASE Project Goal In Task 1, the goal is for the Nexant team to collect and compile the relevant data and knowledge base for each delivery option to facilitate the analyses in Tasks 2-6. Task 1 consists of the following seven subtasks: Subtask 1.1: Pipeline/truck/rail GH delivery and truck/rail LH delivery For the GH delivery by pipelines, the Nexant team will: Collect information on the existing hydrogen gas pipelines in US Summarize experiences in the construction, operation, and maintenance of hydrogen gas pipelines in US and other parts of world Identify issues related to the use of hydrogen gas pipelines Survey the new technologies, which might have impacts on the efficiency, cost, and reliability improvements of hydrogen pipelines, including the key players, development status, and the projected progress as a function of time For the truck and rail transport of GH and LH, the Nexant team will: Collect information on the current GH and LH delivery by trucks and rails from merchant hydrogen plants in US Identify issues related to these transport modes Survey the new technologies, which might have impacts on the efficiency, cost, and reliability improvements of GH and LH truck/rail deliveries, including the key players, development status, and the projected progress as a function of time The information collected and compiled will be used as the basis to design and estimate the current and future capital and O&M costs of hydrogen pipeline transport in Task 2, to provide the necessary input to evaluate the existing infrastructure for hydrogen transport in Task 3, and form the basis to assess the GHG/pollutant emissions in Task 4. Subtask 1.2: Natural gas pipelines In this subtask, the Nexant team will: Collect information on the existing natural gas pipeline network (transmission and trunk lines) in US in terms of where the transmission and trunk lines are, flow rates, line sizes, delivery pressures, transport distances, locations of the feed and boost compression stations, construction materials, capital costs, compression energy Hydrogen Delivery Infrastructure Options Analysis 2-2 consumptions, emissions from the compression stations, leakages and losses, maintenance requirements, and other O&M expenses. Collect information on the capital cost and O&M costs of the distribution system in US Assess the ability of the current transmission and distribution network to isolate a certain portion of the system to transport hydrogen without interfering the natural gas transport The information collected and compiled will be used as the basis to design and cost estimate the retrofit of current NG pipeline to transport hydrogen or mixture of natural gas/hydrogen in Task 2 and provide the necessary input to evaluate the existing infrastructure capability for hydrogen delivery in Task 3. Subtask 1.3: Novel solid/liquid H2 carrier processes In this subtask, Tiax will survey and screen novel processes using solid/liquid hydrogen carriers. It will cover the following four classes of processes: Reversible processes in using metal hydrides (such as LaNi5 and Mg2Ni) and alanates (such as NaAlH4) Irreversible processes in using chemical hydrides, such as LiH, NaH, and sodium borohydride Advanced reversible processes utilizing
Recommended publications
  • Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs
    Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL is a national laboratory of the U.S. Department of Energy, Office of Energy NREL is a national laboratory of the U.S. Department of Energy,Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/BK-6A10-58564 May 2014 Contract No. DE -AC36-08GO28308 Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs G. Parks, R. Boyd, J. Cornish, and R. Remick Independent Peer Review Team NREL Technical Monitor: Neil Popovich NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/BK-6A10-58564 Golden, CO 80401 May 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade- mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
    Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
    The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16.
    [Show full text]
  • Hydrogen Delivery Roadmap
    Hydrogen Delivery Hydrogen Storage Technologies Technical Team Roadmap RoadmapJuly 2017 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non‐binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; five energy companies — BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities — Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 13 U.S. DRIVE technical teams (“tech teams”) whose mission is to accelerate the development of pre‐competitive and innovative technologies to enable a full range of efficient and clean advanced light‐duty vehicles, as well as related energy infrastructure. For more information about U.S. DRIVE, please see the U.S. DRIVE Partnership Plan, https://energy.gov/eere/vehicles/us-drive-partnership-plan-roadmaps-and-accomplishments or www.uscar.org. Hydrogen Delivery Technical Team Roadmap Table of Contents Acknowledgements .............................................................................................................................................. vi Mission .................................................................................................................................................................
    [Show full text]
  • H2@Railsm Workshop
    SANDIA REPORT SAND2019-10191 R Printed August 2019 H2@RailSM Workshop Workshop and report sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office, and the US Department of Transportation Federal Railroad Administration. Prepared by Mattie Hensley, Jonathan Zimmerman Prepared by Sandia National Laboratories Albuquerque, New MexiCo 87185 and Livermore, California 94550 Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O.
    [Show full text]
  • Fuel Cell Power Spring 2021
    No 67 Spring 2021 www.fuelcellpower.wordpress.com FUEL CELL POWER The transition from combustion to clean electrochemical energy conversion HEADLINE NEWS CONTENTS Hydrogen fuel cell buses in UK cities p.2 The world’s first hydrogen fuel cell Zeroavia’s passenger plane flight p.5 double decker buses have been Intelligent Energy’s fuel cell for UAV p.6 delivered to the City of Aberdeen. Bloom Energy hydrogen strategy p.7 Wrightbus is following this up with Hydrogen from magnesium hydride paste p.11 orders from several UK cities. ITM expanding local production of zero emission hydrogen p.12 The Scottish Government is support- Alstom hydrogen fuel cell trains p.13 ing the move to zero emission Zero carbon energy for emerging transport prior to the meeting of World markets p.16 COP26 in Glasgow later this year. Nel hydrogen infrastructure p.18 Australia’s national hydrogen strategy p.20 The United Nations states that the Ballard international programmes p.22 world is nowhere close to the level FuelCell Energy Government Award p.26 of action needed to stop dangerous Ulemco’s ZERRO ambulance p.27 climate change. 2021 is a make or Adelan fuel cells in UK programme p.28 break year to deal with the global Wilhelmsen zero emission HySHIP p.29 climate emergency. Hydrogen fuel cell yacht p.30 NEWS p.10 EVENTS p.30 HYDROGEN FUEL CELL BUSES IN UK CITIES WORLD’S FIRST in tackling air pollution in the city.” Councillor Douglas Lumsden added: “It is HYDROGEN FUEL CELL fantastic to see the world’s first hydrogen- DOUBLE DECKER BUS IN powered double decker bus arrive in ABERDEEN Aberdeen.
    [Show full text]
  • DECARBONISING MARITIME OPERATIONS in NORTH SEA OFFSHORE WIND O&M Innovation Roadmap Produced for the UK Government Dft and FCDO CONTENTS
    DECARBONISING MARITIME OPERATIONS IN NORTH SEA OFFSHORE WIND O&M Innovation Roadmap produced for the UK Government DfT and FCDO CONTENTS 1 Executive Summary 4 2 Introduction 10 3 Methodology and Quality Assurance 14 3.1 Market scenarios 15 3.2 Industry engagement 16 4 Vessel and Wind Farm Growth Scenarios 18 4.1 Offshore Wind Deployment Growth Scenarios 19 4.2 O&M Vessel Growth Scenarios 22 5 Current Landscape of Industry 29 5.1 Overview of Industry 30 5.2 Lifecycle of Offshore Wind Farm and Associated Vessels 31 5.3 O&M Vessels 32 5.4 New Technologies on the Horizon 44 5.5 Portside Infrastructure 65 5.6 Offshore Charging Infrastructure 81 5.7 Autonomous and Remote Operated Vessels 85 5.8 AI and Data Driven Solutions and Tools for Optimised O&M Planning and Marine Coordination 88 5.9 Supply Chain Capability and Potential Benefits 90 6 Identification of Risks and Barriers to Adoption for the Decarbonisation of the Sector 95 6.1 Methodology 96 6.2 Ratings 97 6.3 Economic 98 6.4 Policy/Regulatory 102 6.5 Structural 106 6.6 Organisational 111 6.7 Behavioural 113 6.8 Summary 114 7 Route MapA 115A 7.1 Track 1 – Assessment of Technologies Methodology 117 7.2 Track 1 – Technology Assessment Results 119 7.3 Track 2 – R&D Programme 122 7.4 Track 3–Demonstrations at Scale 123 7.5 Track 4– Enabling Actions 126 7.6 Summary 135 8 Conclusions 137 Appendix 1 - Model building and review quality assurance 149 Appendix 2 - O&M Vessels Model Assumptions 151 Appendix 3 - Emission Calculations 153 Appendix 4 - Technology readiness level scale 154 Appendix 5 - Engagement ReportA 155 List of Figures 189 List of TablesA 191 1 EXECUTIVE SUMMARY 1 EXECUTIVE SUMMARY The UK’s offshore wind industry has seen rapid growth in the past ten years with more than 10.4GW of installed capacity now in UK waters and a target of 40GW by 2030.
    [Show full text]
  • Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study
    Options of Natural Gas Pipeline Reassignment for Hydrogen: Cost Assessment for a Germany Case Study Simonas CERNIAUSKAS,1(1) Antonio Jose CHAVEZ JUNCO,(1) Thomas GRUBE,(1) Martin ROBINIUS(1) and Detlef STOLTEN(1,2) (1) Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D-52428, Germany (2) Chair for Fuel Cells, RWTH Aachen University, c/o Institute of Techno-Economic Systems Analysis (IEK-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., D- 52428, Germany Abstract The uncertain role of the natural gas infrastructure in the decarbonized energy system and the limitations of hydrogen blending raise the question of whether natural gas pipelines can be economically utilized for the transport of hydrogen. To investigate this question, this study derives cost functions for the selected pipeline reassignment methods. By applying geospatial hydrogen supply chain modeling, the technical and economic potential of natural gas pipeline reassignment during a hydrogen market introduction is assessed. The results of this study show a technically viable potential of more than 80% of the analyzed representative German pipeline network. By comparing the derived pipeline cost functions it could be derived that pipeline reassignment can reduce the hydrogen transmission costs by more than 60%. Finally, a countrywide analysis of pipeline availability constraints for the year 2030 shows a cost reduction of the transmission system by 30% in comparison to a newly built hydrogen pipeline system. Keywords: Hydrogen infrastructure, fuel cell vehicles, hydrogen embrittlement, geospatial analysis 1 D-52425 Jülich, +49 2461 61-9154, [email protected], http://www.fz- juelich.de/iek/iek-3 © 2020 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Introduction The ongoing transition of the energy system to accommodate greenhouse gas emission reduction necessitates the reduction of fossil fuel consumption, including the use of natural gas (NG) [1].
    [Show full text]
  • Facts About Alberta's Oil Sands and Its Industry
    Facts about Alberta’s oil sands and its industry CONTENTS Oil Sands Discovery Centre Facts 1 Oil Sands Overview 3 Alberta’s Vast Resource The biggest known oil reserve in the world! 5 Geology Why does Alberta have oil sands? 7 Oil Sands 8 The Basics of Bitumen 10 Oil Sands Pioneers 12 Mighty Mining Machines 15 Cyrus the Bucketwheel Excavator 1303 20 Surface Mining Extraction 22 Upgrading 25 Pipelines 29 Environmental Protection 32 In situ Technology 36 Glossary 40 Oil Sands Projects in the Athabasca Oil Sands 44 Oil Sands Resources 48 OIL SANDS DISCOVERY CENTRE www.oilsandsdiscovery.com OIL SANDS DISCOVERY CENTRE FACTS Official Name Oil Sands Discovery Centre Vision Sharing the Oil Sands Experience Architects Wayne H. Wright Architects Ltd. Owner Government of Alberta Minister The Honourable Lindsay Blackett Minister of Culture and Community Spirit Location 7 hectares, at the corner of MacKenzie Boulevard and Highway 63 in Fort McMurray, Alberta Building Size Approximately 27,000 square feet, or 2,300 square metres Estimated Cost 9 million dollars Construction December 1983 – December 1984 Opening Date September 6, 1985 Updated Exhibit Gallery opened in September 2002 Facilities Dr. Karl A. Clark Exhibit Hall, administrative area, children’s activity/education centre, Robert Fitzsimmons Theatre, mini theatre, gift shop, meeting rooms, reference room, public washrooms, outdoor J. Howard Pew Industrial Equipment Garden, and Cyrus Bucketwheel Exhibit. Staffing Supervisor, Head of Marketing and Programs, Senior Interpreter, two full-time Interpreters, administrative support, receptionists/ cashiers, seasonal interpreters, and volunteers. Associated Projects Bitumount Historic Site Programs Oil Extraction demonstrations, Quest for Energy movie, Paydirt film, Historic Abasand Walking Tour (summer), special events, self-guided tours of the Exhibit Hall.
    [Show full text]
  • Frackonomics: Some Economics of Hydraulic Fracturing
    Case Western Reserve Law Review Volume 63 Issue 4 Article 13 2013 Frackonomics: Some Economics of Hydraulic Fracturing Timothy Fitzgerald Follow this and additional works at: https://scholarlycommons.law.case.edu/caselrev Part of the Law Commons Recommended Citation Timothy Fitzgerald, Frackonomics: Some Economics of Hydraulic Fracturing, 63 Case W. Rsrv. L. Rev. 1337 (2013) Available at: https://scholarlycommons.law.case.edu/caselrev/vol63/iss4/13 This Symposium is brought to you for free and open access by the Student Journals at Case Western Reserve University School of Law Scholarly Commons. It has been accepted for inclusion in Case Western Reserve Law Review by an authorized administrator of Case Western Reserve University School of Law Scholarly Commons. Case Western Reserve Law Review·Volume 63 ·Issue 4·2013 Frackonomics: Some Economics of Hydraulic Fracturing Timothy Fitzgerald † Contents Introduction ................................................................................................ 1337 I. Hydraulic Fracturing ...................................................................... 1339 A. Microfracture-onomics ...................................................................... 1342 B. Macrofrackonomics ........................................................................... 1344 1. Reserves ....................................................................................... 1345 2. Production ................................................................................... 1348 3. Prices ..........................................................................................
    [Show full text]
  • Advantages, Disadvantages and Economic Benefits Associated with Crude Oil Transportation
    Issue Brief 2 02/20/2015 Advantages, Disadvantages and Economic Benefits Associated with Crude Oil Transportation Overview Oil production is an important source of energy, employment, and government revenue in the United States and Canada. Production of crude oil is undergoing a boom in North America due to development of unconventional1 crude sources, including the Alberta oil sands and several geologic shale plays, primarily the Bakken fields in North Dakota and Montana, in addition to the Permian and Eagle Ford fields in Texas. In recent years, domestic production of crude oil in the United States has increased at tremendous rates and is predicted to continue this trend, with total production reaching an estimated 7.4 million barrels per day (bbl/d) in 2013, up from 5.35 million bbl/d five years prior in 2009.2 The forecasted output for 2015 (9.3 million bbl/d) represents what will be the highest levels of domestic production in the United States since 1972.3 This production is coupled with a decline of crude oil imports, with the share of total U.S. liquid fuels consumption met by net imports hitting a low of 33 percent in 2013, down from 60 percent in 2005.4 Canadian crude oil production has also increased dramatically with 3.3 million bb/d produced in 2013, up from 2.57 million bbl/d in 2009.5 As the primary source of imported crude oil to the United States, the Canadian and U.S. oil economies are tightly linked despite declining U.S. imports.6 The rise in crude oil production has accelerated industry demand for transportation to move crude oil from extraction locations to refineries in both nations.
    [Show full text]
  • The Costs of CO2 Transport
    The Costs of CO2 Transport Post-demonstration CCS in the EU This document has been prepared on behalf of the Advisory Council of the European Technology Platform for Zero Emission Fossil Fuel Power Plants. The information and views contained in this document are the collective view of the Advisory Council and not of individual members, or of the European Commission. Neither the Advisory Council, the European Commission, nor any person acting on their behalf, is responsible for the use that might be made of the information contained in this publication. 2 Contents Executive Summary ........................................................................................................................................5 1 Study on CO2 Transport Costs ................................................................................................................8 1.1 Background .....................................................................................................................................8 1.2 Use of new, in-house data ..............................................................................................................8 1.3 Literature and references ................................................................................................................9 1.4 Reader’s guide to the report .............................................................................................................10 2 General CCS Assumptions....................................................................................................................11
    [Show full text]